
 

 
 

  
THESIS APPROVAL 

 

GRADUATE  SCHOOL,  KASETSART  UNIVERSITY 
 

 

Master of Engineering (Chemical Engineering) 
DEGREE 

 
 

Chemical Engineering 
  

Chemical Engineering 
FIELD  DEPARTMENT 

 

TITLE: 
 
Stability Analysis of Heat Exchanger Networks Using the Passivity 
Theorem 

  

  

 

NAME: Mr. Nitipat  Chaiwattanapong 
 
 

THIS  THESIS  HAS  BEEN  ACCEPTED  BY 
 

  THESIS  ADVISOR 

( Associate Professor Thongchai  Srinophakun, Ph.D. )  

 THESIS CO-ADVISOR 

( Assistant Professor Chanin  Panjapornpon, Ph.D. )  

 DEPARTMENT  HEAD 

( Associate Professor Phungphai  Phanawadee, D.Sc. )  

APPROVED  BY  THE  GRADUATE  SCHOOL ON  

 
 DEAN 

( Associate Professor Gunjana  Theeragool, D.Agr. ) 
 

 
 
 
 



THESIS 
 

STABILITY ANALYSIS OF HEAT EXCHANGER NETWORKS 
USING THE PASSIVITY THEOREM  

 

 

 

 

 

 

 

 

 

 

NITIPAT CHAIWATTANAPONG 

 

 

 

 

 

 

 

 

 

 

 

 
 

A Thesis Submitted in Partial Fulfillment of 

the Requirements for the Degree of 

Master of Engineering (Chemical Engineering) 

Graduate School, Kasetsart University 

2011 



Nitipat  Chaiwattanapong  2011: Stability Analysis of Heat Exchanger 

Networks Using the Passivity Theorem.  Master of Engineering (Chemical 

Engineering), Major Field: Chemical Engineering, Department of Chemical 

Engineering.  Thesis Advisor: Associate Professor Thongchai Srinophakun, 

Ph.D.  162 pages. 

 

 

Passivity theorem as the stability analysis tool of the interconnected systems 

was studied and implemented in this thesis through both a single bypass heat 

exchanger and heat exchanger networks (HENs). A single bypass heat exchanger 

from Westhalen et al. (2003) was implemented with the passivity approach. Firstly, a 

state space model was developed along with its transfer function to test the passivity 

with the passivity index. This case study showed either passivity or non-passivity 

behavior depending upon its possible pairing schemes. Therefore, the magnitude of 

passivity index was used to rank the pairing schemes. Consequently, the passivity 

based decentralized unconditional stability (DUS) PI controllers for this system were 

designed and also verified with Aspen Dynamics simulator. This system was tested by 

making ± 10% of setpoint temperatures and ± 10% inlet hot flowrates. The results 

illustrated that the passivity approach gave better setpoint tracking than conventional 

PI controllers from the simulator.  

 

The extension to HENs from Glemmestad et al. (1996) was further 

implemented. Likewise, this network was followed the passivity based DUS PI 

controller synthesis procedure. This network was tested by disturbing ± 1% inlet hot 

flowrates. In addition, fault-tolerant control was tested by letting one of controllers 

failed during the network was facing disturbances. As a result, the proposed 

controllers could capably achieve fault-tolerant control while the other PI controllers 

had some deficiency and could not be controllable. 
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STABILITY ANALYSIS OF HEAT EXCHANGER NETWORKS 

USING THE PASSIVITY THEOREM 

 

INTRODUCTION 

 
Heat exchanger networks (HENs) are the most important part dealing with 

energy recovery in many chemical process industries. Generally, a HEN consists of a 

number of heat exchangers which hot process streams are integrated with cold process 

streams in order to achieve the highest energy recovery as possible. The energy 

integration, however, introduces interactions, and may make the process more 

difficult to control and operate (Mathisen, 1994). Interactions and other effects such 

as disturbance or setpoint variations, which are normally encountered in the HEN 

operations, may deteriorate the performance and lead to the instability of the HENs. 

These effects result the undesirable target temperatures. Consequently, a control point 

of view of a HEN becomes a main motivation in this work. Up to present, a number 

of researches on HENs have been published since the last two decades (Furman and 

Sahinidis, 2002). They are not only hardly focused on the control but also mainly 

concentrated on steady state optimal design and operation of HENs. Therefore, the 

point of dynamics behaviors of the HENs is of interest. A way that commonly uses to 

describe the dynamics behavior of the system is state space (Ogata, 1967) which is 

adopted throughout this work.  

 

A state space equation or dynamics equation is the set of equations that 

describes the unique relations between the input, output, and state (Chi-Tsong, 1984). 

In practice, models of HENs are formidably presented, thus, the model of single heat 

exchanger is preferred to primarily concern. After that, a number of single heat 

exchangers will be expanded to the network of heat exchangers. For a single heat 

exchanger, its state space has been available in many woks (Varga et al., 1995; 

Hangos et al., 2004; Mathisen, 1994); however, they concerned only a single heat 

exchanger which is not realistic in industrial processes that regularly equip a bypass 

with the heat exchanger. As Glemmestad et al. (1996) mentioned, for optimal 
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operation of a HEN, bypasses should be manipulated in order to maintain the target 

temperatures. Hence, the state space equation for a single heat exchanger with a single 

bypass will be presented and for the network also.  

 

 As mentioned above, the stability of HENs is very indispensable in the field of 

an energy integration process. For example, if one of a heat exchanger in a HEN fails, 

all of the HEN may be accordingly failed. Therefore, the stability analysis of this 

system should be concerned.  

 

The one technique to analyze the stability of general processes is the passivity 

theorem (Van Der Schaft, 1997) which is the most useful method to stability analysis. 

Generally speaking, passive systems are the systems that do not generate energy with 

respect to the given input and output ports (Willems, 1972a). Linear passive systems 

are phase bounded, and a strictly passive system combined with another passive 

system is stable without necessarily satisfying the small gain condition. Therefore, the 

passivity theorem provides another approach to robust control which may be less 

conservative than the small-gain based approaches (Bao, 1998). 

 

The stability analysis of HENs using the passivity theorem has not been 

reported yet. However the single heat exchanger was already implemented with the 

passivity theorem by Bao and Lee (2007). They addressed that the heat exchanger was 

inherently passive because the passivity condition was valid for any design 

parameters, types of fluid, and operating conditions. Although the heat exchanger is 

physically passive, there is a specific case to take heat exchanger to be non-passive. 

Normally, a heat exchanger accompanied with a bypass is the well-known fashion 

used in many chemical process industries (e.g. Westhalen et al., 2003; Glemmestad et 

al., 1996; Escobar and Trierweiler, 2009). This design can probably take the heat 

exchanger to be non-passive. Consequently, it is of interest to study, and drives a 

motivation for this thesis. 

 



OBJECTIVES 

 
1. To apply the passivity theorem with heat exchanger networks. 

 

2. To design the passivity based DUS PI controllers for this process. 

 

3. To study the heat exchanger networks using bypasses as manipulation. 

 

4. To develop the state space equation of heat exchanger networks. 

 

Scopes of Work 

 
1. The lump dynamic models of a single heat exchanger presented in this 

thesis are applied from Hangos et al. (1994). 

 

2. The concepts of passive system and their relations are referred from Bao et 

al. (2000; 2002) and Boonkhao (2004). 

 

3. The water is used as the only one component in HENs and no phase 

changes. 

 

4. The results are verified via Aspen Dynamics. 

 

5. Single bypasses are assumed to be used and only placed on either hot or 

cold side of a heat exchanger. 

 

6. Economic objective of HENs is not concerned in this work. 
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Thesis Contribution 

 
 1. Embed the stability analysis of HENs 

 

 2. Obtain more knowledge of dynamic models of HENs in the state space 

form. 

 

3. Clearly understand the relations between HENs and passivity. 

 



LITERATURE REVIEW 

 
This section is divided into two main parts. The first part is reviewed the 

literatures relating with HENs and the passivity theorem, and the second part is 

reviewed the theory related.  

 

1. Literature Review 

 

For the literature review section, the first part is reviewed the works related to 

HENs and another one is reviewed the works related to passivity theorem (and/or 

passivity properties). 

 

1.1 Heat exchanger networks (HENs) 
 

    Wolff et al. (1991) presented various dynamic models of single heat 

exchangers and the HEN which may also include stream splitting, mixing and 

bypasses. They studied where bypasses should be placed in the network by dynamics 

considerations, and investigated interaction and pairing considerations when placing 

bypasses. 

 

 Mathisen and Morari (1994) described model features which are important to 

assess controllability of heat exchangers and HENs. They discriminated between 

important and less important model features by order of magnitude argumentation, 

comparison of controllability measures and dynamic simulations. Important model 

features for single heat exchangers are model order (number of cell-model), wall 

capacitance and fluid compressibility, whereas flow configuration and temperature 

driving force have only a small effect on the dynamics. The most important model 

feature for HENs is residence time of the connecting pipes. 

 

 Glemmestad et al. (1996) discussed a procedure for optimal operation of 

HENs. This procedure is based on structural information of the HENs, and is used to 

find which bypass manipulation that should be adjusted in order to compensate for 
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deviation in the output temperature so that utility consumption is minimized. The 

procedure is used to pair output temperatures and manipulated inputs in a 

decentralized control structure that “automatically” will find the optimal bypass 

fractions at steady state. It has been demonstrated by dynamic simulations of the 

controlled HENs that the procedure works well. However, in this work, the trade-off 

between steady-state and dynamic performance is not considered. 

 

 Gonzalez et al. (2006) presented a method to control HENs where both the 

control objective and the economics objective are taken into account. It is assumed 

that they have a two-layer structure in which the steady state economic optimization is 

performed in the upper level, and the model predictive control (MPC) controller is 

used to enforce the optimal operating point defined by the economic layer. In this 

approach, integration is achieved through the definition of an extended cost-function 

that provides the controller with the ability of driving the system to optimal 

conditions. 

 

 Lersbamrungsuk et al. (2007) studied a simple split-range control scheme to 

implement the optimal operation of HENs when only single bypasses and utility 

duties are used as manipulations. The optimal operation of HENs can be formulated 

as a linear programming implying the operation always lies at some input constraints. 

They mentioned that this technique is not only able to be applied for constraint 

(vertex) optimal operation problem, but also for unconstraint (nonvertex) optimal 

operation problem (e.g., simplifying an online optimization task) 

 

1.2 Passivity theorem (and/or passivity properties) 

 

   The concept of passive systems originally arose in the context of electrical 

circuit theory. In such electrical systems, no energy is generated, e.g. a network 

consisting of only inductors, resistors and capacitors (Guillemin 1957; Weinberg 

1962). 
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Willems (1972) studied the dissipative systems. It is defined in term of an 

inequality of storage function and the supply rate function. The storage function is 

bounded from below by the available storage and from above by the required supply. 

These ideas were applied to the interconnected system and stability. 

 

Desoer and Vidyasagar (1975); Willems (1972) analyzed the stability of 

interconnected passive systems. The important theorem which can be used to 

determine the input-output stability of passive systems is the Passivity Theorem, 

which can be simply stated as: a system formed by the negative feedback of a passive 

system and a feed-forward strictly passive system with finite gain is asymptotically 

stable. 

 

 Bao et al. (2000b) proposed the passivity-based conditions for closed-loop 

stability, and also the tuning method for multi-loop PI controllers was developed 

satisfying the above conditions. This leads to a failure-tolerant design, as each control 

loop can be arbitrarily and independently detuned even switched off, without affecting 

the closed-loop stability.  

 

 Bao et al. (2002a) provided a new approach to stability analysis for multi-loop 

control systems. The passivity index not only used to check whether the system is 

passive but also used to decide pairing schemes. The decentralized unconditional 

stability condition, which implies closed-loop stability of decentralized control 

systems under control loop failure, was derived. 

 

Bao et al. (2002c) proposed a new pairing method for multi-loop control for 

multivariable processes. Based on the passivity theorem, a new pairing rule does not 

imply general diagonal dominance. The passivity index was used to indicate the 

performance of the closed-loop system under decentralized control. The advantages of 

this proposed method are: (1) It is an open-loop dynamic analysis and does not need 

to assume closed-loop transfer function; (2) It indicates the total destabilizing effects 

of both interactions and process dynamics and does not imply the diagonal dominance 
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conditions; (3) The analysis procedure is entirely mechanical and thus can be 

performed automatically by a computer.  

 

Sirisak (2002) implemented the passivity theorem to milk-powder plant in 

New Zealand. He adopted the passivity index to indicate the best paring of manipulate 

and output of decentralized control and then found the controllers which stabilize the 

process based on passivity theorem. 

 

Lengsukchai (2003) studied the measure of the passivity-based interaction on 

the process system with time delay, RHP zeros and large interaction. This passivity-

based interaction measure predicted the stability of decentralized control systems and 

also evaluated their performance losses. The steady state value of the measure 

provided a sufficient condition for offset free decentralized control. And the 

controllers were designed by H∞ synthesis procedure. The simulation results show 

that the passivity-based interaction measure of all case studies at steady state was less 

than unity. Therefore the controllers can be designed to achieve the offset-free 

condition as can be considered in the closed-loop response of each case study process. 

 

2. Theories 

 

In this theoretical part, there are two major topics, HENs and passivity and its 

relation properties, to describe some necessary definitions or equations that may be 

used to carry out this thesis. 

 

2.1 Heat exchanger networks (HENs) 

 

    2.1.1 Dynamic models of a heat exchanger network 

 

                            In order to assess controllability (in case of applying passivity 

theorem to stability analysis) of HENs, a dynamic model of a heat exchanger is 

required. Although heat exchangers are usually distributed parameter process systems, 

they can be built as approximate lumped parameter models using finite difference 



9 

approximations of their spatial variables (as in the method of lines approximation 

scheme) (Hangos et al., 2004). A heat exchanger can then be seen as a composite 

lumped parameter process system consisting of elementary dynamic units as depicted 

in Figure 1. 

 

 

 

 

 

 

 

Figure 1 A cascade model of a heat exchanger 

 

Source:  Hangos et al. (2004) 

 

 For lumped heat exchanger model, let one of the lumps be j = H (hot side) or j 

= C (cold side) which their lumped variables are shown in Figure 1a 

 

                           2.1.1.1. Modeling assumptions 

 

                                        In order to obtain a simple model with only two state 

equations, the following simplifying modeling assumptions are used (Hangos et al., 

2004): 

 

1. Constant volume and mass hold-up in both of the lumps j = C; H. 

2. Constant physico-chemical properties, such as density jρ , specific heat PjC . 

            3. Constant heat transfer coefficient U and area A. 

            4. Completely observable states, i.e. y(t) = x(t). 

 

                           2.1.1.2. Conservation balances 

 

1 

(a) 

vH 

vC 
TCi TCo 

THi TH

… 

… 

TCi TnC

T(n-1)HTHo
n 2 

(b) 

T3C T2C

T1HT2H

TCo 

THi vH 

vC 



10 

                                        The continuous time state equations of the heat exchanger 

cell above are the following energy conservation balances (Hangos et al., 2004): 

                   
( )( ) ( ( ) ( )) ( ( ) ( ))C

Co Ci Co Ho Co
C C pC C

v t UAT t T t T t T t T t
V C Vρ

= − + −             (1) 

                   
( )( ) ( ( ) ( )) ( ( ) ( ))H

Ho Hi Ho Co Ho
H H H pH

v t UAT t T t T t T t T t
V V Cρ

= − + −               (2) 

where Tji and Tjo are the inlet and outlet temperatures, Vj is the volume and vj is the 

volumetric flow rate of the two sides (j = C; H), respectively. 

 

                           2.1.1.3. System variables 

 

                                        The state vector is therefore composed of the two outlet 

temperatures:  

                                                     x1 := TCo, x2 := THo                                                 (3) 

There are a number of possible time-dependent variables on the right-hand 

side of the above equations which may act as manipulable input variables or 

disturbances, depending on the measurement and actuator settings and on any 

additional modeling assumptions we may have. These are as follows: 

 

1. The inlet temperatures: TCi and THi, 

2. The volumetric flowrates: vC and vH. 

 

The special cases of the heat exchanger cell models are obtained by specifying 

assumptions on their variations in time. For every case, the output equation is 

                                          
1 2( ) ( ( )) [ ( ) ( )]Ty t h x t x t x t= =                                       (4) 

 

                2.1.1.4 Additional modeling assumptions 
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From this step, the state space of a heat exchanger model can be either linear 

or nonlinear model depending on the following additional assumptions.  

 

 1. The model will be linear model if volumetric flowrates are assumed to be 

constant, and inlet temperatures are manipulable. 

 2. The model will be nonlinear model for more realistic case of heat exchanger 

if inlet temperatures are assumed to be constant, and volumetric flowrates are 

manipulable. 

 

 When each heat exchanger is considered, the system can be extended to the 

network. 

 

    2.1.2 Mathematical model for heat exchanger network synthesis 

 

               In synthesizing a HEN using the formulation of the mathematical 

model, it is proposed into two main techniques. The first one is the sequential 

synthesis whereas the minimum utility cost (operating cost) is considered following 

by the minimization of the number of units and investment cost. The second one is the 

simultaneous synthesis in which the tradeoff between the operating cost and the 

investment cost is taken into account to minimize the total annual cost, 

simultaneously. Many researches are reported that the optimal result from the 

simultaneous synthesis is more efficient than the sequential synthesis in the way of 

reporting the lower total annual cost of the network. This part, hence, will show the 

mathematical model to synthesize the HEN using the simultaneous synthesis 

technique. 

 

The simultaneous synthesis technique is described based on the stage-wise 

superstructure representation proposed by Yee and Grossmann (1990). The two-stage 

superstructure for the problem with two hot and cold streams is shown in Figure 2. 

However, in most cases, the number of stages is selected as the maximum of hot and 

cold process stream i.e. number of stages ≥ max (number of hot streams, number of 

cold streams).  
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Figure 2 Two-stage superstructure for heat exchanger networks 

 

Source: Yee and Grossman (1990) 

 

Within each stage of the superstructure, heat exchanges between any pair of 

hot and cold streams can occur. In each stage, the hot (cold) process stream is split 

and directed to an exchanger in order to match with each cold (hot) stream. 

Obviously, the two-stage superstructure for the problem containing two hot and cold 

streams involves eight exchangers with four possible matches in each stage e.g. in 

stage k = 1 possible matches are H1 – C1, H1 – C2, H2 – C1, and H2 – C2. 

 

For the model formulation of the simultaneous synthesis of HENs, it can be 

formulated as a mixed integer nonlinear programming (MINLP) model. The 

definition of parameters and variables in the model are provided in the following part. 

 

Indices: 

 

i   =   Hot process stream 

j         =   Cold process stream 

k        =   Index of stage, 1,…, NS, and temperature location, 1,…, NS + 1  
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Sets: 

 

HP  =   { i | i is a hot process stream, i = 1, ... , NH } 

CP  =   { j | j is a cold process stream, j = 1, ... , NC } 

ST  =   { k | k is a stage, k = 1,…, NS }  

 

 Parameters: 

 

Tin  =   Inlet temperature of stream  

Tout =   Outlet temperature of stream 

FCp  =   Heat capacity flow rate  

U  =   Overall heat transfer coefficient 

CCU  =   Unit cost of cold utility  

CHU  =   Unit cost of hot utility 

CF  =   Fixed charge for exchangers  

C, β =   Area cost coefficient and exponent of area cost  

Ω          =   Upper bound for heat exchange  

Γ           =   Upper bound for temperature difference 

 

Variables: 

 

dtijk =   Temperature approach for match (i,j) at temperature location k 

dtcui  =   Temperature approach for match of hot stream i and cold utility 

dthuj  =   Temperature approach for match of cold stream j and hot utility 

qijk  =   Heat exchange between hot and cold process stream (i,j) in stage k 

qcui  =   Heat exchanged between hot stream i and cold utility 

qhuj  =   Heat exchanged between cold stream j and hot utility 

tik  =   Temperature of hot stream i at hot end of stage k 

tjk  =   Temperature of cold stream j at hot end of stage k 

zijk  =   Binary variable to denote existence of match (i,j) in stage k 

zcui  =   Binary variable to denote that cold utility exchanges heat with stream i  

zhuj  =   Binary variable to denote that hot utility exchanges heat with stream j 
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With the above declaration, the formulation can now be presented. The 

objective function of this task is the minimum total annualized cost of the network 

subjecting to the following seven constraints. 

 

Constraint 1: Overall heat balance for each stream 

 

This constraint is needed to ensure sufficient heating or cooling of each 

process stream. The constraints specify that the overall heat transfer requirement of 

each stream must equal to the sum of the heat it exchanges with other process streams 

at each stage plus the exchange with the utilities streams   

 

                                   
∑∑
∈ ∈

+=−
STk CPj

    iijki
out

i
in

i qcuqFCp)TT(             i H P∈                     (5) 

                           
∑∑
∈ ∈

+=−
STk HPi

    jijkj
in
j

out
j qcuqFCp)TT(          j C P∈                      (6) 

 

Constraint 2: Heat balance at each stage 

 

An energy balance is also needed at each stage of the superstructure to 

determine the temperatures. Temperatures for the streams are the highest at 

temperature location k = 1 and the lowest at last temperature location.    

 

                                 
∑
∈

+ =−
CPj

ijki1k,ik,i qFCp)tt(              k ST i HP∈ ∈                      (7) 

                               
∑
∈

+ =−
HPi

ijkj1k,jk,j qFCp)tt(
  
            k ST j CP∈ ∈                      (8) 

 

Constraint 3: Assignment of superstructure inlet temperatures 

 

Fixed supply temperatures (TIN) of the process streams are assigned as the 

inlet temperatures to the superstructure. In Figure 2, for hot streams the superstructure 

inlet corresponds to temperature location k = 1, while the cold streams, the inlet 

corresponds to location k = 3.  
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                                  ,1i iTIN t=         and        , 1j j NSTIN t +=                                         (9) 

 

Constraint 4: Feasibility of temperatures 

 

Constraints are also needed to specify a monotonic decrease of temperature at 

each successive stage. In addition, a bound is set for the outlet temperatures of the 

superstructure at the specific stream’s target temperature. Note that the temperature of 

each stream at its last stage does not necessarily correspond to the stream’s target 

temperature since utility exchanges can occur at the outlet of the superstructure.    

 

                                            , , 1 i k i kt t +≥             k ST i HP∈ ∈                                    (10) 

                                           , , 1  j k j kt t +≥             k ST j CP∈ ∈                                   (11) 

                                          , 1  i i NSTOUT t +≤                 i H P∈                                    (12) 

                                          ,1 j jTOUT t≥                   j C P∈                                     (13) 

 

Constraint 5: Hot and cold utility load 

 

Hot and cold utility requirements are determined for each process stream in 

term of the outlet temperature in the last stage and the target temperature for that 

stream. The utility heat load requirements are determined as follows: 

 

                                    ii
out

i1NS,i qcuFCp)TT( =−+             i H P∈                            (14) 

                                      ji1,j
out
j qhuFCp)tT( =−              j C P∈              (15) 

 

Constraint 6: Logical constraints 

 

Logical constraints and binary variables are needed to determine the existence 

of process match between streams i,j in stage k and also any match involving utility 

streams. The binary variables, 0-1, are represented by zijk for process stream matches, 

and zcui and zhuj for matches involving cold and hot utility, respectively. An integer 
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value of one for any binary variable designates that the match is presented in the 

optimal network. 

 

          0ijk ijkq z−Ω ≤              i HP j CP k ST∈ ∈ ∈                             (16) 

                                  0i kqcu zcu−Ω ≤                               i H P∈                             (17) 

                                  0j jqhu zhu−Ω ≤                             j C P∈                              (18) 

                                  ,  ,  0,1ijk i jz zcu zhu =  
 

Constraint 7: Calculation of approach temperatures 

 

The area requirement of each match will be incorporated in the objective 

function. Calculation of these areas requires that approach temperatures be 

determined. To ensure feasible driving forces for exchangers that are selected in the 

optimization procedure, the binary variables are used to activate or deactivate the 

following constraints. Nevertheless, the approach temperature between the hot and 

cold streams at any point of any exchangers will be at least exchanger minimum 

approach temperature (EMAT). 

 

   , ,  (1 )ijk i k j k ijkdt t t z≤ − + Γ −                      i HP j CP k ST∈ ∈ ∈        (19) 

1 , 1 , 1  (1 )ijk i k j k ijkdt t t z+ + +≤ − + Γ −               i HP j CP k ST∈ ∈ ∈         (20) 

, 1  (1 )i i NS CU idtcu t TOUT zcu+≤ − + Γ −                         i H P∈          (21) 

,1  (1 )i HU j jdthu TOUT t zhu≤ − + Γ −                             j C P∈        (22) 

ijkdt EMAT≥                         (23) 

 

Objective Function: Minimum Total Annualized Cost 

 

The objective function can be defined as the annual cost for the network. The 

annual cost is the combination of the utility cost, the fixed charges for the exchangers, 

and the area cost for each exchanger. The objective function is derived as follows: 
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        Minimize                   i j
i HP j CP

CCU qcu CHU qhu
∈ ∈

+∑ ∑  

, ,ij ijk i CU i j HU j
i HP j CP k ST i HP j CP

CF z CF zcu CF zhu
∈ ∈ ∈ ∈ ∈

+ + +∑ ∑ ∑ ∑ ∑  

( )( )( )1/3

1 1/ / 2
ij

ij ijk ij ijk ijk ijk ijk
i HP j CP k ST

C q U dt dt dt dt
β

+ +
∈ ∈ ∈

⎡ ⎤⎡ ⎤+ +⎣ ⎦⎢ ⎥⎣ ⎦∑ ∑ ∑  

( )( ) ( )( ) ,1/3

, ,/ / 2
i CU

i CU i i CU i i CU i i CU
i HP

C qcu U dtcu TOUT TIN dtcu TOUT TIN
β

∈

⎡ ⎤⎡ ⎤+ − + −⎡ ⎤⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦∑

( )( ) ( )
,1/ 3

, ,/ / 2
j CU

HU j j HU j j HU j j HU j
j CP

C qhu U dthu TIN TOUT dthu TIN TOUT
β

∈

⎡ ⎤⎛ ⎞⎡ ⎤⎡ ⎤+ − + −⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠⎣ ⎦
∑

(24) 

 

where    
, ,

1 1 1 1 1 1 1 1 1  ;     ;   
ij i j i CU i CU HU j j HUU h h U h h U h h
= + = + = +

 
 

2.2 Passivity theorem (and/or passivity properties) 

 

      2.2.1 Passivity theorem 

 

              The basic concepts of passive systems are introduced in this section. 

Since this concept is fundamentally connected with dissipativeness and is a special 

case of dissipativeness. Let start from the definition of dissipative systems and 

consider the time invariant dynamical system Σ: 

                                                 ( ) ( )x f x g x u= +                                                       (25) 

                                                 ( )y h x=                                                                     (26) 

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are state, control and output vectors 

respectively, and X, U and Y are state, control and output spaces respectively. The 

representation x(t) = φ(t, t0, x0, u) is used to denote the state at time t reached from the 

initial state x0 at t0. 

 

Definition 1: Supply Rate (Willems, 1972a) 
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The supply rate w(t) = w(u(t), y(t)) is a real valued function defined on U × 

Y, such that for any u ∈ U and x0 ∈ X and output y(t) = h(φ(t, x0, u)), w(t) satisfies 

                                                       ( )∫ ∞<
1

0

t

t

dttw                                                     (27) 

for all t1 ≥ t0 ≥ 0, and usually can be an inner product of u(t) and y(t), which is an 

abstract concept of input power. 

 

Definition 2: Dissipative Systems (Willems, 1972a) 

 

A system Σ with supply rate w(t) is said to be dissipative if exists a 

nonnegative function S: X → R+, called the storage function, such that for all (t1, t0) ∈ 
+
2R , x0 ∈ X, and u ∈ U, 

                                                ( ) ( ) ( )∫ ≥+
1

0

t

t
10 xSdttwxS         (28) 

where x1 = φ(t1, t0, x0, u) and w(t) = w(u(t), y(t)), with y = y(t0, x0, u). 

 

Definition 3: Available Storage Function (Willems, 1972a) 

 

The available storage, Sa, of a dynamical system Σ with supply rate is the 

function from X into Re defined by 

                                                   ( ) ( )∫−=
≥
→

1

1

t

00t
x

a dttwsupxS              (29) 

where the notation x → denotes the supremum over all motions starting in state x at 

time 0 and where the supremum is taken over all u ∈ U. 

 

The available storage function plays an important role in dissipative/passive 

systems. If a system is dissipative, the available storage function Sa(x) is finite for 

each x ∈ X. Moreover, any possible storage function S(x) satisfies 

                                                      ( ) ( )0 aS x S x≤ ≤       (30) 
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for each x ∈ X. If Sa is continuous (C0) function, then Sa itself is a possible storage 

function. 

 

Definition 4: Linear Passive Systems (Willems, 1972b) 
 

A linear time invariant system ( )∑ +−= − DBAsIC:)s(G: 1 , (G(s) is a n×n 

transfer function matrix, and A, B, C, D are coefficients of a state space) is passive if 

and if G(s) is positive real (PR), or equivalently, 

 

1. Re[ ( )] 0i Aλ ≤ for i = 1,…, n, 

2. G(jω)+G*(jω)≥0 for all real ω, ( )ij Aω λ≠ , 

3. Imaginary eigenvalues of A are nonrepeated and the residue matrix at those 

eigenvalues is Hermitian and nonnegative definite. 

 

G(s) is said to be Strictly Passive or Strictly Positive Real (SPR) if : 

1. Re[ ( )] 0i Aλ < for i = 1,…, n, 

2. G(jω)+G*(jω) > 0 for all real ω, ( )ij Aω λ≠  

 

For the multi-loop control system as shown in Figure 3, if the multivariable 

process G(s) is strictly passive, then the closed loop is stable if the multi-loop 

controller K(s) is passive, regardless of loop interactions. 

 

 

 

 

 

Figure 3 Multi-loop control system 

 

Source:  Bao et al. (2002a) 

 

K(s) G(s) 
_ 

+ 

Multi-loop 
controller 

Multivariable 
process 
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Theorem 1: Passivity Theorem (Van Der Schaft, 1997) 

Figure 4 Passivity Theorem 

 

Source:  Van Der Schaft (1997) 

 
 Consider the closed-loop system of G1, G2 (as shown in Figure 4) with 0e2 ≡  
so that 

                                    )u(Geu 2211 −=                                    (31) 

21112 Le)u(Gu ∈=                 (32) 

with G1, G2 : e2e2 LL →  Assume that for any 21 Le ∈ there are solutions e221 Lu,u ∈ . 

If G1 is passive and G2 is strictly passive, then 2112 L)u(Gu ∈=  where L2e is the 
extended L2 space, which consists of all measurable signals f(t) such that its 
truncation ( ) 2T Ltf ∈ . 
 

      2.2.2 Passivity index and passivity based stability conditions 

 

                          2.2.2.1 Extended passivity condition for non-passive systems 

 

                           Many chemical processes are not passive (Bao et al., 2002a), 

and thus, the passivity based condition given in Theorem 1 cannot be directly used to 

analyze decentralized unconditional stability for those systems. Therefore, the 

passivity index is introduced and the passivity based condition is extended to cope 

with both passive and non-passive processes. As any stable non-passive process can 

be rendered passive by adding a nonnegative feedforward, the minimum feedforward 

G2 

G1 

+ 

- 

+ 

+ 

e2 

e1 

y2 

u1 

u2 

y1 
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required can be used to measure how far the process is from being passive and thus 

defined as the passivity index. 

 

Theorem 2: (Bao and Lee, 2007) For a given stable non-passive process with a 

transfer function matrix of G(s), there exists a diagonal, stable, and passive transfer 

function matrix W(s) = w(s)I such that H(s) = G(s) + W(s) is passive. This full 

theorem proof is shown in Appendix D. 

 

Definition 5: Passivity Index v (Bao et al., 2000a) 

Given a stable linear time invariant system ( )∑ +−= − DBAsIC:)s(G: 1 , the 

passivity index is defined as: 

                       (G) inf{ R:(A,B,C,D ) Iν ν ν∈ + is strictly positive real}             (33) 

The ν-index can also be defined as a function of frequency ω. 

( )*
min

1( , ) ( )
2

G G j G jν ω λ ω ω⎛ ⎞⎡ ⎤− +⎜ ⎟⎣ ⎦⎝ ⎠
             (34) 

Passive systems are phase bounded (Haddad and Bernstein, 1991; Bao et al., 

1996). The phase of passive system lies in [-π/2,+π/2] and therefore, the small gain 

condition is not required for a closed-loop system comprising of two passive systems. 

 

Index ν(G,ω) indicates how far the system G(s) is from being passive and is 

negative if G(s) is passive. Apparently, for a system G(s) with its passivity 

index )),s(G( ων , if a stable and minimum phase transfer function w(s) is chosen such 

that 

    )),s(G()),s(w( ων−<ων                  (35) 

then G(s)+w(s)I is strictly passive. 

 

The passivity index of a linear system comprises both phase and gain 

information about the system in question (Bao et al., 1998). This can be seen from a 
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simple SISO example. Given a system G(s), its passivity index at frequency ω is 

given by 

   [ ] { } ( ) ( )( ), Re ( ) cosG s G j G jν ω ω ω φ= − = −⎡ ⎤⎣ ⎦             (36) 

where 

    
( )( )
( )( )

1 Im
tan

Re
G j
G j

ω
φ

ω
−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

              (37) 

It is possible to use the passivity index as a single index, rather than use both 

phase and gain margins, to study unconditional stability. 

 

 To facilitate future stability analysis, G+(s) = G(s)U (Bao et al., 2002a) is 

defined, where U is a diagonal matrix with either 1 or –1 along the diagonal. The 

signs of U elements are determined such that the diagonal elements of G+(s) are 

positive at steady state, that is G+
ii(0) ≥ 0, i = 1, … , n, Let denote 

 

                          K+(s) = U-1K(s) = UK(s)              (38) 

               G+(s) = G(s)U                   (39) 

 

Theorem 3: (Bao et al., 2002a) For an interconnected system (as shown in Figure 3) 

comprising a stable subsystem G(s) and a decentralized controller K(s) = diag{ki(s)}, i 

= 1, ..., n, if a stable and minimum phase transfer function w(s) is chosen such that 

ν(w(s),ω)<-ν(G+(s),ω), then the closed-loop system will be decentralized 

unconditionally stable if for any loop i = 1, ..., n, k'i(s) = k+
I(s)[1-w(s)k+

I(s)]-1 is 

passive, where kI
+(s) = UiikI(s) and U = diag{Uii}, i = 1, …, n. This full theorem proof 

is shown in Appendix D. 

 

Similar to the diagonal scaling treatment for calculating maximum stability 

gain margins (Safonov, 1982), the conservativeness of the sufficient stability 

condition given in Theorem 3 could be reduced by using a constant, real, and positive-

definite diagonal rescaling matrix (as matrix D shown in Figure 5). 
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Figure 5 Rescaling 

 

Source:  Bao et al. (2002a) 

 

The closed-loop system in Figure 3 is stable if and only if the feedback system 

shown in Figure 5 is stable. Note that, for any diagonal system K+(s), K+(s) = D-

1K+(s)D. However, the passivity index of D-1G+(s)D can be significantly reduced by 

using an appropriate D matrix: 

         ν(D-1G+(s)D,ω) < ν(G+(s),ω)                (40) 

The rescaling matrix D can be chosen such that the rescaled G+(s) at steady 

state is positive-real; that is, the following inequality is satisfied: 

       D-1G+(0)D + D[G+(0)]TD-1 > 0                                   (41) 

Because D is nonsingular, thus, 

     D{D-1G+(0)D + D[G+(0)]TD-1}D > 0                  (42) 

           G+(0)DD + DD[G+(0)] > 0                (43) 

Define M = DD; thus, M is a constant, real, and positive-definite diagonal 

matrix. Inequality (41) is equivalent to the following inequality: 

     G+(0)M + M[G+(0)]T > 0                 (44) 

Equation (44) is a typical linear matrix inequality (LMI) problem and can be 

solved by using any semi-definite programming tools such as MATLABTM: LMI 

G+(s) D-1

D-1 K+(s) D

+

-
D



24 

Toolbox. The continuity of the transfer function G+(s) implies that inequality (44) 

holds not only at steady state but also for a certain frequency range [0,ω1]: 

G+(jω)M + M[G+(jω)]T > 0,  [ ]1,0 ω∈ω∀              (45) 

The following theorem can be derived directly from Theorem 3. 

 

Theorem 4: Given a stable and rational LTI MIMO process with its transfer function 

matrix G(s) ∈ Cnxn, if the rescaled passivity index of G+(s) = G(s)U is bounded by 

           ( )( ) ( )( ){ }1, max min , ,s D
G s D G s D Єν ω ν ω− += −              (46) 

then any multi-loop controller 

       K(s) = diag{ki(s)}, i = 1, ..., n                (47) 

satisfying the following conditions will stabilize the closed-loop system and achieve 

decentralized unconditional stability: 

1 
( )

( )( ) ( ) n,...,1i,R0
jk,sG1

jkRe
is

i =∈ω∀≥
⎭
⎬
⎫

⎩
⎨
⎧

ωων−
ω

+

+

                          (48) 

2 K(s) is analytic in Re(s) > 0                                    (49) 

 

where Є is an arbitrarily small positive number, and D is positive-definite and νs(ω) is 

a frequency-dependent real positive function, ki
+(s) = Uiiki(s) = 0. 

 

The (i,i)th element in matrix U indicates whether the corresponding ith loop is 

direct acting or reverse acting. 

 

Theorem 5: (Necessary condition for decentralized integral controllability (DIC))  

(Morari and Zafiriou, 1989). An m m× LTI stable process G(s) is DIC only if 

                                            
( (0)) 0, 1,...,ii G i mΛ ≥ ∀ =                                               (50) 

where ( (0))ii GΛ is the ith diagonal element of the RGA matrix of G(0). 
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Note: This theorem proof is shown in Appendix D. 

 

              2.2.2.2 Diagonal scaling of the passivity index 

 

                        The passivity index can be diagonally scaled to reduce the 

conservativeness of the passivity based control (Bao et al., 2002a). Let define “D” as 

a diagonal positive definite matrix. In this section, a frequency dependent diagonal 

scaling matrix D(ω) is implemented such that the passivity indices at different 

frequencies can be reduced. For a given stable process with signs 

adjusted ( ) nnCsG ×+ ∈ , the problem of diagonally scaling for passivity index at 

frequency ω can be described as: 

 

Problem 1 (Bao et al., 2002a) 

                                                            { }tmin
D

                                                             (51) 

subject to:                

                               ( ) ( ) ( ) ( ) ( )[ ] ( ) 0tIDjGDDjGD 1*1 >+ωωω+ωωω −++−             (52) 

                                                            D(ω) > 0               (53) 

where ( ) nnRD ×∈ω  is a diagonal matrix and t is a real scalar variable. This is an 

optimization problem with a constraint of complex matrix inequality which cannot be 

handled directly by semi-definite programming solvers because Equation (52) is 

nonlinear and complex. However, this equation can be converted into a real and linear 

matrix inequality by defining ( ) ( )ωω= DDM  as previous part and G+(jω) = X(ω) + 

jY(jω), the above problem can be converted into the following linear matrix 

inequality (LMI) problem as its derivation is shown Appendix D. 

Note: more details about LMI information is described in Gahinet et al. (1995). 

 

Problem 2 (Bao et al., 2002b) 

                                                               { }tmin
M

                                                                (54) 
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subject to: 

                           
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
<⎥

⎦

⎤
⎢
⎣

⎡

ω−ω−ω+ω−
ω−ωω−ω−

M0
0M

t
MXMXMYMY

MYMYMXMX
TT

TT

           (55) 

                                                M is diagonal and M > 0              (56) 

For each frequency ω, a diagonal and real matrix of M( ω) can be obtained by 

solving the above optimization problem, using any semi-definite programming solver. 

Then the diagonally scaled passivity index can be calculated as (Bao et al., 2002b): 

 

                    ( )( ) ( ) ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
ω+ωλ−=ων

−++−+ 2
1

*2
1

2
1

2
1

mins MjGMMjGM
2
1,sG           (57) 

 

In the passivity based stability conditions, the passivity indices ( )( )ων + ,sG  

can be replaced with the diagonally scaled passivity index ( )( )ων + ,sGs  to reduce the 

conservativeness of these conditions. 

 

The passivity index as previously mentioned is used to check whether the 

system is passive or not. If not, from Theorem 2, a stable minimum phase transfer 

function called weighting function w(s) is the term used to render system to be 

passive. The weighting function has the following form (Bao et al., 2002b): 

                                                     ( ) ( )
( )( )

k.s. s a
w s

s b s c
+

=
+ +                                             (58) 

where the parameters a, b, c and k, decision variable, can be obtained from Problem 3: 

 

Problem 3 (Bao et al., 2002b) 

                                          ( )( ) ( )( )( )
2m

i s ia ,b,c,k i 1
min Re w j G s ,+

=

ω − υ ω∑                           (59) 

subject to 
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                                       ( )( ) ( )( )i s iRe w j G s , , i 1...m+ω > υ ω ∀ = .                       (60) 

 

 2.2.3 Passivity based pairing  

 

         Different paring schemes result in different transfer function matrices 

G(s), which normally have different passivity indices (Bao and Lee, 2007). The 

passivity indices imply achievable performance of decentralized control systems (with 

passive controllers). A “more” passive G(s) is easier to control by using a multi-loop 

controller (Bao and Lee, 2007). Therefore, a pairing scheme should be chosen such 

that (1) the resulting G(s) is Decentralized Integral Controllable (DIC); (2) G(s) has 

small passivity indices at all frequencies concerned. 

 

For each pairing scheme, its passivity index profile can be obtained using 

following steps (Bao and Lee, 2007): 

 

1. Determine the transfer function G(s) for each possible pairing scheme. 

 

2. Screen out the non-DIC pairing schemes by using the necessary DIC 

condition given in Theorem 5. 

 

3. Find the sign matrix U and obtain G+(s) such that ( )0 0 ( 1,..., )iiG i m+ > = . 

 

4. Calculate the diagonally scaled passivity index ( )( )ων + ,sGs  at a number of 

frequency points. 

 

5. Compare the passivity index profiles of different pairings. The best pairing 

should correspond to the one with the largest frequency bandwidth ωb such that 

( )( ), 0s G sν ω+ ≤ for any [0, ]bω ω∈ . This pairing scheme would allow using 

controllers with integral action and the fastest dynamic response. 
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 2.2.4 Multi-loop PI controller design 

 

         Multi-loop PI controllers can be designed based on the passivity based 

stability conditions (Bao et al., 2002a). To achieve decentralized unconditional 

stability of the closed-loop system as well as good performance, a controller tuning 

method is proposed to minimize the sensitivity function of each loop, subject to the 

conditions in Equations (48) and (49). For multi-loop PI controller synthesis, this 

tuning problem is converted into the following optimization problem: 

 

Problem 4 (Bao et al., 2002a) 

                                                        ( )
c ,i I ,i

i
k ,
m in
+ τ

− γ                                                     (61) 

subject to 

                                       
( )

i i

ii c ,i
I,i

w ( j )
1

11 G j k 1
j

+ +

ω γ
<

⎡ ⎤
+ ω +⎢ ⎥τ × ω⎢ ⎥⎣ ⎦

                         (62) 

and 

                                    
( )
( )

c,i s 2
I,i2

c,i s

k
R,i 1,...,n

1 k

+

+

ν ω
≤ τ ∀ω∈ =

⎡ ⎤− ν ω ω⎣ ⎦
                        (63) 

For a given stable process G(s), a multi-loop PI controller can be obtained by 

solving Problem 4 using the design procedure as follows. 

 

1. Determine the pairing scheme for controlled and manipulated variables 

according to the procedure to find the best pairing in section 2.2.3. 

2. For each subsystem ( )iiG s+ (i = 1,…,m), solve Problem 4 for the PI 

controller parameters ,c ik + and ,I iτ . 
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3. Adjust the sign of the final subcontroller gain , ,c i c i iik k U+= to obtain the final 

multi-loop controller as Equation (64). 

                        ,
,

1( ) { ( )} (1 )i c i
I i

K s diag k s diag k
sτ

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

                             (64) 

 



MATERIALS AND METHODS 

 
Materials 

 

1. Personal computer 

     a) CPU (Intel core2Duo CPU 2.0 GHz) 

     b) 3.00 GB of RAM 

     c) 320 GB of Hard disk 

2. Operating System: Microsoft Window Vista 

3. Software 

                a) MATLAB® version 2007b  

    b) ASPEN PLUS V.7 and ASPEN DYNAMICS V.7 

 

Methods 

 

1. Overall Methodology 

 

 The aim of this work is to apply the passivity theorem with HENs. The main 

steps to accomplish this goal are presented as follows.  

 

1.1 Develop a state space equation, which is a state and an output equation, of 

a single bypass heat exchanger. 

 

 1.2 Find a transfer function of a single bypass heat exchanger. 

 

 1.3 Apply the passivity theorem with a single bypass heat exchanger  

 

 1.4 Verify the results by Aspen Dynamics V.7.  

 

 1.5 Analyze the results. 
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1.6 Extend this system to a network and repeat steps 1.1 to 1.5. 

 

2. Passivity based decentralized controller synthesis  

 

 This part shows how to apply the passivity theorem to a single bypass heat 

exchanger and a HEN. The procedure to obtain the passivity based decentralized 

unconditional stability (DUS) control system is illustrated in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Passivity based decentralized controller synthesis procedure 
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Note: This procedure was systematically combined by the author from the works of  

          Bao et al. (1998; 2000; 2002; 2007). 

 

Firstly, the transfer function of the process needs to be available. After that, 

this process is checked whether it is passive or not by using passivity index (Bao et 

al., 2002b) which is shown in Equation (65).  

                  
( )( ) ( ) ( )( )

1 1 1 1
*

2 2 2 2
min

1,
2s G s M G j M M G j Mν ω λ ω ω

− −+ + +⎛ ⎞⎡ ⎤
= − +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

    (65) 

If it is passive (passivity index is less than or equal to zero at a given 

frequency), it can be directly designed DUS PI controller. If not (passivity index is 

much more than zero), it has to add mathematically some function called weighting 

function in the system in order to render the system passive and then can be designed 

DUS PI controller. However, both ways have to process the passivity based pairing 

step which is shown as follows. 

 

1. Determine the transfer function G(s) for each possible pairing scheme. In 

this step, there are the numerical symbols to indicate any possible pairing schemes.  

u(i)-x(i)/u(i+1)-x(i+1) means that the ith manipulated variable (u) is used to control 

the ith controlled variable (x), and the (i+1)th manipulated variable is used to control 

(i+1)th controlled variable. This definition is presented in Table 1. 

 

Table 1 Numerical symbols to indicate any possible pairing schemes 

 

The i-th 

Manipulated 

Variables (u) 

The i-th 

Controlled 

Variables (x) 

Numerical 

Symbols 
Description 

1 

2 

1 

2 

1-1 

2-2 

u1 controls x1 

u2 controls x2 

1 

2 

2 

1 

1-2 

2-1 

u1 controls x2 

u2 controls x1 
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For example, 1-2/2-1 pairing means that the 1st manipulated variable is used to 

control the 2nd controlled variable, and the 2nd manipulated variable is used to control 

the 1st controlled variable. 

 

2. Screen out the non-DIC pairing schemes by using the necessary DIC 

condition given in Theorem 5. 

 

3. Find the sign matrix U and obtain G+(s) such that ( )0 0 ( 1,..., )iiG i m+ > = . 

The (i,i)-th in matrix U indicates whether the corresponding i-th loop is direct or 

reverse acting.  

 

4. Calculate the diagonally scaled passivity index ( )( )ων + ,sGs  at a number of 

frequency points. 

 

5. Compare the passivity index profiles of different pairings. The best pairing 

should correspond to the one with the largest frequency bandwidth ωb such that 

( )( ), 0s G sν ω+ ≤ for any [0, ]bω ω∈ . This pairing scheme would allow using 

controllers with integral action and the fastest dynamic response. 

 

 After the passivity based pairing step, the best pairing scheme which is 

more passive than the others is obtained. Next step for non-passive process called 

weighting function calculation and rendering passive step, the weighting function 

which is the stable and minimum phase is added into the system. The weighting 

function has the following form (Bao et al., 2002b): 

                                                     ( ) ( )
( )( )

k.s. s a
w s

s b s c
+

=
+ +                                             (66) 

where the parameters a, b, c and k, decision variable, can be obtained from Problem 3 

as shown in the literature review section: 

 

Problem 3 (Bao et al., 2002b) 
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                                          ( )( ) ( )( )( )
2m

i s ia ,b,c,k i 1
min Re w j G s ,+

=

ω − υ ω∑                          (67) 

subject to 

                                       ( )( ) ( )( )i s iRe w j G s , , i 1...m+ω > υ ω ∀ = .                      (68) 

 

 After weighting function is determined, this function is added mathematically 

into the system in order to make this system passive which is followed the Theorem 2.  

                                                      H(s) = G(s) + W(s)                                              (69) 

where W(s) = w(s)I 

 

 Next step, DUS PI controllers are designed following the multi-loop PI 

controller design procedure (Bao et al., 2002a). 

 

1. Determine the pairing scheme for controlled and manipulated variables 

according to the procedure to find the best pairing in the passivity based pairing step. 

 
2. For each subsystem ( )iiG s+ (i = 1,…,m), solve Problem 4 for the PI 

controller parameters ,c ik + and ,I iτ . 

 

Problem 4 (Bao et al., 2002a) 
 

                                                            
( )

c ,i I ,i
i

k ,
min
+ τ

− γ                                                 (70) 

 

such that 

                                       
( )

i i

ii c ,i
I,i

w ( j )
1

11 G j k 1
j

+ +

ω γ
<

⎡ ⎤
+ ω +⎢ ⎥τ × ω⎢ ⎥⎣ ⎦

                         (71) 

and 
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( )
( )

c,i s2
I,i 2

c,i s

k
R,i 1,...,n

1 k

+

+

ν ω
τ ≥ ∀ω∈ =

⎡ ⎤− ν ω ω⎣ ⎦
                          (72) 

 

3. Adjust the sign of the final subcontroller gain , ,c i c i iik k U+= to obtain the final 

multi-loop controller as Equation (73). 

                     ,
,

1( ) { ( )} (1 )i c i
I i

K s diag k s diag k
sτ

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

                              (73) 

 This multi-loop controller satisfies the following conditions which stabilize 

the closed-loop system and achieve DUS: 

1 ( )
( )( ) ( )

Re 0 , 1,...,
1 ,

i

s i

k j
R i n

G s k j
ω

ω
ν ω ω

+

+

⎧ ⎫⎪ ⎪ ≥ ∀ ∈ =⎨ ⎬
−⎪ ⎪⎩ ⎭

                        (74) 

2 K(s) is analytic in Re(s) > 0                                 (75) 

where ( )} ( )i ii ik s U k s+ =  

 

 However, when DUS PI tuning parameters are designed, the system is 

performed with these parameters to verify the results compared with the default PI 

tuning parameters from Aspen Dynamics simulator. In a verification part of the HEN 

case, there are two works; first, the system is simulated with controllers and disturbed 

by changing hot flowrate, and second, the system is tested fault-tolerant control by 

simulating with a failing controller and also is disturbed as the same as the first work. 

If the results can achieve stability, the passivity based DUS control system is 

obtained. 

 



RESULTS AND DISCUSSION 
 

This result section is divided into two main parts. The first part covers a 

single heat exchanger with and without bypass, and the second part extends the study 

over a HEN. Both systems are studied and implemented with the passivity theorem. 

 

1. A Single Heat Exchanger Applied with the Passivity Theorem 
 
 Since a single heat exchanger without bypass referred from Hangos et al. 

(2004) was already applied with the passivity theorem by Bao and Lee (2007), they 

reported that the model of a single heat exchanger is inherently passive. Therefore, the 

following section shows the models of a single heat exchanger without bypass tested 

by passivity index (Bao et al., 2002b) to confirm this heat exchanger model is passive. 

 

1.1 A single heat exchanger model without bypass 

H

C

THin T1H TH

TCinT1CTC

 

Figure 7 A grid diagram of a single heat exchanger  

 

Source:  Hangos et al. (2004) 

 

  The model of a single heat exchanger referred from Hangos et al. (2004) is 

shown in Figure 7 and Equations (76) to (79) which are developed under the 

following assumptions. 
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1. A heat exchanger model is assumed to be an approximate lumped parameter 

system instead of a distributed parameter system. 

 2. Volumes of hot and cold streams in the heat exchanger (VH and VC) are 

constant. 

 3. Physicochemical properties, including density of the hot and cold streams 

( Hρ and Cρ ) and their specific heats ( pHC and pCC ) are constant.  

 4. Heat transfer coefficient U and area A are constant. 

 5. Both hot and cold streams are well mixed and the temperatures of the hot 

and cold streams inside the tube are approximated by the outlet temperatures 1HT  and 

1CT . 

                   
1

1 1 1( ) ( )C
C C pC C C pC Cin C H C

dTV C F C T T UA T T
dt

ρ ρ= − + −                  (76) 

                    
1

1 1 1( ) ( )H
H H pH H H pH Hin H C H

dTV C F C T T UA T T
dt

ρ ρ= − + −                  (77) 

                                                             1C CT T=                                                          (78) 

                                                            1H HT T=                                                          (79) 

 

 Equations (76) and (77) are the state equations of the cold and hot streams 

while Equations (78) and (79) are the output equations of cold and hot streams. These 

equations are a linear case of a heat exchanger model. These linear heat exchanger 

models, describing the behavior of the state variables, have two controlled variables 

and two manipulated variables. The controlled variables are output cold temperature 

1CT  and output hot temperature 1HT . The manipulated variables are inlet cold 

temperature CinT  and inlet hot temperature HinT . However, this model is mostly ideal 

case since the manipulated variables are both inlet temperatures by assuming the cold 

and hot flowrates to be constant. The linear heat exchanger models can be formulated 

in the state space form as Equations (80) and (81). 
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1 1

11

0

0

C C C C
C C Cin

C C C

H H H H
H HinH

H H H

UA F UA FT T T

UA FUA FT TT

τ τ
ξ ξ ξ

τ τ
ξ ξ ξ

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

            (80) 

               
1

1

1 0

0 1
C C

H H

T T
T T

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                                                                                     (81) 

where i i PiCτ ρ= and i i i PiV Cξ ρ=    i = C,H 

The parameters used come from Kern (1950) and are shown in Table 2 

 

Table 2 Parameters used in the linear heat exchanger model 

 

Parameter Unit Value 

Heat exchanger area (A) 

Overall heat transfer coefficient (U) 

Cold flowrate (FC) 

Hot flowrate (FH) 

Specific heat capacity of cold stream(CPC) 

Specific heat capacity of hot stream (CPH) 

Density of cold stream ( Cρ ) 

Density of hot stream ( Hρ ) 

Volume of cold compartment (VC) 

Volume of hot compartment (VH) 

ft2 

Btu/(hr.ft2ºF) 

ft3/hr 

ft3/hr 

Btu/(lbºF) 

Btu/(lbºF) 

lb/ft3 

lb/ft3 

ft3 

ft3 

521.5 

75 

2290 

6240 

0.56 

0.58 

44.93 

47.74 

5.57 

20.40 

 

Source:  Kern (1950) 

 

When all numerical values are substituted into Equations (80) and (81), the 

state space equation of this linear heat exchanger model is as follows. 

                

1 1

11

690.87 279.17 411.7 0
69.254 375.29 0 306.03

CinC C

HinHH

TT T
TTT

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

                  (82) 
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1

1

1 0

0 1
C C

H H

T T
T T

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                                                                                 (83) 

 These equations, which have the same form as the state space form shown in 

Equations (84) and (85), can be transformed into transfer function as Equation (86). 

                                                        x Ax Bu= +                                                        (84) 

                                                        y Cx=                                                                (85) 

Note: All information of state space form is shown in Appendix A. 

                  

5 4

2 5 2 5

4 5

2 5 2 5

411.7 (1.545 10 ) 8.543 10
1066 (2.399 10 ) 1066 (2.399 10 )

( )
2.851 10 306 (2.114 10 )

1066 (2.399 10 ) 1066 (2.399 10 )

s
s s s s

G s
s

s s s s

⎡ ⎤+ × ×
⎢ ⎥

+ + × + + ×⎢ ⎥= ⎢ ⎥× + ×⎢ ⎥
⎢ ⎥+ + × + + ×⎣ ⎦

                  (86) 

After that, the passivity index (Bao et al., 2002b) in Equation (87), indicating 

how far the system from being passive, is tested with this transfer function of the 

linear heat exchanger model. The result is shown in Figure 8. 

                  
( )( ) ( ) ( )( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
ω+ωλ−=ων

−++−+ 2
1

*2
1

2
1

2
1

mins MjGMMjGM
2
1,sG             (87) 

 

Figure 8 Passivity index of the linear heat exchanger model 

 

Source:  Bao and Lee (2007) 
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 Since the passivity index is less than zero along the frequency range 10-4-104 

rad/hr, this system is passive (Bao et al. 2000a). As all previously mentioned, the 

model of the heat exchanger is linear in case of inlet temperature of both cold and hot 

streams being manipulated variables. The another case of a heat exchanger is 

nonlinear case which the controlled variables are the same as linear case, but the 

manipulated variables are cold and hot flowrates instead of inlet cold and hot 

temperatures. The state space equation of nonlinear heat exchanger model is presented 

in Equations (88) and (89). 

          

1
1 1

1
11

0

0

C C C Cin C C
C C C

C C C

H H H Hin H H
H HH

H H H

UA F UA T TT T F

UA FUA T TT FT

τ τ τ
ξ ξ ξ

τ τ τ
ξ ξ ξ

⎡ ⎤ ⎡ ⎤− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

   (88) 

           
1

1

1 0

0 1
C C

H H

T T
T T

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                                                                                        (89) 

where i i PiCτ ρ= and i i i PiV Cξ ρ=    i = C,H 

Note: The full derivation of these equations is shown in Appendix C. 

 

 This model was not mentioned in detail from Bao and Lee (2007). Therefore, 

in order to test this model passive as Bao and Lee (2007) reported, numerical values 

are required. The simulation conditions, referred from Westhalen et al. (2003) as 

shown in Figure 9 and Table 3, are used to simulate in Aspen Plus to determine the 

output cold temperature and heat duty by specifying the output hot temperature to be 

71.1 ºC.  
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H

C

160

40

 

Figure 9 A grid diagram of a heat exchanger with conditions 

 

Source:  Westhalen et al. (2003) 

 

Table 3 Parameters used in the nonlinear heat exchanger model 

 

Parameter Unit Value 

Inlet cold temperature ºC 40 

Inlet hot temperature 

Output hot temperature  

Cold mass capacity flowrate  

Hot mass capacity flowrate  

Overall heat transfer coefficient  

Heat exchanger area 

Density 

Volume of cold compartment 

Volume of hot compartment 

ºC 

ºC 

kW/ ºC 

kW/ ºC 

kW/m2 K 

m2 

kg/m3 

m3 

m3 

160 

71.1 

1.5 

1 

0.85 

0.96 

1000 

0.1577a 

0.5776a 

 

Remark:  a: assumption referred from linear model (Bao and Lee, 2007; Kern, 1950) 

 

When all numerical values are substituted into Equations (88) and (89), the 

state space equation of this nonlinear heat exchanger model is as follows. 
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1 1

11

5510.15 5428.36 385.289 0
1482.09 1483.82 0 153.913

C C C

H HH

T T F
T FT

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

            (90) 

                

1

1

1 0

0 1
C C

H H

T T
T T

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                                                                                    (91) 

These equations can be transformed into transfer function as Equation (92).  

                   

5 5

2 5 2 5

5 5

2 5 2 5

385.3 (5.717 10 ) 8.355 10
6994 (1.308 10 ) 6994 (1.308 10 )

( )
5.71 10 153.9 (8.481 10 )

6994 (1.308 10 ) 6994 (1.308 10 )

s
s s s s

G s
s

s s s s

⎡ ⎤− − × ×
⎢ ⎥

+ + × + + ×⎢ ⎥= ⎢ ⎥− × + ×⎢ ⎥
⎢ ⎥+ + × + + ×⎣ ⎦

                 (92) 

After that, the passivity index (Bao et al., 2002b) is tested with this transfer 

function of the nonlinear heat exchanger model. The result is shown in Figure 10. 

 
 Figure 10 Passivity index of the nonlinear heat exchanger model 

 

1.2 A single bypass heat exchanger  

 

       Although single heat exchangers, which both linear and nonlinear models 

in case of without bypasses, are inherently passive (Bao and Lee, 2007), they are not 

realistic model since single heat exchangers have generally to be presented with 

bypass. Single bypasses are assumed to be used throughout this work 
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(Lersbamrungsuk, 2008; Glemmestad et al., 1999; Wolff et al., 1991). Therefore, the 

grid diagram of a single bypass heat exchanger is shown in the following figure. 

H

C

THin

TCin

T1H TH

fH

TC T1C

 
Figure 11 A grid diagram of a single bypass heat exchanger  

 

 If a single heat exchanger in Figure 7 is considered carefully, it is found that 

Equations (76) and (77) are produced from that system which has the boundary 

system around the heat exchanger shown in Figure 12.  

H

C

THin T1H TH

TCinT1CTC

 

Figure 12 A grid diagram of a single heat exchanger with boundary system 

 

Likewise, the boundary system of a single heat exchanger with bypass is 

shown in Figure 13. 
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Figure 13 A grid diagram of a single bypass heat exchanger with boundary system 

 

 From Figure 13, the dynamic equations of both cold and hot sides governed 

from energy balance are presented as follows. 

         
1

1 1 1(1 ) ( ) ( )H
H H pH H H H pH Hin H C H

dTV C f F C T T UA T T
dt

ρ ρ= − − + −                (93) 

         
1

1 1 1( ) ( )C
C C pC C C pC Cin C H C

dTV C F C T T UA T T
dt

ρ ρ= − + −                             (94) 

 This system has two state variables; outlet cold and hot temperature ( 1HT , 1CT ), 

and two manipulated variables; cold flowrates FC and bypass fraction on hot side fH  

by assuming constant hot flowrate FH. Due to the nonlinear term which is resulted 

from the presence of fH and 1HT together, these models need some techniques to 

develop them. After they are developed, the state equations of this system are in 

Equations (95) and (96). 

1 1
1 1

C C C C Cin C C
C H C

C C C

dT UA F T TUAT T F
dt

τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞− − −
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                          (95) 

11
1 1

H H H H H HinH H H H H H
C H H

H H H

F T F TdT UA F f FUAT T f
dt

τ ττ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− + −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
             (96) 

where  i i PiCτ ρ= and i i i PiV Cξ ρ=  

Note: The full derivation of these equations is shown in Appendix C. 
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 Nevertheless, when this system of a single heat exchanger with a bypass is 

considered, there is more complicated than without bypass to consider the output 

equation in order to get the state space form of this single heat exchanger model. 

 

 Let consider the output hot temperature after the split stream from the inlet 

and the exchanged stream from the exchanger are mixed. The mixed temperature 

equation on hot side, referred from Mathisen (1994) and Glemmestad et al. (1999) is 

in Equation (97). 

                                         1(1 )H H H H HinT f T f T= − +                                             (97) 

 There is the nonlinear term 1H Hf T  presented in Equation (97); therefore, this 

equation has to be linearized as the same as Equation (94). The complete output hot 

temperature after mixing is shown in Equation (98). 

                                        1 1(1 ) ( )H H H Hin H HT f T T T f= − + −                               (98) 

Note: The full derivation of these equations is shown in Appendix C. 

 

However, the output cold temperature is also the same as Equation (99). 

                                                             1C CT T=                                                       (99) 

The new developed output hot temperature equation and the output cold 

temperature can be written in the state space form as Equation (100), which is the 

same output equation of the state space form as Equation (101). 

             

1

1 1

0 01 0
00 1

C C C

H H HHin HH

T T F
T T fT Tf

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                         (100) 

                                                         y Cx Du= +                                                     (101) 

 Therefore, the developed equations of a single heat exchanger with a single 

bypass on hot side are compactly summarized in the state space form in Equations 

(102) and (103). 
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1
1 1

1
11

0

0

C C C Cin C C
C C C

C C C

H H H H H HinH H H H H
H HH

HH H

UA F UA T TT T F

F T F TUA F f FUA T fT

τ τ τ
ξ ξ ξ

τ ττ τ
ξξ ξ

⎡ ⎤ ⎡ ⎤− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−− + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
                                                                                                                                 (102) 

  1

1 1

0 01 0
00 1

C C C

H H HHin HH

T T F
T T fT Tf

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                   (103) 

where  i i PiCτ ρ= and i i i PiV Cξ ρ=  

Note: The full derivation of these equations is shown in Appendix C. 

 

 The system of a single heat exchanger with a single bypass used to apply with 

the passivity theorem is referred from Westhalen et al. (2003). That system is 

illustrated in Figure 14. 

 

Figure 14 A grid diagram of a single bypass heat exchanger with conditions 

 

Source:  Westhalen et al. (2003) 

 

 This system is simulated by Aspen Plus to determine the necessary variables 

in the state space equation shown above (Equations (102) and (103)). The simulation 

conditions are shown in Table 4. 

 

 

 



47 

Table 4 Numerical values for a simulation of a heat exchanger with a single bypass 

 

Parameter Unit Value 

Inlet cold temperature ºC 40 

Inlet hot temperature 

Output hot temperature before mixing 

Cold mass capacity flowrate  

Hot mass capacity flowrate  

Bypass fraction 

Pressure 

Density 

Volume of cold compartment 

Volume of hot compartment 

ºC 

ºC 

kW/ ºC 

kW/ ºC 

- 

atm 

kg/m3 

m3 

m3 

160 

58.1 

1.5 

1 

0.2 

1 

1000 

0.1577a 

0.5776a 

 

Source:  Westhalen et al. (2003) 

Remark:  a: assumption referred from linear model (Bao and Lee, 2007; Kern, 1950) 

 

 The results from the simulation are shown in Figure 15 and Table 5. 

 

Figure 15 A grid diagram of a single bypass heat exchanger after simulation 
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Table 5 Simulation results of a single heat exchanger with a single bypass 

 

Parameter Unit Value 

Output cold temperature 

Output hot temperature after mixing

Heat exchanger area 

Overall heat transfer coefficient 

ºC 

ºC 

m2 

kW/m2ºC 

94.5 

78.2 

2.91 

0.85 

Heat duty kW 81.8 

 

When all numerical values in Equations (102) and (103) are available, they are 

substituted into those equations. Then Equations (102) and (103) become as follows. 

           

1 1

11

345.593 021.66 13.49
3.68 4.87 0 151.686

C C C

H HH

T T F
T fT

⎡ ⎤ ⎡ ⎤−⎡ ⎤− ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

                    (104) 

          

1

1

1 0 0 0

0 0.8 0 101.9
C C C

H H H

T T F
T T f

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                          (105) 

These equations can be transformed into transfer function as Equation (106).  

                
           

2 2

2

2 2

345.6 1683 2046
26.53 55.84 26.53 55.84( )

1017 101.9 2582 3062
26.53 55.84 26.53 55.84

s
s s s sG s

s s
s s s s

⎡ ⎤− − −
⎢ ⎥+ + + +⎢ ⎥=
⎢ ⎥− − +
⎢ ⎥+ + + +⎣ ⎦

                        (106) 

After that, the passivity index (Bao et al., 2002b) is tested with this transfer 

function of the single bypass heat exchanger. The result is shown in Figure 16. 
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 Figure 16 Passivity index of the heat exchanger with a single bypass 

 

 From this figure, the passivity index of this system is more than zero along the 

frequency range 10-4-104 rad/hr; therefore, this system is non-passive (Bao et al. 

2000a). 

 

 Up to this point, we have clearly understood that there are some cases which 

heat exchangers can be non-passive. In the next section, a single heat exchanger with 

a single bypass is applied with the passivity theorem following the procedure of Bao 

and Lee (2007) which is summarized in Figure 17. 
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Figure 17 Passivity based decentralized controller synthesis procedure 

 

 1.3 Passivity based pairing of the heat exchanger with a single bypass 

 

       This section finds the best controlled-manipulated variable pairing of the 

heat exchanger model following the procedure of passivity based pairing proposed by 

Bao and Lee (2007). 

 

Process Transfer 
Function 

Passivity based 
Pairing

No 

Yes 

Weighting Function 
Calculation and Rendering 

Passive

DUS PI Controller Design 

Passivity based DUS 
Control System 

No 

Yes 

Verification of 
Results
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       1.3.1 Determine the transfer function G(s) for each possible pairing 

scheme 

 

                 Equations (104) and (105), which are the state space equation of the 

heat exchanger model with a single bypass, have a transfer function of two-by-two 

matrix, which has two pairing schemes. The first pairing scheme called 1-1/2-2 uses 

cold flowrate FC to control the output cold temperature CT  and bypass fraction fH on 

hot side to control the output hot temperature HT . The second pairing scheme called 1-

2/2-1 uses cold flowrate FC to control the output hot temperature HT , and bypass 

fraction fH on hot side to control the output cold temperature CT . 

 

      1.3.2 Screen out the non-DIC pairing schemes by using the necessary DIC 

condition given in Theorem 5. 

 

               For the steady state of 1-1/2-2 pairing, G(0) of this system is shown 

in Equation (107). 

                                              

30.14 36.64
(0)

18.21 54.84
G

⎡ ⎤− −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
                                        (107) 

The relative gain array at steady state ( ( (0))GΛ ) for 1-1/2-2 pairing is calculated and 

shown in Equation (108). 

                                        

0.7124 0.2876
( (0))

0.2876 0.7124
G

⎡ ⎤
Λ = ⎢ ⎥

⎢ ⎥⎣ ⎦
                                         (108) 

The relative gain array at steady state for 1-2/2-1 pairing is calculated and shown in 

Equation (109). 

                                        

0.2876 0.7124
( (0))

0.7127 0.2876
G

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦
                                         (109) 

Both relative gain arrays at steady state of two pairing schemes are much more than 

zero which satisfy the theorem 5, thus, both pairing schemes are DIC. 
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        1.3.3 Find the sign matrix U and obtain G+(s) such that 

( )0 0 ( 1,..., )iiG i m+ > =  

 

                  From subsection 1.3.2, the possible pairing schemes remain two 

pairing schemes which are 1-1/2-2 and 1-2/2-1 pairings. This section determines 

matrix U defined in the following equation. 

                                     { }, 1,...,iiU diag U i m= =                                       (110) 

where U is a diagonal matrix with either 1 or -1 along the diagonal. 

Therefore, U for this 1-1/2-2 pairing is in Equation (111) in order that 

( )0 0 ( 1,..., )iiG i m+ > = where ( ) ( )G s G s U+ =  

                                                   

1 0

0 1
U

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                       (111) 

And U for 1-2/2-1 pairing is presented in Equation (112).
                                             

 

                                                  

1 0

0 1
U

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
                                                       (112) 

 

      1.3.4 Calculate the diagonally scaled passivity index ( )( )ων + ,sGs  at a 

number of frequency points. 

 

                            In this step, the diagonally scaled passivity index of each pairing 

scheme is determined from Equation (87). The passivity index of 1-1/2-2 and 1-2/2-1 

pairings of this system are depicted in Figures 18 and 19, respectively. 



53 

 

Figure 18 Passivity index of 1-1/2-2 pairing of a single heat exchanger with a single  

                 bypass on hot side 

 

 

Figure 19 Passivity index of 1-2/2-1 pairing of a single heat exchanger with a single  

                 bypass on hot side 
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      1.3.5 Compare the passivity index profiles of different pairings. The best 

pairing should correspond to the one with the largest frequency bandwidth ωb such 

that ( )( ), 0s G sν ω+ ≤ for any [0, ]bω ω∈ . This pairing scheme would allow using 

controllers with integral action and the fastest dynamic response. 

 

                 In this step, only one pairing scheme is chosen after finding the 

passivity index of each pairing scheme. Compared the passivity index of both pairing 

schemes illustrating in Figure 20, 1-1/2-2 pairing is more passive than 1-2/2-1 pairing 

since the first pairing scheme has the passivity index which is less than zero along the 

frequency range. Hence, 1-1/2-2 pairing, in which cold flowrate FC controls the 

output cold temperature CT  and bypass fraction fH on hot side controls the output hot 

temperature HT , is the best pairing for this single heat exchanger with a single bypass 

on hot side. 

 

Figure 20 Passivity indices of 1-1/2-2 and 1-2/2-1 pairings of a single heat exchanger  

                 with a single bypass on hot side 

 

 Although the single bypass heat exchanger has already proved to be non-

passive system, the result from the passivity based pairing step shows that the best 
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pairing is 1-1/2-2 pairing which is passive along the frequency range. Therefore, from 

Figure 17, the DUS PI controllers can be designed directly without concerning the 

weighting function. 

 

1.4 Multi-loop PI controller design 

 

      This section shows the procedure to design multi-loop PI controller 

following the work of Bao et al. (2002a). 

 

      1.4.1. Determine the pairing scheme for controlled and manipulated 

variables according to the procedure to find the best pairing of the system. 

 

                   For this step, the best pairing has been chosen from section 1.3 

which is 1-1/2-2 pairing; cold flowrate FC controls the output cold temperature CT , 

and bypass fraction fH on hot side controls the output hot temperature HT . 

 

      1.4.2. For each subsystem ( )iiG s+ (i = 1,…,m), solve Problem 4 for the PI 

controller parameters ,c ik + and ,I iτ  

 

Problem 4 

                                                        ( )
c ,i I ,i

i
k ,
m in
+ τ

− γ                                                   (113) 

such that 

                                       
( )

i i

ii c ,i
I,i

w ( j )
1

11 G j k 1
j

+ +

ω γ
<

⎡ ⎤
+ ω +⎢ ⎥τ × ω⎢ ⎥⎣ ⎦

                          (114) 

and 
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( )
( )

c,i s2
I,i 2

c,i s

k
R,i 1,...,n

1 k

+

+

ν ω
τ ≥ ∀ω∈ =

⎡ ⎤− ν ω ω⎣ ⎦
                          (115) 

      This step has to find PI tuning parameters for each loop of a single 

heat exchanger with a single bypass on hot side by solving Problem 4. When this 

problem is solved, PI tuning parameters are presented in Table 6. 

 

Table 6 PI tuning parameters for a single heat exchanger model with a single bypass  

              on hot side 

 

PI Tuning Parameter Loop 1a Loop 2b 

ck +  

Iτ  

1940.6 

15.48 

35.0 

15 

 

Remark:  a: 1-1 pairing/ b: 2-2 pairing 

 

      1.5.3. Adjust the sign of the final subcontroller gain , ,c i c i iik k U+= to obtain 

the final multi-loop controller as Equation (116). 

                     ,
,

1( ) { ( )} (1 )i c i
I i

K s diag k s diag k
sτ

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

                              (116) 

               When PI tuning parameters for each loop have already been 

determined, the final multi-loop controller as the same form in Equation (116) is 

shown in the following equation. 

                  

11940.6(1 ) 0
15.48( )

10 35(1 )
15

sK s

s

⎡ ⎤− +⎢ ⎥
= ⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

                                   (117) 

 

 1.6 Verification of results 
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        After getting the PI tuning parameters, the heat exchanger system as 

displayed in Figure 15 is tested with these tuning parameters via Aspen Dynamics. 

The following figure shows the control loops for a single heat exchanger with a single 

bypass on hot side.  

 
Figure 21 Control loops of a single heat exchanger with a single bypass on hot side 

 

 This heat exchanger system with control loops is tested with two main 

controller classes; controllers with default PI tuning parameters from Aspen 

Dynamics and controllers with passivity based PI tuning parameters from passivity 

concept. This system with both controller types is tested by changing its setpoint 

between -10% and +10% setpoint temperatures of either hot or cold stream, and also 

tested by disturbing -10% and +10% inlet hot flowrates. Figures 22 to 25 show 

responses of controllers TCC and TCH when the heat exchanger system with control 

loops is changed its setpoint. 
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(a) 

 
(b) 

 

Figure 22 Responses of controllers TCC (a) and TCH (b) of +10% cold setpoint 

                 temperature at hour 5 

 

Figure 22 shows responses of controllers TCC and TCH with default PI tuning 

parameters when the cold setpoint changed from 94.5 to 103.95 ºC (+10% cold 

setpoint temperature). When cold setpoint is changed, controller TCC manipulates 

cold flowrate by decreasing its flowrate in order to reach the new setpoint which takes 

the time approximately 2.5 hours. Decreasing cold flowrate also affects the higher hot 

temperature, thus, controller TCH manipulates bypass fraction decreased to obtain the 

target hot temperature. 
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(a) 

 
(b) 

 

Figure 23 Responses of controllers TCC (a) and TCH (b) of -10% cold setpoint 

                 temperature at hour 5 

 

Figure 23 shows responses of controllers TCC and TCH with default PI tuning 

parameters when the cold setpoint changed from 94.5 to 85.05 ºC (-10% cold setpoint 

temperature). When cold setpoint is changed, controller TCC manipulates cold 

flowrate by increasing its flowrate in order to reach the new setpoint which takes the 

time approximately 2.5 hours. Increasing cold flowrate also affects the lower hot 

temperature, thus, controller TCH manipulates bypass fraction increased to obtain the 

target hot temperature. 
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(a) 

 
(b) 

 

Figure 24 Responses of controllers TCC (a) and TCH (b) of +10% hot setpoint 

                 temperature at hour 5 

 

Figure 24 shows responses of controllers TCC and TCH with default PI tuning 

parameters when the hot setpoint changed from 78.2 to 86.02 ºC (+10% hot setpoint 

temperature). When hot setpoint is changed, controller TCH manipulates bypass 

fraction of hot stream by increasing its bypass fraction in order to reach the new 

setpoint which takes the time approximately 5 hours. Changing the hot setpoint 

temperature affects the controller TCC since when bypass fraction is increased, hot 

stream entering the heat exchanger exchanges less heat with cold stream. Therefore, 
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controller TCC reduces cold flowrate in order that cold stream temperature maintains 

its original setpoint. 

 

 
(a) 

 
(b) 

 

Figure 25 Response of controllers TCC (a) and TCH (b) of -10% hot setpoint 

                 temperature at hour 5 

 

Figure 25 shows responses of controllers TCC and TCH with default PI tuning 

parameters when the hot setpoint changed from 78.2 to 70.38 ºC (-10% hot setpoint 

temperature). When hot setpoint is changed, controller TCH manipulates bypass 

fraction of hot stream by decreasing its bypass fraction in order to reach the new 

setpoint which takes the time approximately 5 hours. Changing the hot setpoint 
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temperature also affects the controller TCC since when bypass fraction is decreased, 

hot stream entering the heat exchanger exchanges more heat with cold stream. 

Therefore, controller TCC increases cold flowrate in order that cold stream 

temperature maintains its original setpoint. 

 

 Figures 26 and 27 show responses of controllers TCC and TCH when a single 

bypass heat exchanger system is disturbed by +10% and -10% of inlet hot flowrates, 

respectively. 

 

 
(a) 

 
(b) 

 

Figure 26 Responses of controllers TCC (a) and TCH (b) of +10% inlet hot flowrate 

                 disturbance at hour 5 
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Figure 26 shows responses of controllers TCC and TCH with default PI tuning 

parameters when the inlet hot flowrate of a single bypass heat exchanger is changed 

from 860 to 946 kg/hr (+10% inlet hot flowrate). When hot flowrate is increased, the 

final hot temperature increases. Therefore, in order to get the target hot temperature, 

controller TCH manipulates bypass fraction of hot stream by decreasing its bypass 

fraction which takes the time approximately 5 hours. Adjusting bypass fraction of hot 

stream affects the controller TCC since when bypass fraction is decreased, hot stream 

entering the heat exchanger exchanges more heat with cold stream. Therefore, 

controller TCC increases cold flowrate in order that cold stream temperature 

maintains its original setpoint. 

 
(a) 

 
(b) 

 

Figure 27 Responses of controllers TCC (a) and TCH (b) of -10% inlet hot flowrate 

                 disturbance at hour 5 
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Figure 27 shows responses of controllers TCC and TCH with default PI tuning 

parameters when the inlet hot flowrate of a single bypass heat exchanger is changed 

from 860 to 774 kg/hr (-10% inlet hot flowrate). When hot flowrate is decreased, the 

final hot temperature decreases. Therefore, in order to get the target hot temperature, 

controller TCH manipulates bypass fraction of hot stream by increasing its bypass 

fraction which takes approximately 5 hours. Adjusting bypass fraction of hot stream 

affects the controller TCC since when bypass fraction is increased, hot stream 

entering the heat exchanger exchanges less heat with cold stream. Therefore, 

controller TCC decreases cold flowrate in order that cold stream temperature 

maintains its original setpoint. 

 

Figures 28 to 33 show responses of controllers TCC and TCH with passivity 

based PI tuning parameters when the heat exchanger system with control loops is 

changed its setpoint and disturbed by inlet hot flowrate disturbances, respectively. 

 

 
(a) 

 

Figure 28 Responses from passivity based PI tuning of controllers TCC (a) and TCH 

                 (b) of +10% cold setpoint temperature at hour 5 
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(b) 

Figure 28 (Continued) 

 

Figure 28 shows responses of controllers TCC and TCH with passivity based 

PI tuning parameters when the cold setpoint changed from 94.5 to 103.95 ºC (+10% 

cold setpoint temperature). When cold setpoint is changed, controller TCC 

immediately adjusts cold flowrate by decreasing its flowrate in order to reach the new 

setpoint in a few minutes. Decreasing cold flowrate also affects the higher hot 

temperature; therefore controller TCH manipulates bypass fraction decreased to 

obtain the target hot temperature. Compared Figures 22 and 28, the time to reach the 

new setpoint of the system with passivity based PI controllers is much less than that 

with default PI controllers. 
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(a) 

 
(b) 

 

Figure 29 Responses from passivity based PI tuning of controllers TCC (a) and TCH 

                 (b) of -10% cold setpoint temperature at hour 5 

 

Figure 29 shows responses of controllers TCC and TCH with passivity based 

PI tuning parameters when the cold setpoint changed from 94.5 to 85.05 ºC (-10% 

cold setpoint temperature). When cold setpoint is changed, controller TCC 

immediately adjusts cold flowrate by increasing its flowrate in order to reach the new 

setpoint in a few minutes. Increasing cold flowrate affects the lower hot temperature; 

therefore, controller TCH manipulates bypass fraction increased to maintain the target 

hot temperature. Compared Figures 23 and 29, the time to reach the new setpoint of 
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the system with passivity based PI controllers is much less than that with default PI 

controllers.  

 

 
(a) 

 
(b) 

 

Figure 30 Responses from passivity based PI tuning of controllers TCC (a) and TCH 

     (b) of +10% hot setpoint temperature at hour 5 

 

Figure 30 shows responses of controllers TCC and TCH with passivity based 

PI tuning parameters when the hot setpoint changed from 78.2 to 86.02 ºC (+10% hot 

setpoint temperature). When hot setpoint is changed, controller TCH immediately 

adjusts bypass fraction of hot stream by increasing its fraction in order to reach the 

new setpoint in a few minutes. Increasing bypass fraction also affects the lower cold 
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temperature, thus, controller TCC manipulates cold flowrate decreased to obtain the 

target cold temperature. Compared Figures 24 and 30, the time to reach the new 

setpoint of the system with passivity based PI controllers is much less than that with 

default PI controllers. 

 

 
(a) 

 
(b) 

 

Figure 31 Responses from passivity based PI tuning of controllers TCC (a) and TCH 

                 (b) of -10% hot setpoint temperature at hour 5 

 

Figure 31 shows responses of controllers TCC and TCH with passivity based 

PI tuning parameters when the hot setpoint changed from 78.2 to 70.38 ºC (-10% hot 

setpoint temperature). When hot setpoint is changed, controller TCH immediately 
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adjusts bypass fraction of hot stream by decreasing its fraction in order to reach the 

new setpoint in a few hours. Decreasing bypass fraction also affects the higher cold 

temperature, thus, controller TCC manipulates cold flowrate increased to obtain the 

target cold temperature. Compared Figures 25 and 31, the time to reach the new 

setpoint of the system with passivity based PI controllers is much less than that with 

default PI controllers. 

 
(a) 

 
(b) 

 

Figure 32 Responses from passivity based PI tuning of controllers TCC (a) and TCH 

                 (b) from +10% inlet hot flowrate disturbance at hour 5 
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Figure 32 shows responses of controllers TCC and TCH with passivity based 

PI tuning parameters when the inlet hot flowrate of the single bypass heat exchanger 

is increased from 860 to 946 kg/hr (+10% inlet hot flowrate). When hot flowrate is 

increased, the final hot temperature is increased. Then controller TCH manipulates 

bypass fraction of hot stream by decreasing its bypass fraction which takes a few 

hours. Adjusting bypass fraction of hot stream affects the controller TCC since when 

bypass fraction is decreased, hot stream entering the heat exchanger exchanges more 

heat with cold stream. Therefore, controller TCC manipulates cold flowrate increased 

in order that cold stream temperature maintains its original setpoint. Compared 

Figures 26 and 32, the time to reach the new setpoint of the system with passivity 

based PI controllers is much less than that with default PI controllers. 

 
(a) 

 
(b) 

Figure 33 Responses from passivity based PI tuning of controllers TCC (a) and TCH 

                 (b) from -10% inlet hot flowrate disturbance at hour 5 
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Figure 33 shows responses of controllers TCC and TCH with passivity based 

PI tuning parameters when the inlet hot flowrate of the single bypass heat exchanger 

is decreased from 860 to 774 kg/hr (-10% inlet hot flowrate). When hot flowrate is 

increased, the final hot temperature is decreased. Then controller TCH manipulates 

bypass fraction of hot stream by increasing its bypass fraction which takes a few 

hours. Adjusting bypass fraction of hot stream affects the controller TCC since when 

bypass fraction is increased, hot stream entering the heat exchanger exchanges less 

heat with cold stream. Therefore, controller TCC manipulates cold flowrate decreased 

in order that cold stream temperature maintains its original setpoint. Compared 

Figures 27 and 33, the time to reach the new setpoint of the system with passivity 

based PI controllers is much less than that with default PI controllers. 

 

2. Heat Exchanger Networks Applied with the Passivity Theorem 

 

 This section extends a single heat exchanger to a HEN which is widely used in 

most industries. Similarly, the HEN is also applied with the passivity theorem as the 

same as the heat exchanger. 

 

2.1 Heat exchanger network model 

 

       As shown in Equations (102) and (103), the state space equation of a 

single heat exchanger with a single bypass is developed for a heat exchanger with a 

bypass on hot side. Equivalently, if a heat exchanger has a bypass on cold side 

exhibited in Figure 34, the state space equation for this system is presented in 

Equations (118) to (121). 

 
Figure 34 A grid diagram of a single heat exchanger with bypass on cold side 
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1 1
1 1

C C C C C C C C C C C Cin
C H C

C C C

dT UA F f F F T F TUAT T f
dt

τ τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞− + − −
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                 (118) 

11
1 1

H Hin H HH H H
C H H

H H H

T TdT UA FUAT T F
dt

τ ττ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                     (119) 

1 1(1 ) ( )C C C Cin C CT f T T T f= − + −                                                                          (120) 

1H HT T=                                                                                                                 (121) 

where  i i PiCτ ρ= and i i i PiV Cξ ρ=  

Note: The full derivation of these equations is shown in Appendix C. 

 

Therefore, the developed equations of a single heat exchanger with a single 

bypass on cold side are compactly summarized in the state space form in Equations 

(122) and (123). 

1
1 1

1
11

0

0

C C C C C C C C C C Cin
C C C

C C C

H Hin H HH H
H HH

HH H

UA F f F UA F T F TT T f

T TUA FUA T FT

τ τ τ τ
ξ ξ ξ

τ ττ
ξξ ξ

⎡ ⎤ ⎡ ⎤− + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

        

                                                                                                                                 (122) 

1 1

1

1 0 0

0 1 0 0
C C C Cin C C

H H H

T f T T T f
T T F

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                             (123) 

where  i i PiCτ ρ= and i i i PiV Cξ ρ=  

 

The HEN example used in this work is referred from Glemmestad et al. (1996) 

and presented in the following figure which the data for this network is available. 
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Figure 35 A grid diagram of heat exchanger networks from Glemmestad et al. (1996) 

 

 This network contains two heat exchangers and two utilities which already 

designed by pinch method, based on a minimum heat recovery approach temperature 

of 20 ºC. If this network is considered carefully, it can be divided into two cases. The 

first case is two heat exchangers with bypasses which have already tested to be non-

passive, and the second case is two utilities assumed to be a heat exchanger type 

which have already reported by Bao and Lee (2007) to be passive. After this point, 

these two cases is followed the passivity based decentralized controller synthesis 

procedure as displayed in Figure 17.  

 

 2.2 Two heat exchangers of a heat exchanger network 

 

        2.2.1 Heat exchanger models 

 

               The state space for these two heat exchangers, which one has a single 

bypass on hot side and another has a single bypass on cold side, are shown in 

Equations (124) and (125). 

                         
                   

11 11

22 22

0 0

0 0

A B
x x u

A B

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                        (124) 

                                            11 11

22 22

0 0

0 0

C D
y x u

C D

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                       (125) 
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where 1 1 2 2

T

C H C Hx T T T T⎡ ⎤= ⎣ ⎦ , 1 1 2 2

T

C H C Hu F f f F⎡ ⎤= ⎣ ⎦  1 1 1 1 2 2 2 2

T

C H C Hy T T T T⎡ ⎤= ⎣ ⎦  and 

partitioned matrices 

A11 represents 

1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

1 1

C C

C C

H H H H H

H H

U A F U A

U A U A F f F

τ
ξ ξ

τ τ
ξ ξ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− + −⎢ ⎥
⎢ ⎥⎣ ⎦

                                    (126) 

A22 represents 

2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

C C C C C

C C

H H

H H

U A F f F U A

U A U A F

τ τ
ξ ξ

τ
ξ ξ

⎡ ⎤− + −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

                                      (127) 

B11 represents 

1 1 1 1 1

1

1 1 1 1 1 1 1

1

0

0

C Cin C C

C

H H H H H Hin

H

T T

F T F T

τ τ
ξ

τ τ
ξ

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                              (128) 

B22 represents 

2 2 1 2 2 2 2

2

2 2 2 1 2

2

0

0

C C C C C Cin

C

H Hin H H

H

F T F T

T T

τ τ
ξ

τ τ
ξ

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                          (129) 

C11 represents 
1 0

0 1 Hf

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦  
                                                                                      (130) 

C22 represents 
1 0

0 1
Cf⎡ ⎤−

⎢ ⎥
⎢ ⎥⎣ ⎦  

                                                                                       (131) 

D11 represents 
1

0 0

0 Hin HT T

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦
                                                                             (132) 

D22 represents 1 0

0 0
Cin CT T⎡ ⎤−

⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                              (133) 

This system is simulated by Aspen Plus to determine the necessary variables 

in the state space equation shown above (Equations (124) and (125)). The simulation 

conditions are shown in Table 7. 
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Table 7 Numerical values for a simulation of heat exchanger networks  

 

Parameter Unit Value 

Inlet temperature for hot stream  ºC 190 

Inlet temperature for cold stream 1 

Inlet temperature for cold stream 2 

Target temperature for hot stream  

Target temperature for cold stream 1 

Target temperature for cold stream 2 

Hot mass capacity flowrate  

Cold mass capacity flowrate for stream 1 

Cold mass capacity flowrate for stream 2 

Heat duty for a heat exchanger 1 

Heat duty for a heat exchanger 2 

Heat duty for a cold utility 

Heat duty for a hot utility 

ºC 

ºC 

ºC 

ºC 

ºC 

kW/ ºC 

kW/ ºC 

kW/ ºC 

kW 

kW 

kW 

kW 

80 

20 

30 

160 

120 

1 

1.5 

0.5 

40 

55 

65 

80 

 

Source:  Glemmestad et al. (1996) 

 

 After simulation, the results are presented in Figure 36 and Table 8. 

 
Figure 36 A grid diagram of a heat exchanger network from Glemmestad et al. 

                 (1996) after simulation 
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Table 8 Simulation results of a heat exchanger network from Glemmestad et al.  

   (1996) 

 

Parameter Unit Value 

Output hot temperature of HE 1 

Output hot temperature of HE 2 

Output cold temperature of HE 1 

Heat exchanger area of HE 1 

Heat exchanger area of HE 2 

Overall heat transfer coefficient of HE 1 

Overall heat transfer coefficient of HE 2 

ºC 

ºC 

ºC 

m2 

m2 

kW/m2.ºC 

kW/m2.ºC 

155.9 

106.9 

104.4 

0.617 

1.14 

0.85 

0.85 

 

When all numerical values in Equations (124) and (125) are available, they are 

substituted into those equations. Then Equations (124) and (125) become as follows. 

1 1 1

1 1 1

2 22

2 22

5.31 2.87 0 0 154.72 0 0 0

0.78 2.27 0 0 0 50.77 0 0

0 0 8.02 5.30 0 0 275.67 0

0 0 1.45 2.94 0 0 0 84.83

C C C

H H H

C CC

H HH

T T F
T T f

T fT
T FT

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

    (134) 

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

1 0 0 0 0 0 0 0

0 0.999 0 0 0 34.1 0 0

0 0 0.999 0 0 0 101.1 0

0 0 0 1 0 0 0 0

C C C

H H H

C C C

H H H

T T F
T T f
T T f
T T F

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

           (135) 

 

These equations can be transformed into transfer function as Equation (136).  
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2 2

2

2 2

2

2 2

2

154.7 351.2 145.7 0 0
7.58 9.815 7.58 9.815

120.6 34.1 207.8 65.38 0 0
7.58 9.815 7.58 9.815( )

101.1 832.7 797.2 449.10 0
10.96 15.89 10.96 15.89

399.7 84.83 680.0 0
10.96 15.89

s
s s s s

s s
s s s sG s

s s
s s s s

s
s s

− − −
+ + + +

− + +
+ + + +=

− − −
+ + + +

+
+ + 2

3
10.96 15.89s s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

                                                                                                                                 (136) 

 

       2.2.2 Passivity based pairing of two heat exchangers 

 

               This section finds the best controlled-manipulated variable pairing of 

heat exchangers following the procedure of passivity based pairing proposed by Bao 

and Lee (2007). 

 

                2.2.2.1 Determine the transfer function G(s) for each possible pairing 

scheme 

 

                            Equations (134) and (135), which are the state space equation 

of two heat exchangers in the HEN example, have a transfer function of four-by-four 

matrix which has four possible pairing schemes as classified in Table 9. From Table 

9, each possible pairing scheme for this network can be easily understood by the 

following explanation. For example, the pairing scheme 1 of 1-1/2-2/3-3/4-4 means 

this network uses that cold flowrate FC1 controls the output cold temperature 1 1CT  on a 

heat exchanger 1; bypass fraction on hot side fH1 controls the output hot temperature 
1 1HT  on a heat exchanger 1; bypass fraction on cold side fC2 controls the output cold 

temperature 2 2CT .on a heat exchanger 2; hot flowrate FH2 controls the output hot 

temperature 2 2HT  on a heat exchanger 2, respectively. 
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Table 9 Possible pairing schemes of two heat exchangers in the heat exchanger 

              network example 

 

Pairing scheme Pairing 
Manipulated 

Variable (MV) 

Controlled 

Variable (CV) 

(1) 1-1/2-2/3-3/4-4 

1-1 

2-2 

3-3 

4-4 

FC1 

fH1 

fC2 

FH2 

T1C1
 

T1H1
 

T2C2
 

T2H2
 

(2) 1-2/2-1/3-3/4-4 

1-2 

2-1 

3-3 

4-4 

FC1 

fH1 

fC2 

FH2 

T1H1
 

T1C1
 

T2C2
 

T2H2
 

(3) 1-1/2-2/3-4/4-3 

1-1 

2-2 

3-4 

4-3 

FC1 

fH1 

fC2 

FH2 

T1C1
 

T1H1
 

T2H2
 

T2C2
 

(4) 1-2/2-1/3-4/4-3 

1-2 

2-1 

3-4 

4-3 

FC1 

fH1 

fC2 

FH2 

T1H1
 

T1C1
 

T2H2
 

T2C2
 

 

                2.2.2.2 Screen out the non-DIC pairing schemes by using the 

necessary DIC condition given in Theorem 5. 

 

                             For the steady state of pairing scheme 1 (1-1/2-2/3-3/4-4), 

G(0) of this system is shown in Equation (137). 

                                     

35.78 14.84 0 0

12.29 6.66 0 0
(0)

0 0 50.17 28.26

0 0 25.15 42.81

G

⎡ ⎤− −
⎢ ⎥
−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                           (137) 
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The relative gain array at steady state ( ( (0))GΛ ) for pairing scheme 1 (1-1/2-

2/3-3/4-4) is calculated and shown in Equation (138). 

                              

0.5665 0.4335 0 0

0.4335 0.5665 0 0
( (0))

0 0 0.7514 0.2486

0 0 0.2486 0.7514

G

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                        (138) 

The relative gain array at steady state ( ( (0))GΛ ) for pairing scheme 2 (1-2/2-

1/3-3/4-4) is calculated and shown in Equation (139). 

                              

0.4335 0.5665 0 0

0.5665 0.4335 0 0
( (0))

0 0 0.7514 0.2486

0 0 0.2486 0.7514

G

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                        (139) 

The relative gain array at steady state ( ( (0))GΛ ) for pairing scheme 3 (1-1/2-

2/3-4/4-3) is calculated and shown in Equation (140). 

                              

0.5665 0.4335 0 0

0.4335 0.5665 0 0
( (0))

0 0 0.2486 0.7514

0 0 0.7514 0.2486

G

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                        (140) 

The relative gain array at steady state ( ( (0))GΛ ) for pairing scheme 4 (1-2/2-

1/3-4/4-3) is calculated and shown in Equation (141). 

                              

0.4335 0.5665 0 0

0.5665 0.4335 0 0
( (0))

0 0 0.2486 0.7514

0 0 0.7514 0.2486

G

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                        (141) 

Relative gain arrays at steady state along the diagonal of all pairing schemes 

are much more than zero, thus, these pairing schemes are DIC. 
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                2.2.2.3 Find the sign matrix U and obtain G+(s) such that 

( )0 0 ( 1,..., )iiG i m+ > =  

 

                             From subsection 2.2.2.2, the possible pairing schemes still 

remain four pairing types. This section determines matrix U defined in the following 

equation. 

                                     { }, 1,...,iiU diag U i m= =                                       (142) 

where U is a diagonal matrix with either 1 or -1 along the diagonal. 

 

Therefore, U for pairing scheme 1 of 1-1/2-2/3-3/4-4 is in Equation (143) in order that 

( )0 0 ( 1,..., )iiG i m+ > = where ( ) ( )G s G s U+ = . 

                                              

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U

⎡ ⎤−
⎢ ⎥
⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                              (143) 

U for pairing scheme 2 of 1-2/2-1/3-3/4-4 is presented in Equation (144).
 
 

                                               

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U

⎡ ⎤−
⎢ ⎥

−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                            (144) 

U for pairing scheme 3 of 1-1/2-2/3-4/4-3 is presented in Equation (145).
 
 

                                               

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U

⎡ ⎤−
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                             (145) 

U for pairing scheme 4 of 1-2/2-1/3-4/4-3 is presented in Equation (146).
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U

⎡ ⎤−
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                             (146) 

               2.2.2.4 Calculate the diagonally scaled passivity index ( )( )ων + ,sGs  

at a number of frequency points. 

 

                                       In this step, the diagonally scaled passivity index of each 

pairing scheme is determined from Equation (87). The passivity index of these four 

pairing schemes of this system is depicted in Figures 37 to 40, respectively. 

 

 

Figure 37 Passivity index of pairing scheme 1 (1-1/2-2/3-3/4-4) of heat exchangers 



82 

 

Figure 38 Passivity index of pairing scheme 2 (1-2/2-1/3-3/4-4) of heat exchangers 

 

 

Figure 39 Passivity index of pairing scheme 3 (1-1/2-2/3-4/4-3) of heat exchangers 
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Figure 40 Passivity index of pairing scheme 4 (1-2/2-1/3-4/4-3) of heat exchangers 

 

               2.2.2.5 Compare the passivity index profiles of different pairings. 

The best pairing should correspond to the one with the largest frequency bandwidth 

ωb such that ( )( ), 0s G sν ω+ ≤ for any [0, ]bω ω∈ . This pairing scheme would allow 

using controllers with integral action and the fastest dynamic response. 

 

                            In this step, only one pairing scheme is chosen after finding 

the passivity index of each pairing scheme. Compared the passivity index of four 

pairings illustrating in Figure 41, the pairing scheme 1 is the more passive than other 

pairing schemes since this one has the frequency bandwidth which passivity index is 

less than zero than the others. Hence, the pairing scheme 1 of 1-1/2-2/3-3/4-4, in 

which cold flowrate FC1 controls the output cold temperature 1 1CT  on a heat exchanger 

1; bypass fraction on hot side fH1 controls the output hot temperature 1 1HT  on a heat 

exchanger 1; bypass fraction on cold side fC2 controls the output cold temperature 

2 2CT .on a heat exchanger 2; hot flowrate FH2 controls the output hot temperature 2 2HT  

on a heat exchanger 2, respectively, is the best pairing scheme for these two heat 

exchangers in the HEN. 
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Figure 41 Passivity indices of four pairing schemes of two heat exchangers 

 

Although the two heat exchangers in HEN have already shown the non-

passivity behavior, the result from the passivity based pairing step shows that the best 

pairing is 1-1/2-2/3-3/4-4 pairing which is passive along the frequency range. 

Therefore, from Figure 17, the DUS PI controllers can be designed directly without 

concerning the weighting function. 

 

      2.2.3 Multi-loop PI controller design 

 

               This section shows the procedure to design multi-loop PI controller 

following the work of Bao et al. (2002a). 

 

               2.2.3.1. Determine the pairing scheme for controlled and 

manipulated variables according to the procedure to find the best pairing of the 

system. 
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                                For this step, the best pairing scheme is chosen from 

section 2.2.2. That pairing scheme is 1-1/2-2/3-3/4-4, in which cold flowrate FC1 

controls the output cold temperature 1 1CT  on a heat exchanger 1; bypass fraction on hot 

side fH1 controls the output hot temperature 1 1HT  on a heat exchanger 1; bypass fraction 

on cold side fC2 controls the output cold temperature 2 2CT .on a heat exchanger 2; hot 

flowrate FH2 controls the output hot temperature 2 2HT  on a heat exchanger 2, 

respectively. 

 

               2.2.3.2. For each subsystem ( )iiG s+ (i = 1,…,m), solve Problem 4 for 

the PI controller parameters ,c ik + and ,I iτ  

 

      This step has to find PI tuning parameters for each loop of two heat 

exchangers in a HEN by solving Problem 4. When this problem is solved, PI tuning 

parameters are presented in Table 10. 

 

Table 10 PI tuning parameters for two heat exchangers of a HEN 

 

PI Tuning Parameter Loop 1a Loop 2b Loop 3c Loop 4d 

ck +  

Iτ  

606.38 

10.83 

38.45 

15 

35.43 

15 

270.62 

14.3 

 

Remark:  a: 1-1 pairing/ b: 2-2 pairing/ c: 3-3 pairing/ d: 4-4 pairing 

 

               2.2.3.3. Adjust the sign of the final subcontroller gain , ,c i c i iik k U+= to 

obtain the final multi-loop controller as Equation (147). 

                         ,
,

1( ) { ( )} (1 )i c i
I i

K s diag k s diag k
sτ

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

                          (147) 
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               When PI tuning parameters for each loop have already been 

determined, the final multi-loop controller as the same form in Equation (147) is 

shown in the following equation. 

 

   
       

1606.38(1 ) 0 0 0
10.83

10 38.45(1 ) 0 0
15( )

10 0 35.43(1 ) 0
15

10 0 0 270.62(1 )
14.3

s

sK s

s

s

⎡ ⎤− +⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥

= ⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎣ ⎦

    (148) 

 

2.3 Two utilities of a heat exchanger network 

 

        2.3.1 Utility models 

 

               The state space for these two utilities which are assumed to be a heat 

exchanger units are shown in Equations (149) and (150). 

 

                         
                   

33 33

44 44

0 0

0 0

A B
x x u

A B

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                        (149) 

                                            33 33

44 44

0 0

0 0

C D
y x u

C D

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                       (150) 

where 3 3 4 4

T

C H C Hx T T T T⎡ ⎤= ⎣ ⎦ , 3 3 4 4

T

C H C Hu F F F F⎡ ⎤= ⎣ ⎦  3 3 3 3 4 4 4 4

T

C H C Hy T T T T⎡ ⎤= ⎣ ⎦  and 

partitioned matrices 

 

A33 represents 

3 3 3 3 3 3

3 3

3 3 3 3 3 3

3 3

C C

C C

H H

H H

U A F U A

U A U A F

τ
ξ ξ

τ
ξ ξ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

                                                     (151) 
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A44 represents 

4 4 4 4 4 4

4 4

4 4 4 4 4 4

4 4

C C

C C

H H

H H

U A F U A

U A U A F

τ
ξ ξ

τ
ξ ξ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

                                                    (152) 

B33 represents 

3 3 3 1 3

3

3 3 3 1 3

3

0

0

C Cin C C

C

H Hin H H

H

T T

T T

τ τ
ξ

τ τ
ξ

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                                             (153) 

B44 represents 

4 4 4 1 4

4

4 4 4 1 4

4

0

0

C Cin C C

C

H Hin H H

H

T T

T T

τ τ
ξ

τ τ
ξ

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                                             (154) 

C33 represents 
1 0

0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦   

                                                                                             (155) 

C44 represents 
1 0

0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦   

                                                                                             (156) 

D33 represents 
0 0

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                            (157) 

D44 represents 
0 0

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                            (158) 

 

When all numerical values in Table 8 are substituted in Equations (149) and 

(150), these equations become as follows. 

3 3 3

3 3 3

4 44

4 44

50.14 8.93 0 0 64.68 0 0 0

2.44 3.93 0 0 0 133.14 0 0

0 0 11.46 3.29 0 0 352.57 0

0 0 0.90 11.29 0 0 0 33.93

C C C

H H H

C CC

H HH

T T F
T T F

T FT
T FT

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

 

                                                                                                                                 (159) 
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3 3 3 3

3 3 3 3

4 4 4 4

4 4 4 4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

C C C

H H H

C C C

H H H

T T F
T T F
T T F
T T F

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                          (160) 

These equations can be transformed into transfer function as Equation (161).  

2 2

2 2

2 2

2 2

64.68 254.2 1189 0 0
54.07 175.3 54.07 175.3

57.8 133.1 6676 0 0
54.07 175.3 54.07 175.3( )

352.6 3981 111.60 0
22.75 126.4 22.75 126.4

317.3 33.93 388.80 0
22.75 126.4 22.75 126.

s
s s s s

s
s s s sG s

s
s s s s

s
s s s s

− −
+ + + +

− +
+ + + +=

− −
+ + + +

− +
+ + + + 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (161) 

 

       2.3.2 Passivity based pairing of two utilities 

 

               This section finds the best controlled-manipulated variable pairing of 

utility units following the procedure of passivity based pairing proposed by Bao and 

Lee (2007). 

 

                2.3.2.1 Determine the transfer function G(s) for each possible pairing 

scheme 

 

                            Equations (159) and (160), which are the state space equation 

of two utility units in the HEN example, have a transfer function of four-by-four 

matrix which has four pairing schemes as categorized in Table 11.  

 

From Table 11, each possible pairing scheme for this network can be easily 

comprehended by the following description. For example, the pairing scheme 1 of 1-

1/2-2/3-3/4-4 means this network uses that cold flowrate FC3 controls the output cold 

temperature 3 3CT  on a cold utility unit; hot flowrate FH3 controls the output hot 
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temperature 3 3HT  on a cold utility unit; cold flowrate FC4 controls the output cold 

temperature 4 4CT  on a hot utility unit; hot flowrate FH4 controls the output hot 

temperature 4 4HT  on a hot utility unit, respectively. Although there are four pairing 

schemes for these two utility models, there is only one possible pairing scheme in this 

system since the main goal of using utility in a heat exchanger system is to take the 

stream which does not reach the target temperature to that target. For example, if a hot 

stream temperature does not reach the target temperature after exchanging heat from a 

heat exchanger unit, a cold utility will be available to take that stream temperature to 

its target by manipulating cold utility flowrate. Therefore, the pairing scheme 4 of 1-

2/2-1/3-4/4-3 is the only one possible pairing scheme for this utilities system. 

 

Table 11 Pairing schemes of two utility units in the heat exchanger network example 

 

Pairing scheme Pairing 
Manipulated 

Variable (MV) 

Controlled 

Variable (CV) 

(1) 1-1/2-2/3-3/4-4 

1-1 

2-2 

3-3 

4-4 

FC3 

FH3 

FC4 

FH4 

T3C3
 

T3H3
 

T4C4
 

T4H4
 

(2) 1-2/2-1/3-3/4-4 

1-2 

2-1 

3-3 

4-4 

FC3 

FH3 

FC4 

FH4 

T3H3
 

T3C3
 

T4C4
 

T4H4
 

(3) 1-1/2-2/3-4/4-3 

1-1 

2-2 

3-4 

4-3 

FC3 

FH3 

FC4 

FH4 

T3C3
 

T3H3
 

T4H4
 

T4C4
 

(4) 1-2/2-1/3-4/4-3 

1-2 

2-1 

3-4 

4-3 

FC3 

FH3 

FC4 

FH4 

T3H3
 

T3C3
 

T4H4
 

T4C4
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                2.3.2.2 Screen out the non-DIC pairing schemes by using the 

necessary DIC condition given in Theorem 5. 

 

                             For the steady state of pairing scheme 4 (1-2/2-1/3-4/4-3), 

G(0) of this system is shown in Equation (162). 

                                     

1.45 6.78 0 0

0.33 38.08 0 0
(0)

0 0 31.495 0.88

0 0 2.51 3.08

G

⎡ ⎤−
⎢ ⎥
−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

                              (162) 

The relative gain array at steady state ( ( (0))GΛ ) for pairing scheme 4 (1-2/2-

1/3-4/4-3) is calculated and shown in Equation (163). 

                              

1.0422 0.0422 0 0

0.0422 1.0422 0 0
( (0))

0 0 1.0233 0.0233

0 0 0.0233 1.0233

G

⎡ ⎤−
⎢ ⎥
−⎢ ⎥Λ = ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

                   (163) 

The relative gain array at steady state of pairing scheme 4 is much more than 

zero which satisfy the theorem 5, thus, this pairing scheme are DIC. 

 

                2.3.2.3 Find the sign matrix U and obtain G+(s) such that 

( )0 0 ( 1,..., )iiG i m+ > =  

 

                             From previous subsection, the possible pairing scheme 

remains only one pairing type. This section determines matrix U defined in the 

following equation. 

                                     { }, 1,...,iiU diag U i m= =                                       (164) 

where U is a diagonal matrix with either 1 or -1 along the diagonal. 
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Therefore, U for pairing scheme 4 of 1-2/2-1/3-4/4-3 is in Equation (165) in order that 

( )0 0 ( 1,..., )iiG i m+ > = where ( ) ( )G s G s U+ = . 

                                              

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U

⎡ ⎤−
⎢ ⎥
⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                              (165) 

 

      2.3.3 Multi-loop PI controller design 

 

               Since utilities are heat exchanger units which have already passive, it 

is not necessary to determine the weighting function. This reason comes from the 

procedure as shown in passivity based decentralized controller synthesis procedure 

(Figure 17). Therefore, this section shows the procedure to design multi-loop PI 

controller following the work of Bao et al. (2002a). 

 

               2.3.3.1. Determine the pairing scheme for controlled and 

manipulated variables according to the procedure to find the best pairing of the 

system. 

 

                                For this step, the best pairing scheme is chosen from 

section 2.3.2. That pairing scheme is 1-2/2-1/3-4/4-3, in which cold flowrate FC3 

controls the output hot temperature 3 3HT on a cold utility unit; hot flowrate FH3 controls 

the output cold temperature 3 3CT on a cold utility unit; cold flowrate FC4 controls the 

output hot temperature 4 4HT on a hot utility unit; hot flowrate FH4 controls the output 

cold temperature 4 4CT  on a hot utility unit, respectively. 

 

               2.3.3.2. For each subsystem ( )iiG s+ (i = 1,…,m), solve Problem 4 for 

the PI controller parameters ,c ik + and ,I iτ  
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      This step has to find PI tuning parameters for each loop of utilities in 

a HEN by solving Problem 4. When this problem is solved, PI tuning parameters are 

presented in Table 12. 

. 

Table 12 PI tuning parameters for two utility units of a HEN 

 

PI Tuning Parameter Loop 1a Loop 2b Loop 3c Loop 4d 

ck +  

Iτ  

172.53 

20.95 

348.87 

12.47 

54.48 

13.13 

330.19 

17.36 

 

Remark:  a: 1-2 pairing/ b: 2-1 pairing/ c: 3-4 pairing/ d: 4-3 pairing 

 

               2.3.3.3. Adjust the sign of the final subcontroller gain , ,c i c i iik k U+= to 

obtain the final multi-loop controller as Equation (166). 

                       ,
,

1( ) { ( )} (1 )i c i
I i

K s diag k s diag k
sτ

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

                            (166) 

 

               When PI tuning parameters for each loop have already been 

determined, the final multi-loop controller for utility units as the same form in 

Equation (166) is shown in the following equation. 

 

      
 

1172.53(1 ) 0 0 0
20.95

10 348.87(1 ) 0 0
12.47( )

10 0 54.48(1 ) 0
13.13

10 0 0 330.19(1 )
17.36

s

sK s

s

s

⎡ ⎤− +⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥

= ⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎣ ⎦

 

(167) 

 

2.4 Verification of results 



93 

      When passivity based PI tuning parameters have already been designed, 

these values are used to verify the results with the HEN example as shown in Figure 

36. The HEN accompanied with controllers is presented as follows. 

H1

C2

fH

C1

fC

CU

HU

1 2

//

//

TCH1

// TCH3 //

// TCC4 //

TCC2 ////

// TCC1 //

 

Figure 42 A heat exchanger network accompanied with controllers 

 

This HEN system with control loops is tested with two main controller classes; 

controllers with default PI tuning parameters from Aspen Dynamics and controllers 

with passivity based PI tuning parameters from passivity concept. This system with 

both controller types is tested with disturbance of -1% and +1% inlet hot flowrates. 

Figures 43 and 44 show responses of each controller with default PI tuning 

parameters when the HEN with control loops is disturbed by changing inlet hot 

flowrate. Likewise, Figures 45 and 46 show responses of each controller with 

passivity based PI tuning parameters when the HEN with control loops is disturbed by 

changing inlet hot flowrate. 
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(a) 

 
(b) 

 
(c)  

 

Figure 43 Responses of controllers TCC1 (a), TCH1 (b), TCC2 (c), TCH3 (d) and 

                 TCC4 (e) from +1% inlet flowrate disturbance of hot stream at hour 5 
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(d) 

 
(e) 

 

Figure 43 (Continued) 

 

Figure 43 shows responses of each controller with default PI tuning 

parameters when the inlet hot flowrate changed from 860 to 868.6 kg/hr (+1% inlet 

hot flowrate). When inlet hot flowrate is changed, each controller try to adjust their 

manipulated variables in order to maintain their original setpoint temperatures. Each 

controller from this figure takes the times to get their setpoint temperatures 5, 5, 5, 5 

and 35 hours, respectively.  
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(a) 

 
(b) 

 
(c) 

 

Figure 44 Responses of controllers TCC1 (a), TCH1 (b), TCC2 (c), TCH3 (d) and 

                 TCC4 (e) from -1% inlet flowrate disturbance of hot stream at hour 5 
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(d) 

 
(e) 

 

Figure 44 (Continued) 

 

Figure 44 shows responses of each controller with default PI tuning 

parameters when the inlet hot flowrate changed from 860 to 851.4 kg/hr (-1% inlet 

hot flowrate). When inlet hot flowrate is changed, each controller try to adjust their 

manipulated variables in order to maintain their original setpoint temperatures. Each 

controller from this figure takes the times to get its setpoint temperature 5, 5, 5, 5 and 

15 hours, respectively.  
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(a) 

 
(b) 

 
(c) 

 

Figure 45 Responses from passivity based PI tuning of controllers TCC1 (a), TCH1 

     (b), TCC2 (c), TCH3 (d) and TCC4 (e) from +1% inlet hot flowrate  

     disturbance at hour 5 
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(d) 

 
(e) 

 

Figure 45 (Continued) 

 

Figure 45 shows responses of each controller with passivity based PI tuning 

parameters when the inlet hot flowrate changed from 860 to 868.6 kg/hr (+1% inlet 

hot flowrate). When inlet hot flowrate is changed, each controller try to adjust their 

manipulated variables in order to maintain their original setpoint temperatures. Each 

controller from this figure takes the times to get their setpoint temperature 2.5, 2.5, 

2.5, 1 and 7.5 hours, respectively. Compared Figures 43 and 45, the times to reach the 

new setpoint of the system with passivity based PI controllers are less than that with 

default PI controllers. 
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(a) 

 
(b) 

 
(c) 

 

Figure 46 Responses from passivity based PI tuning of controllers TCC1 (a), TCH1 

       (b), TCC2 (c), TCH3 (d) and TCC4 (e) from -1% inlet hot flowrate  

                  disturbance at hour 5 
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(d) 

 
(e) 

 

Figure 46 (Continued) 

 

Figure 46 shows responses of each controller with passivity based PI tuning 

parameters when the inlet hot flowrate changed from 860 to 851.4 kg/hr (-1% inlet 

hot flowrate). When inlet hot flowrate is changed, each controller try to adjust their 

manipulated variables in order to maintain their original setpoint temperatures. Each 

controller from this figure takes the times to get their setpoint temperatures 2, 2, 2, 1 

and 2 hours, respectively. Compared Figures 44 and 46, the times to reach the new 

setpoint of the system with passivity based PI controllers are less than that with 

default PI controllers.  
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After verifying the results, the HEN is tested fault-tolerant control in order to 

ensure that when the system and controllers are passive, they can achieve 

decentralized unconditional stability (DUS). These results are compared with those 

from the system with default PI controllers from Aspen Dynamics. This HEN system 

is disturbed with -1% and +1% of inlet hot flowrates when which one of controllers 

fails. The following figure displays a HEN with controlled variables provided that it is 

easily to track the responses of each controller when getting disturbances. 

H1

C2

fH

C1

fC

CU

HU

1 2

//
//
TCH1

// TCH3 //

// TCC4 //

TCC2 ////

// TCC1 //

TCOUTHU

T1H1

THOUTCU

T2C2

T1C1

 

Figure 47 A heat exchanger network with controlled variables accompanied with  

     Controllers 

 

 

Figure 48 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCH1 
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Figure 48 shows temperature responses of each controlled variable disturbed 

by +1% inlet flowrate of hot stream with failing controller TCH1. The result reports 

that when controller TCH1 fails, the temperature of T1H1 increases and affects the 

higher temperature of streams T1C1, T2C2 and THOUTCU. However, controllers 

TCC1, TCC2 and TCH3 adjust their manipulated variables in order to control their 

stream temperatures to their setpoints. Moreover, the elevated hot flowrate takes a 

small effect to stream TCOUTHU decreased, but it can be reached its setpoint by 

controller TCC4. 

 

Figure 49 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCH1 

 

Figure 49 shows temperature responses of each controlled variable disturbed 

by -1% inlet flowrate of hot stream with failing controller TCH1. The result reports 

that when controller TCH1 fails, the temperature of T1H1 decreases and affects the 

lower temperature of streams T1C1, T2C2 and THOUTCU. However, controllers 

TCC1, TCC2 and TCH3 adjust their manipulated variables in order to control their 

stream temperatures to their setpoints. Moreover, the decreased hot flowrate takes a 

small effect to stream TCOUTHU increased, but it can be reached its setpoint by 

controller TCC4. 
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Figure 50 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCC1 

 

Figure 50 shows temperature responses of each controlled variable disturbed 

by +1% inlet flowrate of hot stream with failing controller TCC1. The result reports 

that when controller TCC1 fails, the temperature of T1C1 increases and affects the 

higher temperature of streams T1H1, T2C2, THOUTCU and TCOUTHU. However, 

controllers TCH1, TCC2, TCH3 and TCC4 adjust their manipulated variables in order 

to control their stream temperatures to their setpoints.  

 

Figure 51 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCC1 
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Figure 51 shows temperature responses of each controlled variable disturbed 

by -1% inlet flowrate of hot stream with failing controller TCC1. The result reports 

that when controller TCC1 fails, the temperature of T1C1 increases and affects the 

lower temperature of streams T1H1, T2C2, THOUTCU and TCOUTHU. However, 

controllers TCH1, TCC2, TCH3 and TCC4 adjust their manipulated variables in order 

to control their stream temperatures to their setpoints. 

 

Figure 52 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCC2 

 

Figure 52 shows temperature responses of each controlled variable disturbed 

by +1% inlet flowrate of hot stream with failing controller TCC2. The result reports 

that when controller TCC2 fails, the temperature of T2C2 increases and affects the 

higher temperature of streams T1H1, T1C1 and THOUTCU. However, controllers 

TCH1, TCC1 and TCH3 adjust their manipulated variables in order to control their 

stream temperatures to their setpoints. The elevated hot flowrate also takes the effect 

to stream TCOUTHU decreased, but it can reach its setpoint by controller TCC4. 
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Figure 53 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCC2 

 

Figure 53 shows temperature responses of each controlled variable disturbed 

by -1% inlet flowrate of hot stream with failing controller TCC2. The result reports 

that when controller TCC2 fails, the temperature of T2C2 decreases and affects the 

lower temperature of streams T1H1, T1C1 and THOUTCU. However, controllers 

TCH1, TCC1 and TCH3 adjust their manipulated variables in order to control their 

stream temperatures to their setpoints. Moreover, the decreased hot flowrate takes the 

effect to stream TCOUTHU, but it can reach its setpoint by controller TCC4. 

 

Figure 54 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCH3 
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Figure 54 shows temperature responses of each controlled variable disturbed 

by +1% inlet flowrate of hot stream with failing controller TCH3. The result reports 

that when controller TCH3 fails, the temperature of THOUTCU increases and affects 

the higher temperature of streams T1H1, T1C1 and T2C2. However, controllers 

TCH1, TCC1 and TCC2 adjust their manipulated variables in order to control their 

stream temperatures to their setpoints. The elevated hot flowrate also takes the effect 

to stream TCOUTHU decreased, but it can reach its setpoint by controller TCC4. 

 

Figure 55 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCH3 

 

Figure 55 shows temperature responses of each controlled variable disturbed 

by -1% inlet flowrate of hot stream with failing controller TCH3. The result reports 

that when controller TCH3 fails, the temperature of THOUTCU decreases and affects 

the lower temperature of streams T1H1, T1C1 and T2C2. However, controllers 

TCH1, TCC1 and TCC4 adjust their manipulated variables in order to control their 

stream temperatures to their setpoints. Moreover, the decreased hot flowrate takes the 

effect to stream TCOUTHU, but it can be reached its setpoint by controller TCC4. 
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Figure 56 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCC4 

 

Figure 56 shows temperature responses of each controlled variable disturbed 

by +1% inlet flowrate of hot stream with failing controller TCC4. The result reports 

that when controller TCC4 fails, the temperature of TCOUTHU decreases and affects 

the higher temperature of streams T1H1, T1C1, T2C2 and THOUTCU. However, 

controllers TCH1, TCC1, TCC2 and TCH3 adjust their manipulated variables in order 

to control their stream temperatures to their setpoints.  

 

Figure 57 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing passivity based PI controller TCC4 
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Figure 57 shows temperature responses of each controlled variable disturbed 

by -1% inlet flowrate of hot stream with failing controller TCC4. The result reports 

that when controller TCC4 fails, the temperature of TCOUTHU increases and affects 

the lower temperature of streams T1H1, T1C1, T2C2 and THOUTCU. However, 

controllers TCH1, TCC1, TCC2 and TCH3 adjust their manipulated variables in order 

to control their stream temperatures to their setpoints.  

 

 The following figures show temperature responses of each controlled variable 

of the system with failing default PI controller from Aspen Dynamics simulator 

getting the disturbance as the same as that with failing passivity based PI controller.  

 

 

Figure 58 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing PI controller TCH1 
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Figure 59 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing PI controller TCH1 

 

 

Figure 60 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing PI controller TCC1  
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Figure 61 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing PI controller TCC1  

 

 

Figure 62 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing PI controller TCC2  
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Figure 63 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing PI controller TCC2  

 

 

Figure 64 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing PI controller TCH3  
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Figure 65 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing PI controller TCH3  

 

 

Figure 66 Temperature responses of controlled variables disturbed by +1% inlet 

                 flowrate of hot stream with failing PI controller TCC4  
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Figure 67 Temperature responses of controlled variables disturbed by -1% inlet 

                 flowrate of hot stream with failing PI controller TCC4  

 

 Figures 58 to 67 show the slow responses to get the new state resulted from a 

disturbance for a failing controller, or even working controllers adjust their 

manipulated variables slowly to reach the original setpoint. From Figures 58 to 65, 

when the HEN with failing PI controllers TCC1, TCH1, TCC2, TCH3 or TCC4 is 

disturbed by +1% and -1% inlet hot flowrates, the results show that the temperature of 

stream TCOUTHU cannot meet its original setpoint within 50 hours. These responses 

are very slow; therefore, it implies these disturbances make the controller loop of 

TCC4 fail. It cannot accordingly adjust the controlled temperature to its original 

setpoint temperature. 

 

 When compared the results from fault-tolerant control test, the results from 

passivity based PI controllers are better than PI controllers. Passivity based PI 

controller can cope with fault-tolerant control, has a fast response, and also guarantee 

stability. Thus, the system and controllers which are passive can achieve decentralized 

unconditional stability. 

 



CONCLUSION AND RECOMMENDATION 

 
Conclusion 

 

 This work presented that the passivity theorem as one of the cornerstones in 

nonlinear control theory was applied with a single bypass heat exchanger and HENs. 

Both applications were followed the passivity based decentralized controller synthesis 

procedure which was systematically combined each step from the works of Bao et al. 

(1998; 2000; 2002; 2007). The aim of this work was to design the passivity based 

DUS controllers for these systems to obtain the passivity based DUS control system.  

 

 Firstly, the state space model for a single bypass heat exchanger giving more 

practical idea was developed from that for a single heat exchanger. The example for 

this case used to this model was referred from Westhalen et al. (2003), and then its 

transfer function was formulated to test whether this system is passive or not by 

passivity index. The result from Bao and Lee (2007) reported that a single heat 

exchanger was inherently passive, but it was of interest to know that a single bypass 

heat exchanger developed in this work showed either passive or non-passive 

behaviors depending on its possible pairing schemes. However, the best pairing 

scheme which was the most passive was obtained when compared the passivity 

indices of each possible pairing scheme. In addition, the passivity based decentralized 

unconditional stability (DUS) PI controllers for this system were designed, and, 

finally, also verified via Aspen Dynamics simulator. This system was tested by 

making ± 10% of setpoint temperatures and ± 10% inlet hot flowrates. The results 

showed that the passivity approach gave better setpoint tracking than conventional PI 

controllers. 

 

The passivity theorem was also extended to a HEN. The case study which has 

a feasible structure was referred from Glemmestad et al. (1996). This network 

comprised of two heat exchangers and two utility units. As the same as a single 

bypass heat exchanger, the HEN was tested by passivity index and followed the 
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passivity based DUS PI controller synthesis procedure. However, this HEN part was 

divided into two parts; the first part was two heat exchangers with bypasses which 

were non-passive, and the second one was two utilities which were assumed to be a 

heat exchanger type and resulted passive behavior. In addition to verify the results by 

disturbing ± 1% inlet hot flowrates, this network was also tested fault-tolerant control 

to guarantee that when the system and controllers was passive, that system achieved 

DUS. The fault-tolerant control test was performed by letting one of controllers failed 

while the network got disturbances. The results reported HENs controlled by this 

approach can capably achieve fault-tolerant control while another PI controller could 

not achieve it.  

 

Recommendation 

 
1. The economic objective should be concerned with the control objective in 

HENs to obtain the minimum cost accompanied with the best performance.  

 

 2. This passivity theorem should be applied with a large-scale HEN to 

guarantee that this approach can handle with highly nonlinear and large interaction 

system which has not been researched yet. 

 

 3. The results from HENs applied with the passivity theorem should be 

compared those applied with other methods 

 

 4. The disturbances entering HENs should be over ± 1% inlet hot flowrates. 
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This section explains more information in order the reader to clearly 

understand concepts of a state space. The state space model can be divided into two 

systems. The first one is time-varying system, and the second one is time-invariant 

system (Friedland, 1987).  

 

A.1 Definition of Dynamical Equation  

 

 Dynamical equation means the set of equations that describes the unique 

relations between the input, output, and state (Chi-Tsong, 1984). Their forms are: 

 

                      ( ) ( ( ), ( ), )x t h x t u t t=            (state equation)                                      (A.1) 

                      ( ) ( ( ), ( ), )y t g x t u t t=           (output equation)                                    (A.2) 

or more explicitly, 

               1 1 1 2 1 2( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ), )n mx t h x t x t x t u t u t u t t=  

               2 2 1 2 1 2( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ), )n mx t h x t x t x t u t u t u t t=  

                                                                                                                               (A.3) 

               1 2 1 2( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ), )n n n mx t h x t x t x t u t u t u t t=  

 

               1 1 1 2 1 2( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ), )n my t g x t x t x t u t u t u t t=  

               2 2 1 2 1 2( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ), )n my t g x t x t x t u t u t u t t=  

                                                                                                                               (A.4) 

               1 2 1 2( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ), )k k n my t g x t x t x t u t u t u t t=  

 

where 1[ ,..., ]T
nx x x= is the state, 1[ ,..., ]T

ky y y=  is the output, and 1[ ,..., ]T
mu u u= is 

the input. 
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A.2 State space Model for Time-Varying System  

 

 The equations used to describe the behavior of the systems depending on time 

are shown below (Friedland, 1987). 

              1
1 11 1 1 11 1 1 1( ) ... ( ) ( ) ... ( )n n m

dxx a t x a t x b t u b t u
dt

= = + + + + +  

             2
2 21 1 2 21 1 2 1( ) ... ( ) ( ) ... ( )n n m

dxx a t x a t x b t u b t u
dt

= = + + + + +  

                                                                                                                               (A.5) 

            1 1 1 1 1( ) ... ( ) ( ) ... ( )n
n n nn n n nm

dxx a t x a t x b t u b t u
dt

= = + + + + +  

Those can be written compactly into the matrix form as Equation (A.6). 

                           ( ) ( )dxx A t x B t u
dt

= = +                                                       (A.6) 

where A(t) and B(t) are matrices given by Equation (A.7). 

               

11 1

21 2

1

( )... ( )
( )... ( )

( )

( )... ( )

n

n

n nn

a t a t
a t a t

A t

a t a t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

               

11 1

21 2

1

( )... ( )
( )... ( )

( )

( )... ( )

m

m

n nm

b t b t
b t b t

B t

b t b t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                           (A.7) 

 It is noted that the matrix A(t) is always a square (n by n) matrix, but that the 

matrix B(t) need not be square. 

 

A.3 State space Model for Time-Invariant System  

 

 When none of elements in the matrices A and B depends upon time, the 

system is time-invariant system having the dynamic equations (Friedland, 1987). 

                                       x Ax Bu= +                                                                       (A.8) 

where A and B are constant matrices 



126 

For both cases, although the state of a system is fundamental, there are many 

situations in which one is not interested in the state directly, but only in its effect on 

the system output equation y(t). 

                                                 
1( )

( )
( )k

y t

y t
y t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                       (A.9) 

 

for a system having k outputs. In a linear system, the output equation is assumed to be 

a linear combination of the state and the input. 

 

                                           ( ) ( ) ( ) ( ) ( )y t C t x t D t u t= +                                            (A.10) 

 

where C(t) is an k by n matrix and D(t) is an k by m matrix. If the system is time-

invariant, C(t) and D(t) are constant matrices. 

 

 The presence of matrix D in equation (A.10) means that there is a direction 

connection between the input u(t) and the output y(t), without intervention of the state 

x(t) (Friedland, 1987). The following figure shows a block diagram representation of 

general linear system of state space. 

 

 

 

 

 

 

 

Appendix Figure A1 Block diagram representation of general linear system of a  

                                     state space 

 

Source:  Friedland (1987)  
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Appendix B 

Model construction procedure 
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This section shows the procedure to construct a process model, which is 

referred from Hangos et al. (2004), used in constructing a heat exchanger model as 

shown in the theoretical heat exchanger section. 

 

Step 0: System and subsystem boundary and balance volume definitions 

 

The outcome of this step is the set of balance volumes for mass, energy and 

momentum. These are the conserved extensive quantities normally considered in 

process systems. Moreover, the number of components is also fixed for each mass 

balance volume. 

 

Step 1: Establish the balance equations 

 

Here we set up conservation balances for mass, energy and momentum for 

each balance volume. 

 

Step 2: Transfer and reaction rate specifications 

 

The transfer rate expressions between different balance volumes in the 

conservation balances are specified here usually as functions of intensive quantities. 

The reaction rates within balance volumes are also specified 

 

Step 3: Property relation specifications 

Mostly algebraic relationships expressing thermodynamic knowledge, such as 

equations of state and the dependence of physico-chemical properties on 

thermodynamic state variables are considered here. 

 

Step 4: Balance volume relation specifications 
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Equipment with a fixed physical volume is often divided into several balance 

volumes if multiple phases are presented. A balance volume relation describes a 

relation between balance volumes and physical volumes. 

 

Step 5: Equipment and control constraint specifications 

 

There is inevitably the need to define constraints on process systems. These 

constraints are typically in the form of equipment-operating constraints (in terms of 

temperatures, pressures, etc.) and in terms of control constraints, which define 

relations between manipulated and controlled variables in the system. 

 

Step 6: Selection of design variables 

 

The selection of design variables is highly dependent on the application area 

or problem and is not necessarily process- specific. The process itself only provides 

constraints on which variables are potentially relevant. The selection of design 

variables may greatly influence the mathematical properties of the model equations, 

such as the differential index. 
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Heat exchanger model development 
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This section shows a derivation of the heat exchanger models used in this 

work. It can be divided into four main parts; the first two parts present the derivations 

of a single heat exchanger model with a single bypass on hot side and cold side, 

respectively, into a state space model, the third part presents the derivation of a single 

heat exchanger model without bypass concerning volumetric flowrates as manipulated 

variables, and the last part presents another way of derivation of linearization and 

perturbation used in the model development in previous two parts to ensure that 

developed models are correct. 

 

In order to get a state space model of a single heat exchanger with a single 

bypass, the state and output equation of a single heat exchanger with a single bypass 

have to be concerned. However, there are many variables presented in this section, all 

those are shown in the nomenclature section. 

 

C.1 Derivation of a Single Heat Exchanger with a Single Bypass on Hot Side to 

       State Space Model 

H

C

THin T1H TH

TCinT1CTC

 

Appendix Figure C1 A single heat exchanger  

 

Source:  Hangos et al. (2004) 

 

Consider a heat exchanger model without bypass mostly used first. Equations 

(C.1) and (C.2) are the state equation of cold and hot stream of a single heat 

exchanger without bypass (Hangos et al., 2004; Bao and Lee, 2007; Varga et al., 

1995). 



132 

1
1 1 1( ) ( )C

C C pC C C pC Cin C H C
dTV C F C T T UA T T

dt
ρ ρ= − + −                        (C.1) 

1
1 1 1( ) ( )H

H H pH H H pH Hin H C H
dTV C F C T T UA T T

dt
ρ ρ= − + −                         (C.2) 

And Equations (C.3) and (C.4) are the output equation of cold and hot streams, 

respectively. 

                                         1C CT T=                                                               (C.3) 

                                         1H HT T=                                                              (C.4) 

It was built under the following assumptions (Hangos et al., 2004; Bao and 

Lee, 2007): 

 

1. A heat exchanger model is assumed to be an approximate lumped parameter 

system instead of a distributed parameter system. 

 2. Volumes of hot and cold streams in the heat exchanger (VH and VC) are 

constant. 

 3. Physicochemical properties, including density of the hot and cold streams 

( Hρ and Cρ ) and their specific heats ( pHC and pCC ) are constant.  

 4. Heat transfer coefficient U and area A are constant. 

 5. Both hot and cold streams are well mixed and the temperatures of the hot 

and cold streams inside the tube are approximated by the outlet temperatures 1HT  

and 1CT . 

 

 This work uses above assumptions in derivation of a single heat exchanger 

with a single bypass.  

 

C.1.1 State equations for hot and cold streams of a single heat exchanger with 

          a single bypass on hot side. 
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          Let us consider a single heat exchanger with a single bypass on hot side 

as shown in Appendix Figure C2. 

H

C

THin

TCin

T1H TH

fH

TC T1C

 
Appendix Figure C2 A single heat exchanger with a single bypass on hot side 

 

 Before deriving the equations, it is necessary to specify what state and 

manipulated variables of this system are. From above figure, the state variables of this 

system are the outlet temperature of cold and hot streams 1CT and 1HT , and the 

manipulated variables are cold flowrate FC and bypass fraction fH  by assuming 

constant hot flowrate. 

 

The state equations in Equations (C.5) for the hot stream and (C.6) for the cold 

stream 

1
1 1 1(1 ) ( ) ( )H

H H pH H H H pH Hin H C H
dTV C f F C T T UA T T

dt
ρ ρ= − − + −           (C.5) 

where 
1

1 1 1

0
lim

t t
H H H

t

dT T T
dt t

+

→

⎛ ⎞−
= ⎜ ⎟Δ⎝ ⎠

 

1
1 1 1( ) ( )C

C C pC C C pC Cin C H C
dTV C F C T T UA T T

dt
ρ ρ= − + −                        (C.6) 

From Equation (C.5), the dynamic equation for hot stream is developed and 

changed into the state space form. 

1
1 1 1 1( ) ( ) ( )H

H H pH H H pH Hin H H H H pH Hin H C H
dTV C F C T T f F C T T UA T T

dt
ρ ρ ρ= − − − + −  
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                                                                                                                                 (C.7) 

Let H H pHCτ ρ= then Equation (C.7) becomes: 

1
1 1 1 1( ) ( ) ( )H

H H pH H H Hin H H H H Hin H C H
dTV C F T T F f T T UA T T

dt
ρ τ τ= − − − + −              (C.8) 

1
1 1 1 1

H
H H pH H H Hin H H H H H Hin H H H H H C H

dTV C F T F T F T f F f T UAT UAT
dt

ρ τ τ τ τ= − − − + −     

                                                                                                                                 (C.9) 

From Equation (C.9), although most terms on the right are linear, the forth one 

is nonlinear due to T1H and fH which are state and manipulated variables. Therefore, 

Taylor’s series (Luyben et al., 1997) for linearization are presented.  

1 2 1 2 1 2

22
1 1

1 2 1 2 1 1 2 2 2
1 2 1, , ,

( )( , ) ( , ) ( ) ( ) ...
2!

x x x x x x

x xf f ff x x f x x x x x x
x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ −∂ ∂ ∂
≅ + − + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

                             (C.10) 

Consider only the first order term, thus, Equation (C.10) becomes 

1 2 1 2

1 2 1 2 1 1 2 2
1 2, ,

( , ) ( , ) ( ) ( )
x x x x

f ff x x f x x x x x x
x x

⎛ ⎞ ⎛ ⎞∂ ∂
≅ + − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                 (C.11) 

Using Taylor’s series with the forth term in Equation (C.9), its derivation is 

presented as follows. 

       
( )

1
1 1 1 ,

( )
H H

H H H H H H H H H H H H H Hf T
H

F f T F f T F f T f f
f

τ τ τ∂
= + −

∂
 

                                     
( )

1
1 1 1,

1

( )
H H

H H H H H Hf T
H

F f T T T
T

τ∂
+ −
∂

                     (C.12) 

At steady state, 1H H H HF f Tτ is usually zero (Seborg et al., 2004), thus, 

Equation (C.12) is reduced into Equation (C.13). 

1 1 1 1( ) ( )H H H H H H H H H H H H H HF f T F T f f F f T Tτ τ τ= − + −                        (C.13) 

After linearization by using Taylor’s series, Equation (C.9) becomes: 
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1
1 1 ( )H

H H pH H H Hin H H H H H Hin H H H H H H
dTV C F T F T F T f F T f f

dt
ρ τ τ τ τ= − − + −   

                             
1 1 1 1( )H H H H H C HF f T T UAT UATτ+ − + −

                                
     (C.14) 

Then make Equation (C.14) into the deviation variable form or perturbation 

form. 

1 1
1 1 1

( ) ( ) ( )
p

p p pH H
H H pH H H Hin H H H H H H Hin H H H H H H

d T TV C F T F T T F T f f F T f
dt

ρ τ τ τ τ+
= − + − + +

                                        
1 1 1 1 1( ) ( )p p p

H H H H C C H HF f T UA T T UA T Tτ+ + + − +                (C.15) 

1
1 1 1 1 1

p
p p p p p pH

H H pH H H H H H Hin H H H H H H H H H C H
dTV C F T F T f F T f F f T UAT UAT

dt
ρ τ τ τ τ= − − + + + −

                             1 1 1H H Hin H H H H H Hin H C HF T F T F T f UAT UATτ τ τ+ − − + −              (C.16) 

From Equation (C.14), at steady state; 

                     
1 1 10 0 0H H Hin H H H H H Hin H C HF T F T F T f UAT UATτ τ τ= − − + + + −       (C.17) 

Combine Equations (C.16) and (C.17) together, let H H H pHV Cξ ρ= , and 

rearrange the equation into the compact form. Then Equation (C.5) becomes: 

11
1 1

p
p p pH H H H H HinH H H H H H
C H H

H H H

F T F TdT UA F f FUAT T f
dt

τ ττ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− + −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
        (C.18) 

Since most of the time perturbation variables are used, it is intuitively 

understood that whenever linearization is presented, all variables are perturbation 

variables. Thus, Equation (C.18) becomes as follows. 

11
1 1

H H H H H HinH H H H H H
C H H

H H H

F T F TdT UA F f FUAT T f
dt

τ ττ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− + −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
         (C.19) 

The dynamic equation for cold stream will be developed and changed into 

state space form as the same as hot stream. 

 

Let C C pCCτ ρ= and C C C pCV Cξ ρ= then substitute into Equation (C.6). 
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1
1 1 1( ) ( )C

C C C Cin C H C
dT F T T UA T T

dt
ξ τ= − + −                                         (C.20) 

1
1 1 1

C
C C C Cin C C C H C

dT F T F T UAT UAT
dt

ξ τ τ= − + −                                 (C.21) 

All terms on the right are linear but the second term so this one has to be 

linearized. 

( ) ( )
1 1

1 1 1 1 1 1, ,
1

( ) ( )
C C C C

C C C C C C C C C C C C C C C CF T F T
C C

F T F T F T F F F T T T
F T

τ τ τ τ∂ ∂
= + − + −

∂ ∂
 

                                                                                                                              (C.22) 

1 1 1 10 ( ) ( )C C C C C C C C C C CF T T F F F T Tτ τ τ= + − + −                                                (C.23) 

Combine Equations (C.21) and (C.23) together. The state equation for cold 

stream after linearization is Equation (C.24). 

1
1 1 1 1 1( ) ( )C

C C Cin C C C C C C C C C H C
dT T F T F F F T T UAT UAT

dt
ξ τ τ τ= − − − − + −  (C.24) 

1 1
1 1 1 1 1 1

( ) ( ) ( ) ( )
p

p p p p pC C
C C Cin C C C C C C C C H H C C

d T T T F F T F F T UA T T UA T T
dt

ξ τ τ τ+
= + − − + + − +

                                                                                                                               (C.25) 

1
1 1 1 1 1 1( )

p
p p p p pC

C C Cin C C C C C C C H C C Cin C H C
dT T F T F F T UAT UAT T F UAT UAT
dt

ξ τ τ τ τ= − − + − + + −

                                                                                                                               (C.26) 

From Equation (C.24), at steady state; 

            
1 10 C Cin C H CT F UAT UATτ= + −                                                               (C.27) 

Combine Equations (C.26) and (C.27) together, thus the state equation of cold 

stream is Equation (C.28). 

1 1
1 1

C C C C Cin C C
C H C

C C C

dT UA F T TUAT T F
dt

τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞− − −
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                          (C.28) 

Equations (C.18) and (C.28) have been the dynamics equations or the state 

equations of a single heat exchanger with single bypass. 
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C.1.2 Output equations for hot and cold streams of a single heat exchanger  

          with a single bypass on hot side. 

 

          An output equation in the form of state space in case of time-invariant 

system is Equation (C.29). 

                                                           y Cx Du= +                                                 (C.29) 

            From Appendix Figure C2, the output equation of hot stream for a single heat 

exchanger with a single bypass referred from (Mathisen, 1994; Glemmestad et al., 

1999) is presented in Equation (C.30). 

                                           1(1 )H H H H HinT f T f T= − +            (C.30) 

                                              1 1H H H H H HinT T f T f T= − +                                    (C.31) 

Since the second term on the right hand side is nonlinear, this term has to be 

linearized using Taylor’s series (Luyben et al., 1997) as shown in Equation (10). The 

following equation shows the nonlinear term in Equation (C.31) is linearized. 

       
( ) ( )

1 1
1 1 1 1 1, ,

1

( ) ( )
H H H H

H H H H H H H H H Hf T f T
H H

f T f T f f f T T T
f T
∂ ∂

= − + −
∂ ∂

 (C.32) 

1 1 1 1( ) ( )H H H H H H H Hf T T f f f T T= − + −                                                     (C.33) 

After linearization by using Taylor’s series, Equation (C.31) becomes 

Equation (C.34). 

1 1 1 1( ) ( ))H H H H H H H H H HinT T T f f f T T f T= − − − − +                            (C.34)  

Then Equation (C.34) can be made in the deviation variable form or 

perturbation form as Equation (C.35). 

            1 1 1 1( ) ) ( )p p p p p
H H H H H H H H H H HinT T T T T f f T f f T+ = + − − + +                  (C.35) 

From Equation (C.34), at steady state; 

                                     1H H H HinT T f T= +                                                (C.36) 
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Combine Equations (C.35) and (C.36) together, then Equation (C.31) becomes 

as follows. 

                                  1 1(1 ) ( )p p p
H H H Hin H HT f T T T f= − + −                       (C.37) 

 From Appendix Figure C.2, the output equation of cold stream for a single 

heat exchanger with a single bypass on hot side referred from (Hangos et al., 2004; 

Bao and Lee, 2007) is presented in Equation (C.38). 

                                                          1C CT T=                                                      (C.38) 

 Therefore, the state and output equations for cold and hot streams of a heat 

exchanger with a single bypass on hot side are summarized in Equations (C.39) to 

(C.42). 

1 1
1 1

C C C C Cin C C
C H C

C C C

dT UA F T TUAT T F
dt

τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞− − −
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                      (C.39) 

11
1 1

H H H H H HinH H H H H H
C H H

H H H

F T F TdT UA F f FUAT T f
dt

τ ττ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− + −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
         (C.40) 

1C CT T=                                                                                                                 (C.41) 

1 1(1 ) ( )H H H Hin H HT f T T T f= − + −                                                                      (C.42) 

 where  i i PiCτ ρ= and i i i PiV Cξ ρ=  

 

C.2 Derivation of a Single Heat Exchanger with a Single Bypass on Cold Side to 

       State Space Model 

 

This model adopts assumptions as the same as previous section in derivation 

of a single heat exchanger with a single bypass on cold side. 

 

C.2.1 State equations for hot and cold streams of a single heat exchanger with 

          a single bypass on cold side. 
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          Consider a single heat exchanger with a single bypass on cold side as 

shown in Appendix Figure C3. 

 
 
Appendix Figure C3 A single heat exchanger with a single bypass on cold side 

 

Before deriving the equations, it is necessary to specify what state and 

manipulated variables of this system are. From above figure, the state variables of this 

system are the outlet temperature of cold and hot streams 1CT and 1HT , and the 

manipulated variables are hot flowrate FH and bypass fraction fC by assuming constant 

cold flowrate. 

 

The state equations in Equations (C.43) for hot stream and (C.44) for cold 

stream 

1
1 1 1( ) ( )H

H H pH H H pH Hin H C H
dTV C F C T T UA T T

dt
ρ ρ= − + −                       (C.43) 

1
1 1 1(1 ) ( ) ( )C

C C pC C C C pC Cin C H C
dTV C f F C T T UA T T

dt
ρ ρ= − − + −        (C.44) 

From Equation (C.44), the dynamic equation for cold stream is developed and 

changed into state space form. Let C C pCCτ ρ=  then Equation (C.44) becomes: 

1
1 1 1 1( ) ( ) ( )C

C C pC C C Cin C C C C Cin C H C
dTV C F T T F f T T UA T T

dt
ρ τ τ= − − − + −     (C.45) 

1
1 1 1 1( )C

C C pC C C Cin C C C C C C Cin C C C C H C
dTV C F T F T F f T F f T UA T T

dt
ρ τ τ τ τ= − − + + −  
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                                                                                                                               (C.46) 

From Equation (C.46), although most terms on the right are linear, the forth 

one is nonlinear due to T1C and fC which are state and manipulated variables. 

Therefore, Taylor’s series (Luyben et al., 1997) for linearization as in Equation (C.11) 

are presented.  

( ) ( )
1 1

1 1 1 1 1 1, ,
1

( ) ( )
C C C C

C C C C C C C C C C C C C C C C C C C Cf T f T
C C

F f T F f T F f T f f F f T T T
f T

τ τ τ τ∂ ∂
= + − + −

∂ ∂
                                                                                                                               (C.47) 

At steady state, 1C C C CF f Tτ is usually zero (Seborg et al., 2004), thus, Equation 

(C.47) is reduced into Equation (C.48). 

1 1 1 1( ) ( )C C C C C C C C C C C C C CF f T F T f f F f T Tτ τ τ= − + −                                 (C.48) 

After linearization by using Taylor’s series, Equation (C.46) becomes: 

1
1 1 ( )C

C C pC C C Cin C C C C C Cin C C C C C C
dTV C F T F T F T f F T f f

dt
ρ τ τ τ τ= − − + −

   

                             
1 1 1 1( ) ( )C C C C C H CF f T T UA T Tτ+ − + −                                    (C.49) 

Then Equation (C.49) can be made into the deviation variable form or 

perturbation form. 

1 1
1 1

( ) ( ) ( )
p

p pC C
C C pC C C Cin C C C C C C Cin C C

d T TV C F T F T T F T f f
dt

ρ τ τ τ+
= − + − +   

                         
1 1 1 1 1 1( ) ( )p p p p

C C C C C C C C H H C CF T f F f T UA T T UA T Tτ τ+ + + + − + (C.50) 

1
1 1 1 1

p
p p p p pC

C C pC C C C C C Cin C C C C C C C C C H
dTV C F T F T f F T f F f T UAT

dt
ρ τ τ τ τ= − − + + +

   

                    
1 1 1 1

p
C C C Cin C C C C C Cin C H CUAT F T F T F T f UAT UATτ τ τ− + − − + −  (C.51) 

From Equation (C.49), at steady state; 

            
1 1 10 ( )C C Cin C C C C C Cin C H CF T F T F T f UA T Tτ τ τ= − − + −                        (C.52) 
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Combine Equations (C.51) and (C.52) together, let C C C pCV Cξ ρ= , and 

rearrange the equation into the compact form. Then Equation (C.44) becomes: 

1 1
1 1

C C C C C C C C C C C Cin
C H C

C C C

dT UA F f F F T F TUAT T f
dt

τ τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞− + − −
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

             (C.53) 

The dynamic equation for hot stream is developed and changed into state 

space form as the same as cold stream. 

Let H H pHCτ ρ= and H H H pHV Cξ ρ= then substitute into Equation (C.43). 

1
1 1 1( ) ( )H

H H H Hin H C H
dT F T T UA T T

dt
ξ τ= − + −                                          (C.54) 

1
1 1 1

H
H H H Hin H H H C H

dT F T F T UAT UAT
dt

ξ τ τ= − + −                                  (C.55) 

All terms on the right are linear but the second term so this one has to be 

linearized. 

( ) ( )
1 1

1 1 1 1 1 1, ,
1

( ) ( )
H H H H

H H H H H H H H H H H H H H H HF T F T
H H

F T F T F T F F F T T T
F T

τ τ τ τ∂ ∂
= + − + −

∂ ∂
                                                                                                                              (C.56) 

1 1 1 1( ) ( )H H H H H H H H H H HF T T F F F T Tτ τ τ= − + −                                                   (C.57) 

Combine Equations (C.55) and (C.57) together. The state equation for hot 

stream after linearization is Equation (C.58). 

1
1 1 1 1 1( ) ( )H

H H Hin H H H H H H H H H C H
dT T F T F F F T T UAT UAT

dt
ξ τ τ τ= − − − − + − (C.58) 

1 1
1 1 1 1 1 1

( ) ( ) ( ) ( )
p

p p p p pH H
H H Hin H H H H H H H H C C H H

d T T T F F T F F T UA T T UA T T
dt

ξ τ τ τ+
= + − − + + − +

                                                                                                                              
 (C.59) 

 

1
1 1 1 1 1 1( )

p
p p p p pH

H H Hin H H H H H H H C H H Hin H C H
dT T F T F F T UAT UAT T F UAT UAT

dt
ξ τ τ τ τ= − − + − + + −

                                                                                                                               (C.60) 

From Equation (C.58), at steady state; 
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1 10 H Hin H C HT F UAT UATτ= + −                                        (C.61) 

Combine Equations (C.60) and (C.61) together, thus the state equation of hot 

stream is Equation (C.62). 

11
1 1

H Hin H HH H H
C H H

H H H

T TdT UA FUAT T F
dt

τ ττ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                       (C.62) 

Equations (C.53) and (C.62) have been the dynamics equations or the state 

equations of a single heat exchanger with a single bypass on cold side. 

 

C.2.2 Output equations for hot and cold streams of a single heat exchanger  

          with a single bypass on cold side. 

 

          An output equation in the form of state space in case of time-invariant 

system is Equation (C.29). 

                                                           y Cx Du= +                                                 (C.29) 

            From Appendix Figure C2, the output equation of cold stream for a single heat 

exchanger with a single bypass referred from (Mathisen, 1994; Glemmestad et al., 

1999) is presented in Equation (C.63). 

                                           1(1 )C C C C CinT f T f T= − +            (C.63) 

                                              1 1C C C C C CinT T f T f T= − +                                       (C.64) 

Since the second term on the right hand side is nonlinear, this term has to be 

linearized using Taylor’s series (Luyben et al., 1997) as shown in Equation (10). The 

following equation shows the nonlinear term in Equation (C.64) is linearized. 

       
( ) ( )

1 1
1 1 1 1 1, ,

1

( ) ( )
C C C C

C C C C C C C C C Cf T f T
C C

f T f T f f f T T T
f T
∂ ∂

= − + −
∂ ∂

       (C.65) 

1 1 1 1( ) ( )C C C C C C C Cf T T f f f T T= − + −                                                        (C.66) 
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After linearization by using Taylor’s series, Equation (C.64) becomes 

Equation (C.67). 

1 1 1 1( ) ( ))C C C C C C C C C CinT T T f f f T T f T= − − − − +                                 (C.67)  

Then Equation (C.67) can be made in the deviation variable form or 

perturbation form as Equation (C.68). 

            1 1 1 1( ) ) ( )p p p p p
C C C C C C C C C C CinT T T T T f f T f f T+ = + − − + +                      (C.68) 

From Equation (C.67), at steady state; 

                                     1C C C CinT T f T= +                                                  (C.69) 

Combine Equations (C.68) and (C.69) together, then Equation (C.64) becomes 

as follows. 

                                  1 1(1 ) ( )p p p
C C C Cin C CT f T T T f= − + −                       (C.70) 

 From Appendix Figure C2, the output equation of hot stream for a single heat 

exchanger with a single bypass on cold side referred from (Hangos et al., 2004; Bao 

and Lee, 2007) is presented in Equation (C.71). 

                                                          1H HT T=                                                      (C.71) 

 Therefore, the state and output equations for cold and hot streams of a heat 

exchanger with a single bypass on cold side are summarized in Equations (C.72) to 

(C.75). 

1 1
1 1

C C C C C C C C C C C Cin
C H C

C C C

dT UA F f F F T F TUAT T f
dt

τ τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞− + − −
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

              (C.72) 

11
1 1

H Hin H HH H H
C H H

H H H

T TdT UA FUAT T F
dt

τ ττ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞−− −
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                  (C.73) 

1 1(1 ) ( )C C C Cin C CT f T T T f= − + −                                                                       (C.74) 

1H HT T=                                                                                                              (C.75) 
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 where  i i PiCτ ρ= and i i i PiV Cξ ρ=  

 

C.3 Derivation of a Single Heat Exchanger without Bypass Concerning 

Volumetric Flowrates as Manipulated Variables into State Space Model 

 

This section shows the derivation of a single heat exchanger without bypass by 

concerning volumetric flowrates as manipulated variables into state space model. The 

original equations for this model referred from Equations (C.1) to (C.4).  

1
1 1 1( ) ( )C

C C pC C C pC Cin C H C
dTV C F C T T UA T T

dt
ρ ρ= − + −                        (C.1) 

1
1 1 1( ) ( )H

H H pH H H pH Hin H C H
dTV C F C T T UA T T

dt
ρ ρ= − + −                         (C.2) 

                                         1C CT T=                                                                (C.3) 

                                         1H HT T=                                                               (C.4) 

The state variables are output cold and hot temperature ( 1 1,C HT T ), and the 

manipulated variables are cold and hot flowrates (FC, FH). 

 

Let C C pCCτ ρ= and C C C pCV Cξ ρ=  then Equation (C.1) becomes; 

1
1 1 1( ) ( )C

C C C Cin C H C
dT F T T UA T T

dt
ξ τ= − + −                                         (C.76) 

1
1 1 1

C
C C C Cin C C C H C

dT F T F T UAT UAT
dt

ξ τ τ= − + −                                 (C.77) 

From Equation (C.77), although most terms on the right are linear, the second 

one is nonlinear due to T1C and FC which are state and manipulated variables. 

Therefore, Taylor’s series (Luyben et al., 1997) for linearization are presented. After 

linearization, Equation (C.77) becomes; 

1
1 1 1 1 1( ) ( )C

C C C Cin C C C C C C C C H C
dT F T F T T T F F UAT UAT

dt
ξ τ τ τ= − − − − + −   (C.78) 
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Then Equation (C.78) can be made into the deviation variable form or 

perturbation form. 

1 1
1 1 1 1 1 1

( ) ( ) ( ) ( )
p

p p p p pC C
C C Cin C C C C C C C C H H C C

d T T T F F F T T F UA T T UA T T
dt

ξ τ τ τ+
= + − − + + − −

                  (C.79) 

1
1 1 1 1 1 1

p
p p p p pC

C C C C C C C H C C Cin C C Cin C H C
dT F T T F UAT UAT T F T F UAT UAT

dt
ξ τ τ τ τ= − − + − + + + −

                  (C.80) 

From Equation (C.79), at steady state; 

           
1 10 C Cin C H CT F UAT UATτ= + −              (C.81) 

Combine Equations (C.80) and (C.81) together and rearrange the equation into 

the following form. Then Equation (C.76) becomes; 

          

1 1
1 1

p
p p pC C C C Cin C C
C H C

C C C

dT UA F T TUAT T F
dt

τ τ τ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                        (C.82) 

 Equation (C.82) is the state equation for cold stream of a single heat exchanger 

without bypass concerning volumetric flowrate as manipulated variable. Likewise, the 

state equation for hot stream is followed the above development which is resulted in 

the following equation. 

             

11
1 1

p
p p pH Hin H HH H H
C H H

H H H

T TdT UA FUA T T F
dt

τ ττ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−− −
= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
               (C.83) 

 For the output equations for this system, they are the same as Equations (78) 

and (79). 

                                         1C CT T=                                                              (C.84) 

                                         1H HT T=                                                             (C.85) 
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C.4 Linearized State Space Equation Forms 

 

 This part shows another way which is referred from Hangos and Cameron 

(2001) to linearize models and change into state space forms. The advantage of this 

part is to ensure that the models derived in section C.1 to C.3 are correct. 

 

 Consider the set of nonlinear state space equations given by Equations (C.86) 

and (C.87). 

                                                  ( ) ( ( ), ( ))dx t f x t u t
dt

=                                              (C.86) 

                                                    ( ) ( ( ), ( ))y t h x t u t=                                               (C.87) 

or in expanded form as 

                                                   

1

1 1 1

2
2 1 1

1 1

( ,..., , ,... )
( ,..., , ,... )

( ,..., , ,... )

n m

n m

n n m
n

dx
dt f x x u u
dx f x x u u
dt

f x x u udx
dt

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

                         (C.88) 

and   

                                                    

1 1 11

2 1 12

1 1

( ,..., , ,... )
( ,..., , ,... )

( ,..., , ,... )

n m

n m

k n n m

h x x u uy
h x x u uy

y h x x u u

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                          (C.89) 

If this state space models are regarded as LTI system as being written in 

deviation form, then the state space matrices are the partial derivatives of the state and 

input variables as follows: 
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1 1 1

1 2
11 12 1

2 2 2
21 22 2

1 2
,

1 2

1 2

o o

n
n

n
n

x u

n n nn
n n n

n

f f f
x x x

a a a
f f f

a a af x x xA
x

a a a
f f f
x x x

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎜ ⎟
⎜ ⎟∂ ⎜ ⎟∂ ∂ ∂= = =⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

                          (C.90) 

                   

1 1 1

1 2
11 12 1

2 2 2
21 22 2

1 2
,

1 2

1 2

o o

m
m

m
m

x u

n n nm
n n n

m

f f f
u u u

b b b
f f f

b b bf u u uB
u

b b b
f f f
u u u

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎜ ⎟
⎜ ⎟∂ ⎜ ⎟∂ ∂ ∂= = =⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

                          (C.91) 

                    

1 1 1

1 2
11 12 1

2 2 2
21 22 2

1 2
,

1 2

1 2

o o

n
n

n
n

x u

k k kn
k k k
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c c c
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x

c c c
h h h
x x x

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎜ ⎟
⎜ ⎟∂ ⎜ ⎟∂ ∂ ∂= = =⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

                          (C.92) 

                   

1 1 1
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11 12 1

2 2 2
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1 2

1 2
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m
m

m
m
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k k km
k k k

m

h h h
u u u

d d d
h h h

d d dh u u uD
u

d d d
h h h
u u u

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎜ ⎟
⎜ ⎟∂ ⎜ ⎟∂ ∂ ∂= = =⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

                        (C.93) 

 

 These entries are evaluated at the chosen operating point of x0, u0. Next, the 

derivation of state and output equations for hot stream of a single heat exchanger with 

a single bypass on hot side is considered. 
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 From Equations (C.8), (C.21), (C.31) and (C.38), the state variables 

are 1 1[ ]T
C Hx T T= ; the input (manipulated) variables are [ ]T

C Hu F f= ; the output 

variables are [ ]T
C Hy T T= . Let Equation (C.21) be f1(x,u), Equation (C.8) be f2(x,u), 

Equation (C.38) be h1(x,u) and Equation (C.31) be h2(x,u). The elements of A, B, C, D 

matrices are determined as follows. 

1 1 11 1
11

1 1 1

C C Cin C C C H C

C C C

F T F T UAT UATf fa
x T T

τ τ
ξ

⎛ ⎞− + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

                            (C.94) 

                             

C C

C

UA Fτ
ξ

− −
=                                                                            (C.95) 

1 1 11 1
12

2 1 1

C C Cin C C C H C

H H C

F T F T UAT UATf fa
x T T

τ τ
ξ

⎛ ⎞− + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

                           (C.96) 

                            C

UA
ξ

=                                                                                           (C.97) 

1 1 1 12 2
21

1 1 1

( ) ( ) ( )H H Hin H H H H Hin H C H

C C H

F T T F f T T UA T Tf fa
x T T

τ τ
ξ

⎛ ⎞− − − + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

        (C.98) 

                            
H

UA
ξ

=                                                                                           (C.99) 

1 1 1 12 2
22

2 1 1

( ) ( ) ( )H H Hin H H H H Hin H C H

H H H

F T T F f T T UA T Tf fa
x T T

τ τ
ξ

⎛ ⎞− − − + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

    (C.100) 

                           H H H H H

H

UA F F fτ τ
ξ

− − +
=                                                           (C.101) 

1 1 11 1
11

1

C C Cin C C C H C

C C C

F T F T UAT UATf fb
u F F

τ τ
ξ

⎛ ⎞− + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

                            (C.102) 

                          

1C Cin C C

C

T Tτ τ
ξ
−

=                                                                           (C.103) 

1 1 11 1
12

2

C C Cin C C C H C

H H C

F T F T UAT UATf fb
u f f

τ τ
ξ

⎛ ⎞− + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

                            (C.104) 

                          =  0                                                                                             (C.105) 
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1 1 1 12 2
21

1

( ) ( ) ( )H H Hin H H H H Hin H C H

C C H

F T T F f T T UA T Tf fb
u F F

τ τ
ξ

⎛ ⎞− − − + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

     (C.106) 

                          =  0                                                                                             (C.107) 

1 1 1 12 2
22

2

( ) ( ) ( )H H Hin H H H H Hin H C H

H H H

F T T F f T T UA T Tf fb
u f f

τ τ
ξ

⎛ ⎞− − − + −∂ ∂ ∂
= = = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

     (C.108) 

                          

1H H H H H Hin

H

F T F Tτ τ
ξ
−

=                                                                (C.109) 

11 1
11

1 1 1

1C

C C

Th hc
x T T

∂∂ ∂
= = = =
∂ ∂ ∂

                                                                                  (C.110) 

11 1
12

2 1 1

0C

H H

Th hc
x T T

∂∂ ∂
= = = =
∂ ∂ ∂

                                                                                 (C.111) 

( )2 2
21 1 1

1 1 1
H H H H Hin

C C

h hc T f T f T
x T T
∂ ∂ ∂

= = = − +
∂ ∂ ∂

   = 0                                            (C.112) 

( )2 2
22 1 1

2 1 1
H H H H Hin

H H

h hc T f T f T
x T T
∂ ∂ ∂

= = = − +
∂ ∂ ∂

  =  1 Hf−                                    (C.113) 

11 1
11

1

0C

C C

Th hd
u F F

∂∂ ∂
= = = =
∂ ∂ ∂

                                                                                  (C.114) 

11 1
12

2

0C

H H

Th hd
u f f

∂∂ ∂
= = = =
∂ ∂ ∂

                                                                                  (C.115) 

( )2 2
21 1 1

1
H H H H Hin

C C

h hd T f T f T
u F F
∂ ∂ ∂

= = = − +
∂ ∂ ∂

 = 0                                               (C.116) 

( )2 2
22 1 1

2
H H H H Hin

H H

h hd T f T f T
u f f
∂ ∂ ∂

= = = − +
∂ ∂ ∂

 1Hin HT T= −                                   (C.117) 

Therefore, the state space equation in the deviation variable form of a single 

heat exchanger with a single bypass on hot side is Equations (C.118) and (C.119)) 

which are the same as Equations (C.39) to (C.42). 
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11
1

1 1
1

0

0

C Cin C CC CC
C C

CC C

H H H H H H HinH H H H H
H H

HH H

T TUA F UAdT T F
dt

dT F T F TUA F f FUA T f
dt

τ ττ
ξξ ξ

τ ττ τ
ξξ ξ

⎛ ⎞ ⎛ ⎞−− −⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ − + − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

                                                                                                                              (C.118) 

1

1 1

0 01 0
00 1

C C C

H H HHin HH

T T F
T T fT Tf

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠                                         (C.119) 
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Appendix D 

Theorem proof 
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This appendix shows the full proof of the theorems or equations as resulted in 

previous part. 

 

1. Theorem 2: (Bao and Lee, 2007) For a given stable non-passive process with a 

transfer function matrix of G(s), there exists a diagonal, stable, and passive transfer 

function matrix W(s) = w(s)I such that H(s) = G(s) + W(s) is passive. 

 

Proof: Since both G(s) and W(s) are analytic in 0)sRe( ≥ , so is H(s). Therefore, H(s) 
is passive if the minimum eigenvalue of [H(jω)+H*(jω)] is non-negative for any 

[ ]+∞∞−∈ω , , 
 

( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ]( )ω+ω+ω+ωλ=ω+ωλ jWjWjGjGjHjH **
min

*
min           (D.1) 

 
Because both ( ) ( )[ ]ω+ω jGjG *  and ( ) ( )[ ]ω+ω jWjW *  are Hermitian, from the Weyl 
inequality (Amir-Moez, 1956), we have 
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )ω+ωλ+ω+ωλ≥ω+ωλ jWjWjGjGjHjH *
min

*
min

*
min  

 
( ) ( )( ) ( ) ( )( ) } ( )( ){ ω+ω+ωλ=ω+ωλ jwRe2jGjGjHjH *

min
*

min           (D.2) 
 
If w(s) is chosen to be "passive enough" such that 
 

( )( ) ( ) ( )( )ω+ωλ−≥ω jGjG
2
1jwRe *

min              (D.3) 

 
For any [ ]+∞∞−∈ω , , then H(s) = G(s) + W(s) can be rendered passive. If 

( )( ) ( ) ( )( )ω+ωλ−>ω jGjG
2
1jwRe *

min , then H(s) will be strictly passive. 

 

2. Theorem 3: (Bao et al., 2002a) For an interconnected system (as shown in Figure 

3) comprising a stable subsystem G(s) and a decentralized controller K(s) = 

diag{ki(s)}, i = 1, ..., n, if a stable and minimum phase transfer function w(s) is chosen 

such that ν(w(s),ω)<-ν(G+(s),ω), then the closed-loop system will be decentralized 

unconditionally stable if for any loop i = 1, ..., n, k'i(s) = k+
I(s)[1-w(s)k+

I(s)]-1 is 

passive, where kI
+(s) = UiikI(s) and U = diag{Uii}, i = 1, …, n 
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Proof: When loop shifting is used, a closed-loop system equal to that in Figure 3 is 

obtained, as shown in Appendix Figure D1,  

 

 

 

 

 

Appendix Figure D1 Loop shifting 

 

Source:  Bao et al. (2002a) 

where                             G'(s) = G(s)U + w(s)I             (D.4) 

and 

                           K'(s) = U-1K(s)[I - w(s)U-1K(s)]-1            (D.5) 

 

From Theorem 1, if G'(s) is SPR and K'(s) is PR, the closed-loop system will be 

stable. Because K+(s) is diagonal, so is the subsystem K'(s). Then, K'(s) is passive if 

and only if its diagonal element ki'(s) is passive for each loop i = 1, ..., n. In addition, 

when k.i'(s) is passive, K'(s) will remain passive when its gain matrix is reduced to 

K'(s)E = diag{k.i'(s)εi}, 10 i≤≤∈ , i = 1, ..., n. Therefore, the positive realness of ki'(s) 

ensures the decentralized unconditional stability of the closed-loop system. 

 

3. Theorem 5: (Necessary condition for decentralized integral controllability (DIC))  

(Morari and Zafiriou, 1989). An m m× LTI stable process G(s) is DIC only if 

                                            
( (0)) 0, 1,...,ii G i mΛ ≥ ∀ =                                               (50) 

where ( (0))ii GΛ is the ith diagonal element of the RGA matrix of G(0). 

 

 

K(s) 

w(s)I 

U-1+ + 

K’(s)  

U G(s)

w(s)I

+ 

+ 

G’(s)

+ ‐ 
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Proof: Follows from Theorem 6 in Grosdidier et al. (1985). 

 The rule of avoiding pairings corresponding to negative RGA elements goes 

back to Bristol (1966), but it was proved rigorously in recent. Note that ij-th element 

of the RGA is defined as 

                                                 ,

,

( / )

( / )
k k j

l l i

i j u
ij

i j y

y u gOLRGA
y u gCL

≠

≠

∂ ∂
= =

∂ ∂
                               (D.6) 

where gOL is open-loop steady-state gain matrix and gCL is closed-loop steady-state 

gain matrix 

 

 Equation (D.6) represents the ratio of the gain from uj to yi in open-loop (other 

u’s constant) and closed-loop (other y’s constant). If the sign of this gain changes as 

we change or close other loops, then we are not able to apply negative feedback in all 

cases, and the plant is not DIC.  

 

4. Derivation from Problem 1 to Problem 2  

Problem 1 (Bao et al., 2002a) 

                                                            { }tmin
D

                                                             (51) 

subject to:                

                               ( ) ( ) ( ) ( ) ( )[ ] ( ) 0tIDjGDDjGD 1*1 >+ωωω+ωωω −++−             (52) 

                                                            D(ω) > 0               (53) 

where ( ) nnRD ×∈ω  is a diagonal matrix and t is a real scalar variable 

 

Because D(ω) is nonsingular; therefore Equation (52) is equivalent to the 

following equation.  

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )1 1*( ) [ ( )] 0D D G j D D G j D D tD Dω ω ω ω ω ω ω ω ω ω− −+ ++ + >
  
(D.7) 

                ( ) ( ) ( ) ( ) ( ) ( )*( ) [ ( )] 0G j D D D D G j tD Dω ω ω ω ω ω ω ω+ ++ + >              (D.8) 
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Due to ( ) ( )M D Dω ω= as defined before, Equation (D.8) becomes Equation (D.9). 

                                     
*( ) [ ( )] 0G j M M G j tMω ω+ ++ + >                                       (D.9) 

Due to G+(jω) = X(ω) + jY(jω), where both X(ω) and Y(ω) are real matrices, as 

defined before, This leads Equation (D.9) to Equation (D.10). 

                     ( ( ) ( ) ) ( ( ) ( ) ) 0T TX M MX j Y M MY tMω ω ω ω+ + − + >                      (D.10) 

or quaivalently, 

                  ( ( ) ( ) ) ( ( ) ( ) ) 0T TX M MX j Y M MY tMω ω ω ω− + − − − <                       (D.11) 

The above equation holds if and only if  

               
( ) ( ) ( ) ( ) 0

0
( ) ( ) ( ) ( ) 0

T T

T T

X M MX Y M MY M
t

Y M MY X M MX M
ω ω ω ω

ω ω ω ω

⎡ ⎤ ⎡ ⎤− − −
− <⎢ ⎥ ⎢ ⎥

− + − −⎣ ⎦ ⎣ ⎦
                  (D.12) 

Therefore, Problem 1 can be converted into the following generalized 

eigenvalue problem with constraints described in real matrix inequalities. 

 

Problem 2 (Bao et al., 2002b) 

                                                               { }tmin
M

                                                                (54) 

subject to: 

                           
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
<⎥

⎦

⎤
⎢
⎣

⎡

ω−ω−ω+ω−
ω−ωω−ω−

M0
0M

t
MXMXMYMY

MYMYMXMX
TT

TT

           (55) 

                                                M is diagonal and M > 0              (56) 
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Appendix E 

Code validation  
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Since the main part of this work uses the passivity concept via MATLAB 

program, codes determining or optimizing is verified through some examples from 

Bao and Lee (2007) and Boonkhao (2004). 

 

E.1 Code Validation of Definition 2.1: Passivity Index 

 

 The equation used to determine the passivity index is Equation (57) 

                 
( )( ) ( ) ( )( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
ω+ωλ−=ων

−++−+ 2
1

*2
1

2
1

2
1

mins MjGMMjGM
2
1,sG              (57) 

 The example used to validate, which is referred from Bao and Lee (2007), has 

a system as follows. 

                            

411.7 0690.87 279.17
0 306.0369.254 375.29

1 0
0 1

x x u

y x

⎛ ⎞− ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                            (E.1)  

After validating with the author’s code, it give the same results as shown in 

Appendix Figure E1. 

 

Appendix Figure E1 Code validation of passivity index of the example 

 

Source:  Bao and Lee (2007) 
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E.2 Code Validation of Definition 2.5: Weighting Function 

 

The equations used to determine the weighting function parameter are 

Equations (59) and (60). 

                   
( )( ) ( )( )( )

2m

i s ia ,b,c,k i 1
min Re w j G s ,+

=

ω − υ ω∑                                 (59) 

subject to 

                 ( )( ) ( )( )i s iRe w j G s , , i 1...m+ω > υ ω ∀ =                              (60) 

The example used to validate, which is referred from Boonkhao (2004), has a 

system as follows. 

                             
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

++=
−−

−−

ss

ss

e
s

e
s

e
s

e
ssG

1418

2827

160
72.5

150
39.5

160
77.1

150
05.4

)(                                             (E.2) 

This system is tested by passivity index as in section E.1. The result is shown 

in Appendix Figure E2. 

 

Appendix Figure E2 Code validation of the passivity index of the system 

 

Source:  Boonkhao (2004) 
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The above graph results that the system is non-passive; therefore, the 

weighting function has to add into this system and make it passive. After validating 

with the author’s code in Appendix F, it gives the same results as shown in Appendix 

Figures E3 and E4. 

 

Appendix Figure E3 Code validation of the passivity index of weighting function 

 

Appendix Figure E4 Code validation of passivity index after adding weighting  

                                     Function 

 

Source:  Boonkhao (2004) 
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E.3 Code Validation of Problem 2: Diagonal Scaling Passivity Index 

 

 The equations used to calculate diagonal scaling passivity index are Equations 

(54) to (57) as follows. 

                                                                 { }tmin
M

                                                             (54) 

subject to: 

                           
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
<⎥

⎦

⎤
⎢
⎣

⎡

ω−ω−ω+ω−
ω−ωω−ω−

M0
0M

t
MXMXMYMY

MYMYMXMX
TT

TT

           (55) 

                                                M is diagonal and M > 0              (56) 

                    ( )( ) ( ) ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
ω+ωλ−=ων

−++−+ 2
1

*2
1

2
1

2
1

mins MjGMMjGM
2
1,sG           (57) 

The example used to validate, which is referred from Bao and Lee (2007), has 

a system as follows. 

1.3 0.2 0.4 5

2

4 1.01 5 2.8

2

17 11

2 2

4.09 6.36 0.25 0.49
(33 1)(8.3 1) (31.6 1)(20 1) 21 1 (22 1)

4.17 6.93 0.05 1.53
45 1 44.6 1 (34.5 1) (48 1)

( )
1.73 5.11 4.61

(13 1) (13.3 1)

s s s s

s s s s

s s

e e e e
s s s s s s

e e e e
s s s s

G s
e e e

s s

− − − −

− − − −

− − −

− −
+ + + + + +

− −
+ + + +

=
−

+ +

1.02 0.5

2.6 0.2 0.05 0.06

5.48
18.5 1 15 1

11.18 14.04 0.1 4.49
(43 1)(6.5 1) (45 1)(10 1) (31.6 1)(5 1) (48 1)(6.3 1)

s s

s s s s

e
s s

e e e e
s s s s s s s s

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥+ +⎢ ⎥
⎢ ⎥− −⎢ ⎥

+ + + + + + + +⎢ ⎥⎣ ⎦

     (E.3) 

This system is tested by both passivity index as in section E.1 and diagonal 

scaling passivity index as in this section. The results are shown in Appendix Figure 

E5. 
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Appendix Figure E5 Code validation of before and after diagonal scaling passivity 

                                     Index 

 

Source:  Bao and Lee (2007) 
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