TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	vii
INTRODUCTION	1
OBJECTIVES	4
LITERATURE REVIEW	6
MATERIALS AND METHODS	20
RESULTS AND DISCUSSION	47
CONCLUSION AND RECOMMENDATION	109
LITERATURE CITED	113
APPENDIX	140

LIST OF TABLES

Table		Page
1	HinfI, BanI and TaqI digested fragment sizes (bp) of PCR	
	products amplified from 18S rDNA of G. aggregatum with MH2	
	and MH4 primers.	48
2	Restriction fragment lengths (bp) of PCR products amplified from	
	18S rDNA of S. fulgida by MH2 and MH4 primers.	49
3	Correlation coefficients (r) among root colonization (RC) and	
	spore intensity (SI) of AM fungi and shoot dry matter (DM) of	
	maize plants.	60
4	Shoot dry weight (SDW) and N, P and K efficiencies of the maize	
	cultivars obtained without AM fungal inoculation. Values are the	
	means of three replicates with standard errors of the means in	
	brackets.	77

Appendix Table

1	Tasseling age (days) of maize as affected by AM fungal species, N	
	rates and P rates (Experiment 2).	141
2	Shoot dry matter (g pot ⁻¹) of maize as affected by AM fungal	
	species, N rates and P rates (Experiment 2).	142
3	Root colonization (%) of A. spinosa as affected by different rates	
	of N and P fertilizers (Experiment 2).	143
4	Root colonization (%) of G. aggregatum as affected by different	
	rates of N and P fertilizers (Experiment 2).	143
5	Spore intensity (sp g^{-1} soil) of <i>A. spinosa</i> as affected by different	
	rates of N and P fertilizers (Experiment 2).	144

Appendix Table

iii

6	Spore intensity (sp g^{-1} soil) of <i>G. aggregatum</i> as affected by	
	different rates of N and P fertilizers (Experiment 2).	144
7	Height (cm) of maize at 30 DAP as affected by maize cultivar and	
	AM fungal treatments (Experiment 3).	145
8	Height (cm) of maize at 45 DAP as affected by maize cultivar and	
	AM fungal treatments (Experiment 3).	145
9	Height (cm) of maize at 62 DAP as affected by maize cultivar and	
	AM fungal treatments (Experiment 3).	146
10	Tasseling age (days) of maize as affected by maize cultivar and	
	AM fungal treatments (Experiment 3).	146
11	Silking age (days) of maize as affected by maize cultivar and AM	
	fungal treatments (Experiment 3).	147
12	Shoot dry weight (g pot ⁻¹) of maize as affected by maize cultivar	
	and AM fungal treatments (Experiment 3).	147
13	N uptake (mg N pot ⁻¹) in shoot of maize as affected by maize	
	cultivar and AM fungal treatments (Experiment 3).	148
14	P uptake (mg P pot ⁻¹) in shoot of maize as affected by maize	
	cultivar and AM fungal treatments (Experiment 3).	148
15	K uptake (mg K pot ⁻¹) in shoot of maize as affected by maize	
	cultivar and AM fungal treatments (Experiment 3).	149
16	Spore intensity (spores 100 g ⁻¹ soil) of the inoculated AM fungal	
	treatments in soil after harvest (Experiment 3).	149
17	Shoot dry weight (kg ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 96L, 97E, 98D, 98L,	
	99D, 99L, 00E, 00L, 01E and 01L (Experiment 4).	150

Appendix Table

18	Grain yield (kg ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 96L, 97E, 98D, 98L,	
	99D, 99L, 00E, 00L, 01E and 01L (Experiment 4).	151
19	N uptake (kg N ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 98D, 98L, 99D, 99L,	
	00L, 01E and 01L (Experiment 4).	152
20	P uptake (kg P ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 98D, 98L, 99D, 99L,	
	00L, 01E and 01L (Experiment 4).	153
21	K uptake (kg K ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 98D, 98L, 99D, 99L,	
	00L, 01E and 01L (Experiment 4).	154
22	Abundance (%) of G. aggregatum spore in soil collected from the	
	field of each treatment of each cropping in 99D, 99L, 00L, 01E	
	and 01L (Experiment 4).	155
23	Abundance (%) of A. spinosa spore in soil collected from the field	
	of each treatment of cropping in 99D (Experiment 4).	155
24	Shoot dry weight (kg ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 99D, 99L, 00E, 00L	
	and 01E (Experiment 5).	156
25	Grain yield (kg ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 99D, 99L, 00E, 00L	
	and 01E (Experiment 5).	157
26	N uptake (kg N ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 99D, 99L, 00L and	
	01E (Experiment 5).	158

Page

Appendix Table

27	P uptake (kg P ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 99D, 99L, 00L and	
	01E (Experiment 5).	159
28	K uptake (kg K ha ⁻¹) of maize as affected by AM fungal	
	inoculation in the field of each cropping in 99D, 99L, 00L and	
	01E (Experiment 5).	160
29	Abundance (%) of G. aggregatum spore in soil collected from the	
	field of each treatment of each cropping in 99D, 99L, 00L and	
	01E (Experiment 5).	160
30	Shoot dry weight (g plant ⁻¹) of maize as affected by AM fungal	
	inoculation in the pot of cropping in 99D (Experiment 5).	161
31	N uptake (mg N plant ⁻¹) of maize as affected by AM fungal	
	inoculation in the pot of cropping in 99D (Experiment 5).	161
32	P uptake (mg P plant ⁻¹) of maize as affected by AM fungal	
	inoculation in the pot of cropping in 99D (Experiment 5).	161
33	K uptake (mg K plant ⁻¹) of maize as affected by AM fungal	
	inoculation in the pot of cropping in 99D (Experiment 5).	161
34	Abundance of G. aggregatum spore (%) in soils collected from the	
	pot after harvest of the specified cropping seasons as affected by	
	inoculation with different AM fungi (Experiment 5).	162
35	Shoot dry weight (kg ha ⁻¹) of maize as affected by AM fungi in the	
	first repetitive inoculation cropping (Experiment 6).	162
36	Grain yield (kg ha ⁻¹) of maize as affect by inoculated AM fungi in	
	the first repetitive inoculation cropping (Experiment 6).	162
37	N uptake (kg N ha ⁻¹) of maize as affected by AM fungi in the first	
	repetitive inoculation cropping (Experiment 6).	162

v

Page

Appendix Table

Page

38	P uptake (kg P ha ⁻¹) of maize as affected by AM fungi in the first	
	repetitive inoculation cropping (Experiment 6).	163
39	K uptake (kg K ha ⁻¹) of maize as affected by AM fungi in the first	
	repetitive inoculation cropping (Experiment 6).	163
40	Total spores (spores 100 g ⁻¹ soil) of each treatment in the first	
	repetitive inoculation cropping (Experiment 6).	163
41	Number of G. aggregatum spore (spores 100 g^{-1} soil) of each	
	treatment in the first repetitive inoculation cropping (Experiment	
	6).	163
42	Grain yield (kg ha ⁻¹) of maize as affect by inoculated AM fungi in	
	the second repetitive inoculation cropping (Experiment 6).	163
43	Shoot dry weight (kg ha ⁻¹) of maize as affected by AM fungi in the	
	second repetitive inoculation cropping (Experiment 6).	164
44	N uptake (kg N ha ⁻¹) of maize as affected by AM fungi in the	
	second repetitive inoculation cropping (Experiment 6).	164
45	P uptake (kg P ha ⁻¹) of maize as affected by AM fungi in the	
	second repetitive inoculation cropping (Experiment 6).	164
46	K uptake (kg K ha ⁻¹) of maize as affected by AM fungi in the	
	second repetitive inoculation cropping (Experiment 6).	164
47	Total spores (spores 100 g^{-1} soil) of each treatment in the second	
	repetitive inoculation cropping (Experiment 6).	164
48	Number of S. fulgida spore (spores 100 g^{-1} soil) of each treatment	
	in the second repetitive inoculation cropping (Experiment 6).	165
49	Number of G. aggregatum spore (spores 100 g^{-1} soil) of each	
	treatment in the second repetitive inoculation cropping	
	(Experiment 6).	165

LIST OF FIGURES

Figure		Page
1	Sporocarp of <i>Glomus aggregatum</i> .	21
2	Two morphotypes of <i>Scutellospora fulgida</i> spores presented with	
	(a) or without (b) bulbous suspensor.	21
3	Cropping seasons in which sequential cropping were done	
	(Experimet 4)	32
4	Cropping seasons in which sequential cropping were done	
	(Experimet 5)	37
5	Cropping seasons in which the first and the second repetitive	
	application of the treatment were applied (Experimet 6)	42
6	1.4 Kb PCR products of 18S rDNA of Glomus aggregatum	
	derived from spores (1-6) and colonized roots (7-10).	47
7	RFLP patterns of PCR products amplified from 18S rDNA of	
	Glomus aggregatum derived from spores and colonized roots with	
	MH2 and MH4 primers. <i>Hin</i> fI (lane 1 and 4), <i>Ban</i> I (lane 2 and 5)	
	and <i>Taq</i> I (lane 3 and 6).	48
8	1.4 Kb PCR products of 18S rDNA of Scutellospora fulgida	
	derived from spores without bulbous suspensor (a) and with	
	bulbous suspensor (b).	50
9	RFLP patterns derived from BanI (lane 1, 3 and 5), HinfI (lane 2,	
	4 and 6) and TaqI (lane 7 to 12) digestion of the 18S rDNA	
	region of Scutellospora fulgida spore with (+) and without (-)	
	bulbous suspensor.	50
10	RFLP patterns derived from HinfI, BanI and TaqI digestion of the	
	18S rDNA region of Scutellospora fulgida clones.	51
11	Three spore wall layers of crushed spores presented with (a) or	
	without (b) bulbous suspensor.	51

Figure Page 12 Squashed spore of Scutellospora fulgida stained with Melzer's 52 reagent. 13 Effects of AM fungal species and N rates, AM fungal species and P rates on tasseling age (TA) of maize. 53 14 Effects of AM fungal species and N rates, AM fungal species and 54 P rates on shoot dry matter (DM) of maize. 15 Effects of different rates of N and P fertilizers on root colonization 57 (RC) of A. spinosa and G. aggregatum. 16 Effects of different rates of N and P fertilizers on spore intensity 59 (SI) of A. spinosa and G. aggregatum. 17 Relations among root colonization (RC) and spore intensity (SI) of 60 A. spinosa and G. aggregatum. 18 Height (a) and increase in height, as compared with that of NI, (b) of maize at 30 DAP as affected by maize cultivar and AM fungal 63 species. 19 Height (a) and increase in height, as compared with that of NI, (b) of maize at 45 DAP as affected by maize cultivar and AM fungal 64 species. 20 Height (a) and increase in height, as compared with that of NI, (b) of maize at 62 DAP as affected by maize cultivar and AM fungal 65 species. 21 Tasseling age (a) and decrease in tasseling age, as compared with that of NI, (b) of maize as affected by maize cultivar and AM fungal species. 67 22 Silking age (a) and decrease in silking age, as compared with that of NI, (b) of maize as affected by maize cultivar and AM fungal species. 68

Figure Page 23 Shoot dry weight (a) and increase in shoot dry weight, as compared with that of NI, (b) of maize as affected by maize 69 cultivar and AM fungal species. 24 N uptake in shoot (a) and increase in N uptake in shoot, as compared with that of NI, (b) of maize as affected by maize cultivar and AM fungal species. 71 25 P uptake in shoot (a) and increase in P uptake in shoot, as compared with that of NI, (b) of maize as affected by maize cultivar and AM fungal species. 72 26 K uptake in shoot (a) and increase in K uptake in shoot, as compared with that of NI, (b) of maize as affected by maize 74 cultivar and AM fungal species. 27 Spore intensity of the inoculated AM fungal species in soil after 75 harvest. 28 Relationship between shoot dry weight (SDW) of non-AM fungus inoculated plants (NI) and their responses in SDW to the two AM 78 fungal species. 29 Relationship between N efficiency of non-AM fungus inoculated plants (NI) and their responses in SDW to the two AM fungal 78 species. 30 Relationship between spore intensity and responses in N uptake of 79 the two AM fungal species. Relationship between P efficiency of non-AM fungus inoculated 31 plants (NI) and their responses in SDW to the two AM fungal species. 80

ix

Figure Page 32 Relationship between K efficiency of non-AM fungus inoculated plants (NI) and their responses in SDW to the two AM fungal 81 species. 33 Grain yields of maize grown in the ten successive cropping seasons as affected by AM fungal inoculation applied in the first cropping (96L cropping season). 84 34 Shoot dry weight of maize grown in the ten successive cropping seasons as affected by AM fungal inoculation applied in the first 85 cropping. 35 N uptake of maize grown in seven of the ten successive cropping seasons as affected by AM fungal inoculation applied in 85 the first cropping. 36 P uptake of maize grown in seven of the ten successive cropping seasons as affected by AM fungal inoculation applied in the first cropping. 86 37 K uptake of maize grown in seven of the ten successive cropping seasons as affected by AM fungal inoculation applied in the first cropping. 86 38 Time course of relative grain yields of maize grown observed in the ten successive cropping as affected by AM fungal inoculation applied in the first cropping. 87 39 Time course of relative shoot dry weight of maize grown observed in the ten successive cropping as affected by AM fungal inoculation applied in the first cropping. 88 40 Time course of relative N uptake of maize grown observed in seven successive cropping as affected by AM fungal inoculation 88 applied in the first cropping.

Х

Figure

41	Abundance of G. aggregatum in the soils after harvest of the	
	specified cropping seasons as affected by inoculation with	
	different AM fungi in the first cropping season.	90
42	Abundance of A. spinosa in the soils after harvest of the specified	
	cropping seasons as affected by inoculation with different AM	
	fungi in the first cropping season	90
43	Grain yield of maize grown in the five successive cropping	
	seasons as affected by AM fungal inoculation applied in the first	
	cropping (99D cropping season).	92
44	Shoot dry weight of maize grown in the five successive cropping	
	seasons as affected by AM fungal inoculation applied in the first	
	cropping.	93
45	N uptake of maize grown in the four successive cropping seasons	
	as affected by AM fungal inoculation applied in the first cropping.	94
46	P uptake of maize grown in the four successive cropping seasons	
	as affected by AM fungal inoculation applied in the first cropping.	94
47	K uptake of maize grown in the four successive cropping seasons	
	as affected by AM fungal inoculation applied in the first cropping.	95
48	Time courses of relative shoot dry weight of maize grown in five	
	successive cropping as affected by AM fungal inoculation applied	
	in the first cropping.	95
49	Time course of relative N uptake of maize grown in four	
	successive cropping as affected by AM fungal inoculation applied	
	in the first cropping.	96

Figure Page 50 Time course of relative P uptake of maize grown in four successive cropping as affected by AM fungal inoculation applied in the first cropping. 96 51 Abundance of G. aggregatum spores in soils after harvest of the specified cropping seasons as affected by inoculation with different AM fungi in the first cropping season. 98 52 Shoot dry weight of maize as affected by AM fungal inoculation 99 in the pot experiment. 53 N uptake of maize as affected by AM fungal inoculation in the pot 99 experiment. 54 P uptake of maize as affected by AM fungal inoculation in the pot experiment. 100 55 K uptake of maize as affected by AM fungal inoculation in the pot experiment. 100 56 Abundance of G. aggregatum spore in soils collected from the pot after harvest of the specified cropping seasons as affected by inoculation with different AM fungi. 101 57 Relative grain yields of maize as affected by repetitive AM fungal inoculation applied in the two following cropping seasons (01L and 02E) compared to that of the previous cropping season (01E). 103 58 Relative shoot dry weight of maize as affected by repetitive AM fungal inoculation applied in the two following cropping seasons 104 compared to that of the previous cropping season. 59 Relative N uptake of maize as affected by repetitive AM fungal inoculation applied in the two following cropping seasons compared to that of the previous cropping season. 105

Figure

xiii

60	Relative P uptake of maize as affected by repetitive AM fungal	
	inoculation applied in the two following cropping seasons	
	compared to that of the previous cropping season.	106
61	Relative K uptake of maize as affected by repetitive AM fungal	
	inoculation applied in the two following cropping seasons	
	compared to that of the previous cropping season.	106
62	Abundance of G. aggregatum spore in soil after harvest as	
	affected by repetitive AM fungal inoculation applied in the two	
	following cropping seasons compared to that of the previous	
	cropping season.	107
63	Abundance of S. fulgida spore in soil after harvest as affected by	
	repetitive AM fungal inoculation applied in the two following	
	cropping seasons compared to that of the previous cropping	
	season.	107