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Theory 

 

This section will cover the contents of the drug delivery treatment and the general 

concept of molecular modeling. 

 

Cancer cell  

  

The cancer is caused by damage to DNA, resulting in mutations to genes that 

encode for proteins controlling cell division. Many mutation events may be required to 

transform a normal cell into a malignant cell. These mutations can be caused by radiation, 

chemicals or physical agents that cause cancer, which are called carcinogens, or by certain 

viruses that can insert their DNA into the human genome. Mutations occur spontaneously, 

and may be passed down from one cell generation to the next as a result of mutations 

within germ lines. However, some carcinogens also appear to work through non-mutagenic 

pathways that affect the level of transcription of certain genes without causing genetic 

mutation. 

 

Carcinogenesis is caused by this mutation of the genetic material of normal cells, 

which upsets the normal balance between proliferation and cell death. This results in 

uncontrolled cell division and tumor formation. The uncontrolled and often rapid 

proliferation of cells can lead to benign tumors; some types of these may turn into 

malignant tumors (cancer). In the mechanisms of carcinogenesis, Cancer is a disease of 

genes which regulate cell growth must be damaged. Proto-oncogenes are genes which 

promote cell growth and mitosis, a process of cell division, and tumor suppressor genes 

discourage cell growth, or temporarily halt cell division from occurring in order to carry 

out DNA repair. Typically, a series of several mutations to these genes are required before 

a normal cell transforms into a cancer cell. Mutations in proto-oncogenes can modify their 

expression and function, increasing the amount or activity of the product protein. When 

this happens, they become oncogenes, and thus cells have a higher chance to divide 

excessively and uncontrollably. The chance of cancer cannot be reduced by removing 

proto-oncogenes from the genome as they are critical for growth, repair and homeostasis 

of the body. It is only when they become mutated, that the signals for growth become 

excessive. However, a mutation can damage the tumor suppressor gene itself, or the signal 

pathway which activates it, "switching it off". The invariable consequence of this is that 
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DNA repair is hindered or inhibited: DNA damage accumulates without repair, inevitably 

leading to cancer. 

 

 The cancer cell can be treatment by several methods such as surgery, chemotherapy, 

immunotherapy, monoclonal antibody therapy, radiation therapy, hormonal suppression, 

symptom control, treatment trials, cancer vaccines, quackery in the treatment of cancer, 

and complementary and alternative medicine. At present, the treatment by using drug 

delivery is very interesting method.     

 

 Chemotherapy is the treatment of cancer with drugs ("anticancer drugs") that can 

destroy cancer cells. It interferes with cell division in various possible ways, e.g. with the 

duplication of DNA or the separation of newly formed chromosomes. Most forms of 

chemotherapy target all rapidly dividing cells and are not specific for cancer cells. Hence, 

chemotherapy has the potential to harm healthy tissue, especially those tissues that have a 

high replacement rate (e.g. intestinal lining). These cells usually repair themselves after 

chemotherapy (Wikipedia, 2007). 

 

Drug delivery treatment 

  

 The drug delivery contains the drug, water soluble compound and polypeptide 

chain. The drug treats a cancer cell such as floxuridine (FUDE), doxorubicin, methotrexate, 

and cisplatin. The solubilizing compound is a polymer form such as poly(lactic acid), 

poly(lactic-co-glycolic acid), polyanhydrides, poly(ortho esters), poly(phosphoesters), and 

poly(ethylene glycol). And the peptide chain is a molecule to cross-linkage with drug. The 

peptide chain is a polymer molecule such as polychitosan and heparan sulfate. The drug 

delivery systems have many types such as hydrogel, encapsulation, nanoaggregation, and 

micelle formation. 

 

 For the treatment, the water soluble compound is carried to cancer cell molecule. 

Next, the proteolytic enzymes or protein molecule in cancer cell attracts with the 

polypeptide chain molecule. The molecule is separated into two parts. The first part is drug 

and polypeptide chain. And the second part is the polypeptide chain and water soluble 

molecule. For the first part, the polypeptide chain is biodegradation and release drug into 

the cancer cell to block DNA (Woityk, 2005). 
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Computational Models and Molecular Modeling  

 

The computational chemistry simulates chemical structures and reactions 

numerically, based on the full or part of physics fundamental laws. It allows chemists to 

study chemical phenomena by running theoretical calculations than by examining 

reactions and compounds experimentally. Some methods can be used to model not only 

stable molecules, but also short-lived, unstable intermediates and even transition states. In 

this way, they can provide information about molecules and reactions which is impossible 

to obtain through observation. Computational chemistry is therefore both an independent 

research area and a vital adjunct to experimental studies. 

 

 The computational chemistry devotes the structure of molecules by molecular 

mechanics and electronic structure theory. The performance of computational chemistry 

for calculations: 

  

• Computing the energy of a particular molecular structure (spatial arrangement 

of atoms or nuclei and electrons). Properties related to the energy may also be 

predicted by some methods. 

 

• Performing geometry optimizations, which locate the lowest energy molecular 

structure close proximity to the specified starting structure. Geometry 

optimizations depend primarily on the gradient of the energy-the first derivative 

of the energy with respect to atomic positions. 

 

• Computing the vibrational frequencies of molecules resulting from interatomic 

motion within the molecule. Frequencies depend on the second derivatives of 

the energy with respect to atomic to atomic structure, and frequency 

calculations may also predict other properties which depend on second 

derivatives. Frequency calculations are not possible or practical for all 

computational chemistry methods (Sonthisawate 2006). 
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Molecular Mechanics Method 

 

Molecular mechanics simulations use the laws of classical physics to predict the 

structures and properties of molecules. Molecular mechanics methods are available in 

many computer programs, including MM3, HyperChem, Quanta, Sybyl, Alchemy and 

Gaussian. There are many different molecular mechanics methods. Each electron is 

characterized by its particular force field. A force field has these components: 

 

• A set of equations defining how the potential energy of a molecule varies with 

the locations of its component atoms. 

 

• A series of atom types, defining the characteristics of an element within a 

specific chemical context. Atom types prescribe different characteristics and 

behavior for an element. For example, a carbon atom in a carbonyl is treated 

differently than one bonded to three hydrogens. The atom type depends on 

hybridization, charge and the types of the other atoms which it is bonded. 

 

• One or more parameter sets that fit the equations and atom types to 

experimental data. Parameter sets define force constants, which are values used 

in the equations to relate atomic characteristics to energy component, and 

structural data such as bond lengths and angles. 

 

Molecular mechanics calculations don’t explicitly treat the electrons in a molecular 

system. Instead, they perform computations based upon the interactions among the nuclei. 

Electronic effects are implicitly included in force fields through parameterization. 

 

This approximation makes molecular mechanics computationally, and allows it to 

be used for very large systems containing many thousands of atoms. However, it also 

carries several limitations as well. Among the most important are these: 

 

 Each force field achieves good results only for a limited class of molecules, related 

to those which it was parameterized. No force field can be generally used for all molecular 

systems of interest 
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 Neglecting of electrons means that molecular mechanics methods cannot treat 

chemical problems where electronic effects predominate. For example, they cannot 

describe processes which involve bond formation or bond breaking. Molecular properties 

which depend on subtitle electronic details are also not reproduced by molecular 

mechanics methods (Sonthisawate 2006). 

 

Electronic structure methods (Quantum Mechanics Methods) 

 

Electronic structure methods use the laws of quantum mechanics as the basis for 

their computations. Quantum mechanics states that the energy and other related properties 

of a molecule can be obtained by solving the Schrödinger equation: 

 

HΨ = EΨ                                                            (1)   

 

For any but the smallest systems, however, exact solutions to the Schrödinger 

equation are not computationally practical. Electronic structure methods are characterized 

by their various mathematical approximations for solution. There are two major classes of 

electronic structure methods: 

 

 Semi-empirical method, such as AM1, MINDO/3 and PM3, implemented in 

programs like MOPAC, AMPAC, HyperChem, and Gaussian, uses parameters which are 

derived from experimental data to simplify the computation. These methods solve an 

approximate form of the Schrödinger equation that depends on having appropriate 

parameters available for the type of chemical system under investigation. The semi-

empirical methods are largely characterized by their differing parameter sets, but it gives 

the good trend in approximation for solution. 

 

Ab initio method uses non experimental parameters in their computations. Instead, 

their computations are based solely on the laws of quantum mechanics-the first principles 

referred to in the name ab initio-and on the values of a small number of physical constants 

such as the speed of light, the masses and charges of electrons and nuclei, and Planck’s 

constant (Sonthisawate 2006). 
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Molecular Orbital Theory 

 

 Molecular orbital theory which uses one-electron functions or orbitals to 

approximate the full wave function is an approach to molecular quantum mechanics A 

molecular orbital, ( )zyx ,,ψ , is a function of the Cartesian coordinates x, y, z of a single 

electron. The spin coordinates,ξ , also has to be included. This coordinate takes one of two 

possible values ( )2
1± , and the spin angular momentum component along the z axis in units 

of π2/h (Sonthisawate 2006). 

 

 The simplest type of wave function appropriate for the description of an n-electron 

system would be in the form of a product of spin orbital, 

 

( ) ( ) ( )nnproduct χχχψ ...21 21=                                            (2) 

 

Where ( )iiχ is written for ( )iiiii zyx ξχ ,,, , the spin orbital of electron i. The spin orbitals 

may be arranged in a determinant of wave function. 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )nnn n

n

n

anter

χχχ

χχχ
χχχ

ψ

L

MMMM

L

L

21

21

21

mindet

222
121

=                                 (3) 

 

Here the elements of the first row of the determinant contain assignations of electron 1 to 

all the spin orbitals nχχχ ,...,, 21 , the second row all possible assignations of electron 2, 

and so forth. 

 

 Some further properties of molecular orbital wave functions are worth noting. It is 

possible to force the orbitals to be orthogonal to each other, that equation is 

 

∫= dxdydzS jiij ψψ *                                                  (4) 
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This can be accomplished without changing the value of the whole wave function by 

mixing columns of the determinant. The α  and β  are orthogonal spin functions by 

integration over spin space (actually summation over the two possible values ofξ ): 

 

( ) ( ) 1 1 1 1 0
2 2 2 2ξ

α ξ β ξ α β α β⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑                     (5) 

 

Molecular orbitals may be normalized, that is 

 

1* == ∫ dxdydzS jiij ψψ                                               (6) 

 

By multiplication of the individual by a constant, normalization corresponds to the 

requirement that the probability of finding the electron anywhere in space is unity. 

Given 1=ijS , the determinant of wavefunction can be normalized by multiplication by a 

factor of ( ) 2
1

! −n , that is 

 

∫ ∫ =ΨΨ 1* 21 ndd τττ LL                                           (7) 

 

The determinant of wavefunction is normalized by multiplication by a factor of ( ) 2
1

! −n . 

This factor can be written down a full many-electron molecular orbital wave function for 

the closed-shell ground state of a molecule with n(even) electrons, doubly occupying n/2 

orbitals: 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nnnnnnnn

n

n

n

n

βαβα

βαβα
βαβα

2211

2211

2211

22222222
11111111

! 2
1

ΨΨΨΨ

ΨΨΨΨ
ΨΨΨΨ

=Ψ −

L

MMMM

L

L

           (8) 

 

The determinant is referred to as a Slater determinant. 

This theory starts from the Schrödinger equation. The energies and wavefunctions 

of stationary states of a system are given by the  
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Schrödinger equation: , ,
ˆ

e n e nH Eψ ψ=  

Hamiltonian: ,
ˆ ˆ ˆ ˆ

n e e nH T T V= + +  

In this equation, Ĥ is the Hamiltonian operator which is the kinetic and potential energies 

operator atomic nuclei and electrons. The Hamiltonian is composed of three parts: the 

kinetic energy of the nuclei, the kinetic energy of the electrons, and the potential energy of 

nuclei and electrons. ψ  is a wavefunction, one of the solutions of the eigenvalue equation. 

This wavefunction depends on the coordinates of the electrons and the nuclei. 

 Four approximations are commonly made (Nix, 2002):  

• Time independence; the equations are looking at states that are stationary in time.  

• Neglect of relativistic effects; this is warranted unless the velocity of the electrons 

approaches to the speed of light, which is only in the case of heavy atoms with very 

high nuclear charge.  

• Born-Oppenheimer approximation; separation of the motion of nuclei and electrons.  

• Orbital approximation; the electrons are confined to certain regions of space.  

The Born-Oppenheimer approximation implies the separation of nuclear and electronic 

wavefunctions. 

Born-Oppenheimer: ,e n n eχ ψΨ =  

The theory independence of the experimental values of physical constants, atomic units is 

introduced:  

e = 1 charge of electron  

m = 1 mass of the electron 

2
hh
π

=   

Derived atomic units of length and energy are: 

1 bohr = 0 2 0.529ha
me

= = Å 

1 hartree = 
2

18

0

4.3598 10e
a

−= × J = 627.51 kcal/mol 
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With these units the electronic Hamiltonian is:  

2

1 1 1

1 1ˆ
2

n n N n
A

e i
i i A i jA i ij

ZH
R r r= = =

= − ∇ − +
−∑ ∑∑ ∑

<

                                  (9) 

The 2
i∇ is the Laplace operator

2 2 2
2

2 2 2i
i i ix y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
. The total energy in the Born-

Oppenheimer model is obtained by adding the nuclear repulsion energy to the electronic 

energy:  

total e nE E E= +                                                     (10) 

The nuclear repulsion energy is 

N
A B

n
A B A B

Z ZE
R R<

=
−∑                                                  (11) 

Hartree-Fock Theory 

 

Hartree-Fock theory is fundamental of electronic structure theory. It is the basis of 

molecular orbital (MO) theory, which positions of each electron's motion can be described 

by a single-particle function (orbital) which does not depend explicitly on the 

instantaneous motions of the other electrons. The Hartree-Fock theory often provides a 

good starting point for more elaborate theoretical methods which are better approximations 

to the electronic Schrödinger equation. 

 

Hartree-Fock theory was developed to solve the electronic Schrödinger equation that 

results from the time-independent Schrödinger equation after invoking the Born-

Oppenheimer approximation. In atomic units, and with r denoting electronic and R 

denoting nuclear degrees of freedom, the electronic Schrödinger equation is 

 

2

,

1 1 ( ; ) ( ; )
2

A A B
i el

i A i A B i jAi AB ij

Z Z Z r R E r R
r R r

⎡ ⎤
− ∇ − + + Ψ = Ψ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑
> >

               (12) 

 

This approximation starts with a wavefunction of the general form  
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1 2 1 1 2 2( , ,...., ) ( ) ( )... ( )HP N N Nr r r r r rφ φ φΨ =                                (13) 

 which is known as a Hartree Product 

 

The antisymmetry principle which states that a wavefunction describing fermions should 

be antisymmetric with respect to the interchange of any set of space-spin coordinates. The 

General Hartree Fock or Z-Averaged Perturbation Theory changes the notation for orbitals 

from ∅(r), a spatial orbital, to χ(x), a spin orbital. The Hartree Product becomes 

 

1 2 1 1 2 2( , ,...., ) ( ) ( )... ( )HP N N Nx x x x x xχ χ χΨ =                             (14) 

 

The Pauli Exclusion Principle is a consequence of the antisymmetry principle.  

The generalization wavefunction to N electrons is  

 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )1

!
( ) ( ) ( )

N

N

N N N N

x x x
x x x

N
x x x

χ χ χ
χ χ χ

χ χ χ

Ψ =

L

L

M M O M

L

                             (15) 

In addition, a solution of the electronic Schrödinger equation the wavefunction must be 

normalized and satisfy the Pauli principle. The normalization condition is connected with 

the interpretation of the wavefunction as a distribution function which when integrated 

over entire space should give a value of one:  

* 1dxψ ψ =∫                                                       (16)  

in "bra-ket" notation:  1ψ ψ〈 =  

An important property of the self consistent field (SCF) method is that its solutions satisfy 

the Variation Principle, which states that the expectation value of the energy evaluated 

with an inexact wavefunction is always higher than the exact energy (Sherrill, 2000):  

e
e exact

H
E E

ψ ψ

ψ ψ

〈
= ≥

〈
                                              (17)  
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Energy Expression 

 

The electronic Hamiltonian is simply 

ˆ ( ) ( , )el NN
i i j

H h i i j Vν= + +∑ ∑
<

                                        (18) 

VNN is just a constant for the fixed set of nuclear coordinates {R}, this term can be ignored 

(it doesn't change the eigenfunctions, and only shifts the eigenvalues). 

 

The Hartree-Fock wavefunction will have the form of a Slater determinant, and the energy 

will be given by the usual quantum mechanical expression. 

 

ˆ
el elE H= 〈Ψ Ψ                                             (19)  

 

The Hartree-Fock energy Eel in terms of integrals of the one- and two-electron operators is 

 

1 [ ] [ ]
2HF

i ij

E i h i ij jj ij ji= + −∑ ∑                                    (20) 

where the one electron integral is 

 

*
1 1 1 1( ) ( ) ( )i ji h i dx x h r xχ χ= ∫                                        (21) 

 

and a two-electron integral (Chemists' notation) is 

 

* *
1 2 1 1 2 2

12

1[ ] ( ) ( ) ( ) ( )i j k lij kl dx dx x x x x
r

χ χ χ χ= ∫                             (22) 

There are efficient computer algorithms for computing such one- and two-electron 
integrals (Sherrill, 2000).  
 

The Hartree-Fock Equations 

 

The Hartree-Fock method seeks to approximately solve the electronic Schrödinger 

equation, and assumes that the wavefunction can be approximated by a single Slater 
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determinant made up of one spin orbital per electron. The Hartree-Fock method which was 

used to determine the set of spin orbitals minimize the energy and give the best single 

determinant. The Hartree-Fock energy can be accomplished by Lagrange's method of 

undetermined multipliers, where this method is employed a functional L defined as 

[{ }] [{ }] ( )HF i ij ij
ij

L x E i jχ ε δ= − −∑                                  (23) 

where εij are the undetermined Lagrange multipliers and < i|j > is the overlap between spin 

orbitals i and j, i.e., 
*( ) ( )i ji j x x dxχ χ= ∫                                              (24) 

  

Setting the first variation δL = 0, and working through some algebra, the Hartree-Fock 

equations defining the orbitals are arrived: 

 

2 1 * 1
1 2 2 12 1 2 2 2 12 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ji i j i i j i i i
j i j i

h x x dx x r x dx x x r x xχ χ χ χ χ χ ε χ− −

≠ ≠

⎡ ⎡⎤ ⎤+ − =⎦ ⎦⎣⎣∑ ∑∫ ∫ (25) 

where εi is the energy eigenvalue associated with orbital iχ . 

 

The Hartree-Fock equations can be solved numerically (exact Hartree-Fock), in the 

space spanned by a set of basis functions (Hartree-Fock-Roothaan equations). In either 

case, note that the solutions depend on the orbitals. Hence, the basis functions need to 

guess some initial orbitals and then refine our guesses iteratively. For this reason, Hartree-

Fock is called a self-consistent-field (SCF) approach. The first term above in square 

brackets 

2 1
2 2 12 1[ ( ) ] ( )j i

j i
dx x r xχ χ−

≠
∑ ∫                                         (26) 

gives the Coulomb interaction of an electron in spin orbital iχ  with the average charge 

distribution of the other electrons. Here the sense Hartree-Fock is a mean field" theory. 

This is called the Coulomb term, and it is convenient to define a Coulomb operator as 

 
2 1

1) 2 2 12( ( )j jJ x dx x rχ −= ∫                                            (27) 
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This gives the average local potential at point x1 due to the charge distribution from the 

electron in orbital jχ . 

 

The other term in brackets in the Hartree-Fock equations [25] defining the orbitals 

equation is hard to explain and does not have a simple classical analog. It arises from the 

antisymmetry requirement of the wavefunction. It looks much like the Coulomb term, 

except that it switches or exchanges spin orbitals iχ and jχ . Hence, it is called the 

exchange term: 

 
* 1

2 2 2 12 1[ ( ) ( ) ] ( )
j i j

j i
dx x x r xχ χ χ−

≠
∑ ∫                                      (28) 

 

An exchange operator can define in terms of its action on an arbitrary spin orbital jχ :  

 
* 1

1 1 2 2 2 12 1( ) ( ) ( ) ( ) ( )
jj i i j

j i
K x x dx x x r xχ χ χ χ−

≠

⎡ ⎤= ⎦⎣∑ ∫                         (29) 

 

In terms of these Coulomb and exchange operators, the Hartree-Fock equations become 

considerably more compact. 

 

]1 1 1 1 1[ ( ) ( ) ( ) ( ) ( )j j i i i
j i j i

h x J x K x x xχ ε χ
≠ ≠

− − =∑ ∑                            (30) 

 

The Hartree-Fock equations are eigenvalue equations which realize that 

 

1 1 1[ ( ) ]( )] ( ) 0i i iJ x K x xχ− =                                             (31) 

 

Then, it becomes clear that the restrictions can remove j ≠ i in the summations and 

introduces a new operator, the Fock operator, as 

 

1 1 1 1( ) ( ) ( ) ( )j j
j

f x h x J x K x= + −∑                                      (32) 

 

And now the Hartree-Fock equations are just 
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1 1 1( ) ( ) ( )i i if x x xχ ε χ=                                            (33) 

 

Introducing a basis set, the Hartree-Fock equations can be transformed into the Roothaan 

equations. Denoting the atomic orbital basis functions as χ% , the expansion is 

  

1

K

i iCµ µ
µ

χ χ
=

=∑ %                                                       (34) 

 

for each spin orbital i. This leads to 

 

1 1( ) ( ) ( )i i i if x C x C xν ν ν ν
ν

χ ε χ=∑ ∑% %                                      (35)  

 

Left multiplying by *
1( )xµχ% and integrating yields a matrix equation 

1 1

* *
1 1 1 1 1( ) ( ) ( ) ( ) ( )i i iC dx x f x x C dx x xν µ ν ν µ ν

ν ν

χ χ ε χ χ=∑ ∑∫ ∫% % % %                    (36) 

This can be simplified by introducing the matrix element notation 

 

1

*
1 1( ) ( )S dx x xµν µ νχ χ= ∫ % %                                             (37) 

1

*
1 1( ) ( )F dx f x xµν µ νχ χ= ∫ % %                                           (38) 

 

For two electrons, the Hartree-Fock equation is 

 

1( / ) ( / )
2

coreF H Pµν µν λν
λσ

µν λσ µν λσ⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑                            (39)  

coreF H Gµν µν µν= +                                                   (40) 

 

where coreH µυ , core-Hamiltonian matrix defined as 

*
1 1 (1) (1) (1)coreH dr hµν νϕ ϕ= ∫                                          (41) 

*
2

2 a

N

a

CCP υµυµυ ∑=                                                  (42) 
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The matrix S is the overlap matrix, indicating the overlap between orbitals. 

 

( ) ( )∫= 11*
1 υµµυ φφdrS                                                  (43) 

 

The term ( )λσµυ  in Equation signified the two-electron repulsion integrals, defined as 

 

( ) ( ) ( ) ( ) ( )∫ −= 2221 *1
12

*
21 σλυµ φφφφλσµυ rdrdr                                (44) 

 

Now the Hartree-Fock-Roothaan equations can be written in matrix form as 

 

i i iF C S Cµν ν µν ν
ν ν

ε=∑ ∑                                               (45) 

 

or even more simply as matrices 

FC SCε=                                                         (46) 

 

where ε is a diagonal matrix of the orbital energies iε . This is like an eigenvalue equation 

except for the overlap matrix S. One performs a transformation of basis to an orthogonal 

basis to make S vanish. Then it's just a matter of solving an eigenvalue equation (or, 

equivalently, diagonalizing F!). Well, not quite. Since F depends on it is own solution 

(through the orbitals), the process must be done iteratively (Sherrill, 2000).  

 

Restricted Open-shell Hartree-Fock (ROHF) is a variant of Hartree-Fock theory for 

open shell doubly occupied molecular orbitals as far as possible and then singly occupied 

orbitals for the unpaired electrons. But, it is difficult to implement (Wikipedia, 2007). 

  

Restricted Hatree-Fock theory for closed shell molecules, leads to a Roothaan 

equation written in the form of a generalized eigenvalue problem. The restricted Hartree-

Fock equation is FC SCε= . 

Unrestricted Hartree-Fock (UHF) theory is the most common molecular orbital 

method for open shell molecules where the number of electrons of each spin is not equal. 

This theory uses different molecular orbitals for the α and β electrons. This has been called 
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different orbitals for different spins (DODS) method. The result is pair of coupled 

Roothaan equations; know as Pople-Nesbet equations. The unrestricted Hartree-Fock 

equation is  

F C SCα α α αε= , F C SCβ β β βε=                                (47)   

Where Fα and F β are the Fock matrices for the α and β orbitals, Cα and Cβ are the 

matrices of coefficients for the α and β orbitals, S is the overlap matrix of the basis 

functions, the αε and βε are the (diagonal, by convention) matrices of orbital energies for 

the α and β orbitals. The pair of equations is coupled because the Fock matrix elements of 

one spin contain coefficients of both spin as the orbital has to be optimized in the average 

field of all other electrons. The final result is a set of molecular orbitals and orbital 

energies for the α  spin electrons and a set of molecular orbitals and orbital energies for 

theβ electrons. The unrestricted open-shell Hartree–Fock (UHF) formalism was applied to 

open-shell systems (Wikipedia, 2007).  

 

Density Functional Theory 

 

The functional employed by DFT methods partition the electronic energy E of a 

molecule into the terms 

 

( ) ( ) ( ) ( ) ( )T V J XCE E E E Eρ ρ ρ ρ ρ= + + +                              (48) 

 

where TE  is the kinetic energy of the electrons, EV is the potential energy of nuclear–

electron attraction and nuclear–nuclear repulsion, EJ is the electron–electron repulsion of 

the classical energy of the density ρ, and EXC is the exchange energy (X) arising from the 

wave function including the dynamical correlation (C) of electron motion.  

 

The major problem with DFT is that the exact functional for exchange and 

correlation are not known except for the free electron gas. However, approximations exist 

which permit the calculation of certain physical quantities quite accurately. In physics the 

most widely used approximation is the local-density approximation (LDA), where the 

functional depends only on the density at the coordinate where the functional is evaluated: 
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3[ ] ( ) ( )XC XCE n n n r d rε= ∫                                             (49) 

 

The local spin-density approximation (LSDA) is a straightforward generalization of the 

LDA to include electron spin: 

 
3[ , ] ( , ) ( )XC XCE n n n n n r d rε↑ ↓ ↑ ↓= ∫                                  (50) 

 

Highly accurate formulae for the exchange-correlation energy density ( , )XC n nε ↑ ↓  have 

been constructed from Quantum Monte Carlo simulations of a free-electron gas. 

Generalized gradient approximations (GGA) are still local but also take into account the 

gradient of the density at the same coordinate: 

 
3[ , ] ( , , , ) ( )XC XCE n n n n n n n r d rε↑ ↓ ↑ ↓ ↑ ↓= ∇ ∇∫

v v
                             (51) 

 

Using the latter (GGA) very good results for molecular geometries and ground state 

energies have been achieved. Many further incremental improvements have been made to 

DFT by developing better representations of the functional (Wikipedia, 2007). 

 

The term EXC is divided into two separate functional 

 

( ) ( ) ( )XC X CE E Eρ ρ ρ= +                                            (52) 

 

The definition of the EX(ρ) and EC(ρ) functional can be found that Becke introduced a 

gradient-corrected functional EX(B)(ρ,∇ρ) and formulated functional which include a 

mixture (hybrid) of Hartree–Fock (HF) exchange and DFT exchange (X) plus correlation 

(C) as 

 

( ) ( ) ( )XC X C
HF DFTE hybrid c E HF c E DFT= +                               (53) 

 

where the coefficients c are adjustable parameters. Becke’s B3LYP functional, for instance, 

is a three parameter functionals of the following composition: 
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[ ]0( 3 ) ( ) ( ) ( ) ( 3)XXC X X X C
XE B LYP E c E HF E DFT c E B E VWN= + − + + +  

]( ) ( 3)
CC

Cc E LYP E VWN⎡ −⎣                                                    (54) 

 

where VWN is the Vosko, Wilk, Nusair functional, and LYP is the Lee, Yang, Parr 

functional. The parameters c0, cX, and cC are determined by fitting to atomization energies, 

ionization energies, proton affinities, and atomic energies of a set of molecules. Thus, the 

B3LYP procedure is semi-empirical in this sense. DFT calculations precede in the same 

way as ab initio HF calculations, with the addition of the extra term EXC, which is 

computed via numerical integration (Janaoschek 2001). 

 

Vosko-Wilk-Nusair correlation energy functional (TCM Group, 2007) 

( ), ,VWN VWN
C CE drα β α βρ ρ ρε ρ ρ⎡ ⎤ =⎣ ⎦ ∫                                       (55)  

( ) ( ), , ( , )VWN
C I C Srα β α βε ρ ρ ε ρ ρ ε ζ= + ∆                                (56)  
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1/ 2

22
10 0( )2, ln ln tan

( ) 2 ( ) 2
S

I i

x r

bx x xx b Q QA
X x Q x b X x Q x bα βε ρ ρ −

=

⎡ ⎤⎛ ⎞−⎛ ⎞= + −⎢ ⎥⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦
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4
1"

( )( , ) ( , ) 1 ( )
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Table 2  Constants for the Vosko-Wilk-Nusair parameterizations 

Parameter I II III 

Ai 0.062184 0.031091 –0.033774 

bi 3.72744 7.06042 1.131071 

ci 12.9352 18.0578 13.0045 

x0i –0.10498 –0.32500 –0.0047584 

 
 
Lee, Yang and Parr correlation energy functional and potential 
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a = 0.04918, b = 0.132, c = 0.2533, d = 0.349  
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 5/3 1/3
2 2 ( ) exp( )G F cρ ρ ρ− −= −                                         (69) 
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Basis Functions  

 

The basis functions in the LCAO-MO method are atomic orbitals. Indeed, the basis 

orbitals used in practical calculations mostly are atom-centered functions that resemble 

orbitals as they can be found for isolated atoms. The radial part of such orbitals is an 

exponentially decaying function. Basis orbitals of this type are called Slater-type orbitals 

(STO). The general expression for a basis function is given as:  

Basis Function = N * e(-alpha * r) 

Where N = normalization constant, alpha = orbital exponent, and r = radius (Å)   

This expression given as a Slater Type Orbital (STO) equation is:  

3
( )

0.5
rSTO e ζζ

π
−=                                                  (72) 

Now it is important to remember that STO is a very tedious calculation. S.F. Boys came up 

with an alternative when he developed the Gaussian Type Orbital (GTO) equation:  

2( )
0.75

2 rxGTO e χ

π
−=                                                 (73)  

Notice that the difference between the STO and GTO is in the "r." The GTO squares the 

"r" so that the product of the gaussian "primitives" (original gaussian equations) is another 

gaussian. By doing this, we have an equation we can work with and so the equation is 

much easier. However, the price we pay is loss of accuracy. To compensate for this loss, 

we find that the more gaussian equations we combine, the more accurate our equation.  

For practical calculations they have the disadvantage that evaluation of integrals 

involving such functions is time-consuming. Therefore these orbitals are approximated by 
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a linear combination of gaussian basis functions (GTO) (The Shodor Education 

Foundation, Inc., 2000): 

 

1

n
STO GTO

nk ν
ν

ϕ ϕ
=

=∑                                                  (74) 

2

( ) rr e αϕ −=                                                          (75)    

Basis Sets  

Ab initio electronic structure computations are almost always carried out 

numerically using a basis set of orbitals. It is important to choose a basis set large enough 

to give a good description of the molecular wave function. Typically, the basis functions 

are centered on the atoms, and so sometimes they are called "atomic orbitals". However, it 

is important to note that this does not imply that they are actually solutions to the 

electronic Schrödinger equation for the atom. In modern practice, these atom-centered 

basis functions are usually chosen to be Gaussian-type orbitals (GTO's), which have the 

form  

 
2

( , , ) l m n r
GTO x y z x y z e ζ−Ψ =                                                 (76)  

 

where x, y, z are the local (atom-centered) Cartesian coordinates, l, m, n are positive 

integers which more or less describe the angular momentum of the orbital, and r is the 

radial distance to the atomic center. Spherical orbitals are usually given by l = m = n = 0, a 

px orbital is given by l = 1, m = n = 0, a dxy orbital is given by l = m = 1, n = 0, etc. Unlike 

hydrogen atom orbitals, GTO's do not have radial nodes; however, radial nodes can be 

obtained by combining different GTO's. Quite frequently, an atomic basis function is 

actually a fixed linear combination of GTO's; this is called a contracted Gaussian basis 

function.  

The smallest possible basis set is called the minimal basis set, and it contains one 

orbital (which may be contracted) for every orbital we usually think of for an atom 

(including unoccupied orbitals). For example, hydrogen has just one orbital, but carbon has 

5 (1s, 2s, 2px, 2py, and 2pz) even though one of the p orbitals for carbon atom will be 

unoccupied. The STO-3G basis is a very well-known minimal basis set which contracts 3 
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Gaussian functions to approximate the more accurate (but more difficult to compute) 

Slater type orbitals. Although a contracted GTO might give a good approximation to an 

atomic orbital, it lacks any flexibility to expand or shrink in the presence of other atoms in 

a molecule. Hence, a minimal basis set such as STO-3G is not capable of giving highly 

accurate results.  

The solution is to add extra basis functions beyond the minimum number required 

to describe each atom. Then, the Hartree-Fock procedure (below) can weight each atomic 

orbital basis function more or less to get a better description of the wave function. If we 

have twice as many basis functions as in a minimum basis, this is called a "double zeta" 

basis set (the zeta, ζ, comes from the exponent in the GTO). Hence, a double-zeta basis set 

for hydrogen would have two functions, and a true double-zeta basis set for carbon would 

have 10 functions. However, sometimes people "cheat" and use only a single orbital for the 

core (1s), giving 9 functions for carbon. Such basis sets are said to be "double-zeta in the 

valence" space; they are also called "split-valence" basis sets. Double-zeta basis sets are 

often denoted DZ. Often additional flexibility is built in by adding higher-angular 

momentum basis functions. Since the highest angular momentum orbital for carbon is a p 

orbital, the "polarization" of the atom can be described by adding a set of d functions. A 

hydrogen atom would use a set of 3 p functions as polarization functions. A double-zeta 

plus polarization basis set might be designated DZP. The most famous example of a split-

valence double-zeta plus polarization basis set is Pople's so-called 6-31G* basis. This 

obscure notation means that the core orbital is described by a contraction of 6 Gaussian 

orbitals, while the valence is described by two orbitals, one made of a contraction of 3 

Gaussians, and one a single Gaussian function. Just to confuse you, the star (*) indicates 

polarization functions on non-hydrogen atoms. If polarization was added to hydrogen 

atoms also, this basis would be called 6-31G**. The confusing nature of this nomenclature 

has caused some chemists to start switching to slightly improved notation such as 6-

31G(d,p), where the polarization functions are listed explicitly (Sherrill, 2001).  

 

A few examples of common split-valence basis sets are 3-21G, 4-31G, and 6-31G 

such as this term X-YZG,  

where  

x is the number of gaussian functions summed to describe the inner shell orbital. 

Y is the number of gaussian functions that comprise the first STO of the double zeta. 
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Z is the number of gaussian functions summed in the second STO (The Shodor Education 

Foundation, Inc., 2000). 

 

Semi-Empirical Calculations 

 

 Due to their greatly increased requirement for central processing unit time and 

storage space in the computer memory, ab initio quantum chemical methods are limited in 

their practical applicability. The approximate quantum chemical methods require 

significantly less computational resources. Semi-empirical methods are based on the 

Roothaan-Hall. 

 

 In ab initio calculations all elements of the Fock matrix are calculated, irrespective 

of whether the basis functions µφ , νφ , σφ  and λφ are on the same atom, on atoms that are 

bounded or on atoms that are not formally boned. The semi-empirical methods consider 

the Fock matrix element in three groups: µµF  (the diagonal elements); µνF  (where µφ  and 

νφ  are on the same atom, and σφ and λφ  are on different atoms). 

 

 The greatest proportion of the time required to perform ab initio Hartree-Fock SCF 

calculation is invariably calculating and manipulating integrals. The most obvious way to 

reduce the computational effort is to neglect or approximate some of these integrals. Semi-

empirical methods achieve this part by explicit considering into the nuclear core. The 

overlap matrix, S, is set equal to identity matrix, I. So, the main implication is that the 

Roothaan-Hall equations are simplified: FC = SCF becomes  

FC = CE. 

 

 The NDDO (neglect of diatomic differential overlap), this theory neglects 

differential overlap between atomic orbital on different atoms. 

 

 The elimination of three- and four-centre integrals greatly reduces the time and 

storage requirements for an NDDO calculation (which now increase as the square of the 

number of atoms) relative to that for a full Hartree-Fock treatment. 
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All semi-empirical methods make use of the "zero-differential overlap 

approximation" to some extent. This approximation simply says that the overlap between 

many atomic orbtals will be small and thus the electron repulsion integrals will have 

negligible values. If the differential overlap is assumed to be zero then the evaluation of 

the electron repulsion integrals are generally simplified (Cross, 1999): (µν׀λσ) = 0 unless µ 

= ν and λ = σ 

 

 Three levels of NDDO theory are included in SPARTAN’S SEMI EMPIRICAL 

module:  

MNDO Modified Neglect of Diatomic Overlap 

 AM1 Austin Model 1 

 PM 3 MNDO Parameterization Method 3 

 In all of these formalisms, only the valence electrons are considered. The one-

electron terms are given by, 

 

∑
≠

−=
AB

BA
core ZZUH δδµνµνµν                                      (77) 

 

 Here, µ and ν are located on atom A and B, respectively. The summation is over all 

other atoms. ννU  is related to the binding energy of an electron in atomic orbital ν, and is 

determined from spectroscopic data.  µνU  is set to be zero for µν ≠ . The second term in 

Equation represents to the attraction of an electron on atom A from the nuclear framework. 

The two center integral involved only the s function on atom B.ZA is the charge of atom A 

without its valence electrons. 

 

 All one-centre, two-electron integrals ( )µµυυ /  and ( )υµυµ /  are fitted to 

spectroscopic data. The two-centre, two electron repulsion integrals ( )λσυµ /  are 

approximated by classical multipole-multipole charge interactions between atoms A and B. 

The multipole charge separations within an atom are treated as adjustable parameters, i.e. 

optimized to fit the experimentally derived one-centre integrals. 

 

 The µλβ terms appearing in the Fock matrix are the one-electron, two-center core 

resonance integrals and are approximated as, 
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ρλ
λρ

ρλ

ββ
β S

2
+

=                                               (78) 

 

Where S is the overlap integral between Slater orbitals and ρ, λ are adjustable 

parameters optimized using experimental thermo chemical data for simple molecules. 

Because all of the adjustable parameters are rooted in experimental data, these methods are 

known as semi-empirical. As in ab initio Hartree-Fock calculations, an SCF procedure is 

converged on a density matrix and the electronic energy as well. 

 

 The three methods differ only in the core-repulsion terms (they also differ in the 

detailed parameterization). Core repulsion includes nuclear repulsion and non-valence 

electron-electron repulsion, which are not explicitly considered in the calculation of the 

electronic energy. For example in the MNDO model, the core repulsion energy is given by, 

 

( ) ( ) ( )∑∑
≠ ≠

−− +=
BA AB

EE
BA

CR ABBABa eeBAZZE σσδδ /                     (79) 

 

where δ is the intermolecular distance and σA, σB are adjustable parameters fit to give the 

correct empirical behavior. Details are provided in the original papers. MNDO tends to 

overestimate core repulsion between two atoms at van der Waals distances. For this reason, 

the AM1 model was developed. 

 

The AM1 and PM3 are based on MNDO (the name derives from the fact that PM3 

is the third parameterization of MNDO, AM1 being considered as the second). In AM1, a 

sum of Gaussians is employed to better represent the core-core repulsion behavior at Van 

der Waals distances just outside bonding distances. PM3 uses a similar core repulsion 

function, but differs in the parameterization procedure (Sonthisawate, 2006). 

 


