Thammanoon Thaweechai 2010: Structural Characteristics and Gas-sensing Properties of Sr(II) and Co(II) Doped LaFeO₃ Perovskites Prepared by Thermal Decomposition of Metal-organic Complexes. Master of Science (Chemistry), Major Field: Chemistry, Department of Chemistry. Thesis Advisor: Assistant Professor Nattamon Koonsaeng, Ph.D. 101 pages.

Sr(II) and Co(II) doped LaFeO₃ perovskite compounds were successfully prepared by the thermal decomposition of metal-organic complexes which were synthesized from the reaction of La(NO₃)₃.6H₂O, Fe(NO₃)₃.9H₂O and N(CH₂CH₂OH)₃ at 190 °C in ethylene glycol solvent. Strontium nitrate and Cobalt chloride used as a dopant were varied in amounts as 0, 10.0, 30.0 and 50.0 mol%. The perovskite powders obtained by calcination of metal-organic complexes at 850 °C for 4 h were characterized by FTIR, XRD, SEM and BET. The results from all characterizations exhibited that all of prepared perovskite powders were orthorhombic structure of LaFeO₃ phase with the crystallite sizes around 14.31-41.71 nm. The powders consisted of the agglomeration of very small, fine particles with the average secondary aggregated particle size of about 2-5 µm and the specific surface area around 7.88-18.99 m²/g.

Based on semiconducting properties, the Sr(II) and Co(II) doped LaFeO₃ films prepared by spin coating were investigated for gas sensing. The results showed that all of prepared perovskites were p-type semiconductors. The doping of Sr(II) and Co(II) ions could improve the conductivity, sensitivity and selectivity of prepared sensors. The sensors doped with 50% Sr(II) exhibited the highest sensitivity to ethanol gas in the concentration range of 100-500 ppm at 350 °C while the 10% doped Co(II) sensor showed the best response to 200-2000 ppm of acetone gas with high selectivity when compared to ethanol, methane and hydrogen gas.

Student's signature

Thesis Advisor's signature