TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
LIST OF ABBREVIATIONS	ix
INTRODUCTION	1
LITERATURE REVIEW	7
METHODS OF CALCULATIONS	18
Perdew, Burke and Ernzerhof (PBE) Functional	18
Resolution of the Identity (RI) Technique	19
Computational Methods	20
Computational Models	21
RESULTS AND DISCUSSIONS	24
SWCNT/gold Complexes (Hybrid Assembling Nanosupports)	24
SWCNT/Gold/Adenine Complexes (DNA Sensor Probe)	33
DNA Probe Stability	39
Nucleic Acid Sensor Sensitivity	43
Prophecy for Thymine Hybridization	46
SWCNT/Gold/Adenine:Thymine Complexes (Target Capture)	49
Stability	49
Sensitivity	51
Preliminary Summarization	54
CONCLUSION	55
LITERATURE CITED	56
APPENDIX	60

LIST OF TABLES

Table		Page
1	Systematic evaluation of the suitable methods and basis sets for	21
	adenine-thymine base pair\	
2	Symmetrical optimized geometries and calculated binding energies	
	(E_b) of SWCNT(8,0)/Au and SWCNT(5,5)/Au complexes. The Au	
	atom is altered deposited position on hexagonal of SWCNT (see	
	picture) which consisting of Axial, Zigzag, Armchair; above C-C	
	bond, Top; above the carbon atom and Hexagonal; above hollow	
	center	25
3	Symmetrical optimized geometries and calculated binding energies	
	(E_b) of SWCNT(8,0)/Au ₃ and SWCNT(5,5)/Au ₃ complexes. The	
	basal of Au ₃ cluster is contacted on sidewall of SWCNT and defines	
	this binding aspect as Apex-Up mode	27
4	Symmetrical optimized geometries and calculated binding energies	
	(E_b) of SWCNT(8,0)/Au ₃ and SWCNT(5,5)/Au ₃ complexes. The	
	apex Au atom of Au ₃ cluster is contacted on sidewall of SWCNT and	
	defines this binding aspect as Apex-Down mode	28
5	Symmetrical optimized geometries and calculated binding energies	
	(E_b) of SWCNT(8,0)/Au ₃ and SWCNT(5,5)/Au ₃ complexes. The	
	planet of Au ₃ cluster is contacted on sidewall of SWCNT and defines	
	this binding aspect as Horizontal mode	29
6	The geometrical parameters, calculated binding energies (E_b) , energy	
	gap and Mulliken population molecular charges of the Au/A:T,	
	SWCNT(8,0)/Au/A:T, SWCNT(5,5)/Au/A:T and their fragments.	38
7	The geometrical parameters, calculated binding energies (E_b) , energy	
	gap and Mulliken population molecular charges of the Au ₃ (IP)/A:T ^a ,	
	$SWCNT(8,0)/Au_3(ApD)/A:T,SWCNT(5,5)/Au_3(ApD)/A:Tand$	
	their fragments	40

LIST OF TABLES (Continued)

Table		Page
8	The geometrical parameters, calculated binding energies (E_b) , energy	
	gap and Mulliken population molecular charges of the Au ₃ (IP)/A:T,	
	$Au_3(PP)/A:T$, $SWCNT(8,0)/Au_3(ApU)/A:T$,	
	SWCNT(5,5)/Au ₃ (ApU)/A:T and their fragments.	42
9	The important geometrical parameters and Mulligen atomic charges	
	of adenine (as reference) base and several adenine probes; Au/A,	
	$Au_{3}(IP)/A$, $Au_{3}(PP)/A$, $SWCNT(8,0)/Au/A$, $SWCNT(5,5)/Au/A$,	
	SWCNT/(8,0)Au ₃ (ApD)/A, SWCNT/(5,5)Au ₃ (ApD)/A,	
	SWCNT(8,0/Au ₃ (ApU)/A and SWCNT(5,5/Au ₃ (ApU)/A.	45
10	The geometrical parameters, Mulligen atomic charges and calculated	
	binding energies (E_b) of double hydrogen bond of original A:T base	
	pair (as reference). and several target-probe systems	48
11	The Δq_{Mprobe} and $\Delta q_{Msupport}$ (au.) parameters of Au/A:T, Au ₃ (IP)/A:T,	
	Au ₃ (PP)/A:T, SWCNT(8,0)/Au/A:T, SWCNT(5,5)/ Au/A:T,	
	SWCNT(8,0)/Au ₃ (ApD)/A:T, SWCNT(5,5)/Au ₃ (ApD)/ A:T,	
	SWCNT(8,0)/Au ₃ (ApU)/A:T, SWCNT(5,5)/Au ₃ (ApU)/A:T	
	complexes	52

LIST OF FIGURES

Figure		Page
1	Properties of DNA-functionalized gold nanoparticles. A mixture	
	of gold nanoparticles with surface-immobilized complementary	
	DNA sequences (a, b) appears red in color and has a strong	
	absorbance at 520 nm. When a complementary DNA sequence	
	(a'b') is added to the solution, the particles are reversibly	
	aggregated causing a red shift in the surface plasmon absorbance	
	to 574 nm, thus, appearing purple in color	2
2	Electrical detection of DNA hybridization using Au nanoparticle	
	labels. (a) Immobilization of capture probes in the gap between	
	two electrodes. (b) Hybridization with target DNA and Au	
	nanoparticle-labeled detection probe. (c) Reductive deposition of	
	Ag, creating a bridge that decreases resistance	2
3	Electrochemical detection of DNA hybridization using Au	
	nanoparticle labels. a) Immobilization of target DNA. b)	
	Hybridization with Au nanoparticle labeled detection probe. c)	
	Voltammetric detection of Au redox signal	3
4	Schematics of various strategies used to integrate CNTs in	
	electrochemical sensors. DNA detection via labelling with CNT	
	loaded a) with enzymes, b) with quantum dots and c) with	
	intercalator	4
5	(a) Schematic illustration of self-assembly of thiolated	
	oligonucleotides onto Au-CNT hybrid. The use of MCH assists	
	the erection of ssDNA and facilitates hybridization of	
	complementary oligonucleotides, which is detected via mediator	
	Ru(bpy) ₃ ²⁺ . (b) UV–Vis absorption spectrum of MWNT bound	
	with gold nanoparticles. The inset shows the TEM image of a	
	MWNT coated with gold nanoparticles	5

Figure		Page
6	The four bases of DNA showing their complementary binding	
	properties and DNA nucleotide	7
7	General DNA biosensor design. Target DNA is capture at the	
	recognition layer, and the resulting hybridization signal is	
	transduced into a usable electronic signal for display and analysis	8
8	Key interactions between fields of biology and nanotechnology	9
9	The dimensions of wires used in conventional CMOS	
	technology, together with as-grown nanowires and carbon	
	nanotubes. While the cross-section of nanofibers and inorganic	
	nanowires is comparable to the size of typical proteins, single	
	wall carbon nanotubes (hollow cylinders of carbon) have a	
	diameter comparable to DNA	9
10	Schematic depiction of thiol-modified oligonucleotides self-	
	assembling on the gold electrode and hybridizing with gold-	
	nanoparticle-supported DNA sequences	10
11	Schematic of the honeycomb structure of a graphene sheet (A).	
	SWCNTs can be formed by folding the sheet along the shown	
	lattice vectors leading to armchair (B), zigzag (C), and chiral (D)	
	tubes, respectively. The graphene sheets rolled up into concentric	
	cylinders form MWCNT (E)	11
12	Schematic mechanism for nucleic acid sensing via an inlaid	
	multi-walled carbon nanotube combined with Ru(bpy) ₃ ²⁺ -	
	mediator) amplified guanine oxidation	12

Figure		Page
13	RepresentativeHRTEMmicrographs showing (a) low-	
	magnification and (b) high-magnification views of Au	
	nanopartice supported on a carbon nanotube	13
14	The four possible planar (N1, N3, N7) and nonplanar (N6)	
	binding sites of the gold cluster Au3 to adenine. Also shown is	
	the NH ₂ anchored complex A:Au ₃ (N6). The bond lengths are	
	given in Å and bond angles in deg	15
15	The stable [A-Au ₃]:T pairs. The WC intermolecular H-bonds of	
	the A:T pair are characterized by the following geometrical	
	parameters: $R(N6-H6(A)) = 1.023 \text{ Å}, r(H6(A)^{}O4(T)) = 1.926 \text{ Å},$	
	\angle N6H6(A)O4(T)) 174.1°; R(N3-H3(T)) =1.044 Å,	
	$r(H3(T)^{}N1(A)) = 1.822 \text{ Å}, \angle N3H3(T)N1(A) = 178.5^{\circ}; R(C2-1)$	
	$H2(A)$) =1.087 Å, $r(H2(A)^{\cdots}O2(T))$ =2.937 Å, $\angle C2H2(A)O2(T)$	
	= 131.9°. The bond lengths are given in angstroms and bond	
	angles in degrees	16
16	Illustration of studied configurations and their systematic labels	
	of a) SWCNT/Au/A:T, b)SWCNT/Au ₃ (ApU)/A:T and c)	
	SWCNT/Au ₃ (ApD)/A:T	23
17	A schematic description of different binding sites (H, hollow; A,	
	axial; Z, zigzag; T, top; Ar, armchair) of individual atoms	
	adsorbed on a SWCNT(8,0) and SWCNT(5,5). Filled circles	
	denote adatoms	24
18	Fully optimized geometries, calculated binding energies (E_b) and	
	deposited distances of the most stable structure of a)	
	SWCNT(8,0)/Au and b) SWCNT(5,5)/Au complexes. From a)	
	and b) demonstrate that the Au atom prefers deposition on	
	SWCNT with top site binding	26

Figure		Page
19	C _S (symmetry applied) optimized geometries, calculated binding	
	energies (E_b) , deposited distances and Mulliken population	
	charges of a) the most stable structure of SWCNT(8,0)/Au ₃ b) the	
	most stable structure of SWCNT(5,5)/Au ₃ c) the most stable	
	structure of SWCNT(8,0)/Au ₃ that holding the Au ₃ cluster with	
	PD-ApD binding mode and d) the most stable structure of	
	SWCNT(5,5)/Au ₃ that holding the Au ₃ cluster with AL-ApU	
	binding mode	31
20	Fully optimized geometries ^a and Mulliken population atomic	
	charges of the a) Au/A and b) Au/A:T. C _S (symmetry applied)	
	optimized geometries and Mulliken population atomic charges of	
	c) Au ₃ (IP=inplane)/A, d) Au ₃ (IP)/A:T, e) Au ₃ (PP=perpendicular	
	plane)/A and f) Au ₃ (PP)/A:T	34
21	C _S (symmetry applied) optimized geometries and Mulliken	
	population atomic charges of the a) SWCNT(8,0)/Au b)	
	SWCNT(8,0)/Au/A c) SWCNT(8,0)/Au/A:T d) SWCNT(5,5)/Au	
	e) SWCNT(5,5)/Au f) SWCNT(5,5)/Au/A:T. The SWCNT/A:T	
	system are construct from the most stable of each SWCNT/Au	
	complex (see Figure 19)	35
22	C _S (symmetry applied) optimized geometries and Mulliken	
	population atomic charges of the a) SWCNT(8,0)/Au ₃ (ApD) that	
	holding the Au ₃ cluster with PDAx-ApB binding mode b)	
	$SWCNT(8,0)/Au_3(ApD)/A\ c)\ SWCNT(8,0)/Au_3(ApD)/A:T\ d)$	
	the most stable structure of SWCNT(5,5)/Au ₃ (ApD) that holding	
	the Au ₃ cluster with PDAx-ApT binding mode e) SWCNT(5,5)/	
	$Au_3(ApD)/A\ f)\ SWCNT(5,5)/\ Au_3(ApD)/A:T.$ The b and c	
	complexes are constructed from a complex and e and f	
	complexes are constructed from d complex	36

	Page
C _S (symmetry applied) optimized geometries and Mulliken	
population atomic charges of the a) he most stable structure of	
SWCNT(8,0)/Au ₃ (ApU) that holding the Au ₃ cluster with ALAx-	
ApH binding mode b) SWCNT(8,0)/Au ₃ (ApU)/A c)	
SWCNT(8,0) /Au ₃ (ApU)/A:T d) SWCNT(5,5)/Au ₃ (ApU that	
holding the Au ₃ cluster with ALAx-ApT binding mode e))	
SWCNT(5,5)/Au ₃ (ApU)/A. The b and c complexes are	
constructed from a complex and e complexes are constructed	
from d complex. The e complex is unstable so the f)	
SWCNT(5,5)/Au ₃ (ApU)/A:T complex is ignored	37
The geometry of double hydrogen bond of original A:T base pair	
(as reference) and calculated binding energies (E_b). The arrows	
show the trend of changing N3-H3 N1 and O4 H6'-N6	
hydrogen bonds after binding with gold or SWCNT/gold	
complexes	47
	population atomic charges of the a) he most stable structure of SWCNT(8,0)/Au ₃ (ApU) that holding the Au ₃ cluster with ALAx-ApH binding mode b) SWCNT(8,0)/Au ₃ (ApU)/A c) SWCNT(8,0) /Au ₃ (ApU)/A:T d) SWCNT(5,5)/Au ₃ (ApU that holding the Au ₃ cluster with ALAx-ApT binding mode e)) SWCNT(5,5)/Au ₃ (ApU)/A. The b and c complexes are constructed from a complex and e complexes are constructed from d complex. The e complex is unstable so the f) SWCNT(5,5)/Au ₃ (ApU)/A:T complex is ignored The geometry of double hydrogen bond of original A:T base pair (as reference) and calculated binding energies (<i>E_b</i>). The arrows show the trend of changing N3-H3···N1 and O4···H6′-N6 hydrogen bonds after binding with gold or SWCNT/gold

LIST OF ABBREVIATIONS

A = Adenine

 \mathring{A} = Angstrom

a.u. = Atomic Unit

ALAx = Along Axis

ApD = Apex-Down

ApH = Apex-Hollow

ApH = Apex-Bond

ApT = Apex-Top

ApU = Apex-Up

Au = Gold

Au NPs = Gold Nanoparticles

B3LYP = Becke 3-Parameter (Exchange), Lee, Yang and

Parr (Correlation); Density Functional Theory

BsB = Basal-Bond

BsH = Basal-Hollow

BsT = Basal-Top

C = Cytosine

C = Carbon

cc-pVDZ = Correlation Consistence Polarized Valence

Double Zeta

cc-pVTZ = Correlation Consistence Polarized Valence

Triple Zeta

CMOS = Complementary Metal-Oxide Semiconductor

CNTs = Carbon Nanotubes

DFT = Density Functional Theory

DNA = Deoxy-ribo Nucleic Acid

Eb = Binding Energy

ECP = Effective Core Potential

eV = Electron Volt

LIST OF ABBREVIATIONS (Continued)

G Gaunine =

Η = Hydrogen

HRTEM High-Resolution Transmission Electron

Microscopy

ΙP In Plane =

kcal/mol kilocalorie per mol **MCH** Mercaptohexanol

MWCNTs Multiwall Carbon Nanotubes =

N Nitrogen Nanometer nm =

=

O Oxygen =

PBE Perdew, Burke and Ernzerhof

PDAx = Perpendicular Axis PP Perpendicular Plane

Mulliken Charge qm

Relativistic Effective Core Potential **RECP**

RI Resolution of the Identity

 $Ru(bpy)_3^{2+}$ Tris(2,2'-bipyridyl) ruthenium(II) =

SWCNTs Single-wall Carbon Nanotubes

T Thymine

TDP Temperature-Programmed Desorption =

Transmission Electron Microscopy **TEM**

UV-Vis Ultraviolet Visible =

WC Watson-Crick