Anwaraporn Niltharach 2011: Sol-gel Synthesized Cerium Promoted TiO₂ as Cobalt Catalyst Support for Fischer-Tropsch Synthesis. Doctor of Philosophy (Chemistry), Major Field: Chemistry, Department of Chemistry. Thesis Advisor: Associate Professor Attera Worayingyong, Ph.D. 184 pages.

Cerium promoted TiO₂ samples were synthesized using a sol-gel method with different hydrolysis conditions; low and high water content (ratios of water to Ti-alkoxide precursor: H) and different cerium precursors. Mixture phases of anatase and rutile were investigated by X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES). XANES spectra showed that hydrolysis resulted from both high and low cerium percentages of different cerium precursors $[Ce(acac)_3$ and $Ce(NO_3)_3]$ did not show significant effect on the mixture phases. Instead, the spectra showed the effects of low and high water content. The low water content method (H = 4) produced mainly anatase phase. Raman spectra showed no peaks of CeO₂ for the promoted samples. Ce L_3 -edge EXAFS spectra were used to investigate the localized sites of different cerium loading. Low percentage Ce/TiO₂ samples showed that the Ce ions in TiO_2 obtained the best fits using the interstitial defect simulations with Ce-O distances of 2.09 and 2.64 Å and Ce-Ti of 2.87 and 3.13 Å. For high percentage Ce/TiO₂ samples, EXAFS analysis showed that the Ce ions in TiO₂ gained both interstitial and substitution defect simulations with different ratios. From EXAFS results, it could be assumed that different Ce percentages performed different localized sites of Ce ions in TiO_2 : the lower percentage resided as an interstitial site whereas the higher resided both an interstitial site and the Ti-substitution site in TiO₂. As for Fischer-Tropsch catalyst support, the low percentage of cerium ions in TiO_2 prepared by the low water content sol-gel method showed complete cobalt reduction at low temperature (550°C) as resulted from temperature programmed reduction (TPR). Fischer-Tropsch synthesis with instantaneous total stream sampling analysis technique was tested and the gas products were analyzed using GC equipped FID.

Student's signature

Thesis Advisor's signature

___ / ___ / ___