TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	V
INTRODUCTION	1
LITERATURE REVIEW	11
METHODS OF CALCULATIONS	25
RESULTS AND DISCUSSION	
Chapter I. Theoretical study on structural and electronic	
properties of the BN-doped Carbon Nanotubes grafted with	
N-nucleophiles	36
Chapter II. Theoretical study on structural and electronic	
properties of the BN-doped Fullerene grafted with	
heterocyclic N-nucleophiles	50
CONCLUSION	60
LITERATURE CITED	

LIST OF TABLES

Γable		Page
1	Overview of the important synthesis procedures for single-walled	4
	carbon nanotubes.	
2	Structural parameters of the BN-doped SWCNT	
	grafted with N-nucleophiles	39
3	Interaction parameters between the BN-doped SWCNT and	
	various N-nucleophiles	40
4	Relative energy gap reduction of systems studied	
	compared to C_{60} ($E_{gap} = 1.64 \text{ eV}$)	50
5	Molecular orbital contributions	59

LIST OF FIGURES

Figure		Page
1	Schematics of an individual (A) SWCNT and (B) MWCNT	2
2	Determination of the chiral vector	3
3	Peptide formation from the reaction of amino acid and carboxylic	
	acid attached on side-SWCNTs	6
4	Positions of mono & tri BN-substitution on side-wall (5,5)	
	armchair SWCNTs	8
5	Geometry of the BN-doped fullerene	10
6	Position of R-group functionalization on side-wall (5,5) SWCNT	32
7	Structure of Nitrogen nucleophiles	32
8	Illustrations of a) Fullerene (C ₆₀), b) BN-doped fullerene	
	$(C_{58}BN)$, c) 2,6- Naphyridine $(C_8H_6N_2, 1)$, d) 3,8-Phenanthroline	
	$(C_{12}H_8N_2,\textbf{2})$ and e) 2,6-Diazaantracene $(C_{12}H_8N_2,\textbf{3})$ structures.	34
9	Bond lengths and charge distribution of BN-doped (5,5)SWCNT	38
10	Position of R groups, B atom, N atom, C1 atom, C2 atom on	
	side-wall (5,5) SWCNT	39
11	Correlation between binding energies and pKa values of BN-	
	doped SWCNT/N-nucleophiles complexes	41
12	Charge distribution of isolated m-nitroaniline and m-nitroaniline	
	complexed with BN-doped SWCNT	42
13	Charge distribution of isolated pyridine and pyridine complexed	
	with BN-doped SWCNT	43
14	Partial density of states of pyridine complexed with BN-doped	
	SWCNT	44
15	Partial density of states of m-nitroaniline complexed with BN-	
	doped SWCNT	44
16	Partial density of states of guanidine complexed with BN-doped	
	SWCNT	45

LIST OF FIGURES (Continued)

Figure		Page
17	HOMO and LUMO orbital energies of isolated pyridine and	
	pyridine complexed with BN-doped SWCNT	48
18	HOMO and LUMO orbital energies of isolated m-nitroaniline	
	and m-nitroaniline complexed with BN-doped SWCNT	49
19	HOMO and LUMO orbital energies and energy gap of isolated	
	2,6-diazanaphthalene (1) and $C_{58}BN/1/C_{58}BN$ complex	53
20	HOMO and LUMO orbital energies and energy gap of isolated	
	3,8-phenanthroline (2) and C ₅₈ BN/2/C ₅₈ BN complex	54
21	HOMO and LUMO orbital energies and energy gap of isolated	
	2,6- diazaanthracene (3) and C ₅₈ BN/3/C ₅₈ BN complex	55
22	Illustrations of mono- and di-C ₆₀ complexes with 2,6	
	diazanaphthalene (1), 3,8-diazaphenanthrene (2) and 2,6-	
	diazaanthracene (3)	57
23	Molecular orbital contour plots for C ₅₈ BN/1/C ₅₈ BN,	
	C ₅₈ BN/2/C ₅₈ BN and C ₅₈ BN/3/C ₅₈ BN systems	58

LIST OF ABBREVIATIONS

B = Boron

B3LYP = Beck's three-parameter hybrid functional

using the LYP correlation functional

CNTs = Carbon nanotubes

CVD = Chemical vapor deposition

DOSs = Density of states

 E_g = Energy gap

eV = electron volt

HOMO = Highest Occupied Molecular Orbital

 I_h = Icosahedral

IPR = Isolated-pentagon rule

kcal/mol = kilocalorie per mole

LUMO = Lowest Occupied Molecular Orbital

MWCNTs = Multi-walled carbon nanotubes

N = Nitrogen

NPA = Natural Population Analysis

OPT = Optimization

PAPR = Pentagon adjacency penalty rule

PEG = Poly(ethylene glycol)

SWCNTs = Single-walled carbon nanotubes