CHAPTER V

DEVELOPMENT OF GENETIC INSTRUCTIONAL UNITS (GIU)

Introduction

This chapter is development of genetic instructional units (GIU), which is composed of the principles of GIU design, sequencing of GIU development, and genetic topics of the genetic instructional units. This was the second phase of the research study, which was done from January to February, 2005. The objective of the second phase was studying the implications of using the GIU to teaching and learning genetics: including changes and developments in students' genetic conceptions and communication skills.

Development of Genetic Instructional Units

The development of GIU was employed to answer the research questions in the second phase which were: 'How to develop Genetic instructional units (GIU) that helps disadvantaged high school science students in welfare schools of Thailand to understand genetic concepts and develop their communication skills?'.

The purposes of this phase are to develop genetic instructional units for disadvantaged high school science students in the welfare schools of Thailand; to explore advanced genetic concepts and the communication skills of disadvantaged high school science students; and to study the implications of using GIU with disadvantaged high school science students in the welfare schools of Thailand.

The GIU were developed to be an alternative choice for teaching genetics with disadvantaged students. The GIU were also developed to relate with the National Education Act (1999, 2nd edition 2002), the Basic Education Curriculum (Ministry of Education, 2001), and the Handbook for Learning Management in the Section of Science for high school students in Thailand; with a focus on the parts of equalities of

a science learner, the science contents, and the science content standards (IPST, 2002:5-9). The main concerns were students constructing their own knowledge, and students learning participation by communicating with peers in groups and in the classroom. This part was presented in three sections; which were principles of GIU design, sequencing of GIU development, and genetic topics of GIU.

1. Principles of GIU Design

Before designing the GIU; the researcher explored the existing situation of genetic teaching and learning for disadvantaged students in Thai welfare schools, along with the students' prior knowledge of genetic concepts which they brought into a genetic classroom. These were the important things to consider before developing genetic instructional units which were suitable for disadvantaged students in each school.

1.1 GIU are Related to Genetic Teaching and Learning in Thai Welfare Schools.

The purposes of the surveys were finding teachers' and students' perceptions about genetic teaching and learning in disadvantaged Thai high schools in respect to 1) difficult genetic concepts for understanding in teaching and learning 2) teaching and learning strategies 3) instructional materials 4) assessment and, 5) problems and solving problems, including teachers' and students' suggestions for genetic teaching and learning. The researcher used the results from the surveyed of biology teachers' and science students' perceptions of genetic teaching and learning to develop the GIU. The results showed that 9 out of 16 concepts, which were 'Dominant and Recessive', 'Homozygous and Heterozygous', 'Genotype and phenotype', 'Chromosome', 'Relationship between Gene and Chromosome', 'Chemical Structure of DNA', 'DNA Properties and DNA Synthesis', 'DNA and RNA in Protein Synthesis', and 'Genetic Codes', were in the same level of difficulty in both teachers' and students' perceptions. For teaching and learning strategies, most of genetics' teaching and learning strategies were teacher explanations, students had

chances to discuss and present in their classrooms. The results showed some teachers identified doing activities in group as a part of successful teaching and learning genetics. Some teachers identified using practical model as instructional materials in teaching DNA structure. The results showed the students need a variety of assessment with dynamic assessment.

The researcher realized that checking students' prior knowledge before teaching each concept is importance. In teaching and learning genetics each concept, teacher should motivate students into the lesson by using a variety of situations; using a variety of teaching strategies to let student thinking and constructing their own knowledge through communication among social interactions. For instructional materials, teacher should use practical instructional materials that students can touch and do activities with more capable peers or teacher. For assessment, teacher should use a variety of dynamic assessment. In this way, teacher can help students when they had alternative conceptions before moving to next concept.

1.2 GIU are Based on Basic Genetic Concepts of Disadvantaged Students in Thai Welfare Schools

The results from the basic genetic concepts survey contained significant information for developing the GIU. The results indicated that the majority of students had: 'Alternative Conceptions' in gene, chromosome, dominant and recessive alleles, and genetic diseases concepts; 'Partial Understanding' in inheritance traits and sex chromosome concepts; and 'No Conception' in genetic engineering concepts. It showed the significance of adjusting students' knowledge before teaching new concepts. The alternative conceptions which student held can be affected to students' understanding next concepts, such as gene and chromosome concepts affected to DNA concept.

1.3 GIU are Based on a Social Constructivist Approach

The GIU developed were based on a social constructivist approach, which was aimed at students constructing their own knowledge by participating with the teacher and other students as more capable experts. The sequence of each unit contained an invitation or motivation, surveying students' prior knowledge, revising students' basic knowledge, activities, sharing ideas with peers, and whole class discussions; which were related to a social constructivist approach, along with the feedback from teachers and students in genetic teaching and learning from the survey (Driver and Oldham, 1986; Perkins, 1999; Cosgrove and Osborne, 2001: 108-110; Gray, 2005). Activities in each unit promoted students' thinking to find suitable explanations for each concept. Each step of the activities and dynamic assessment as scaffoldings to help students develop their Zone of Proximal Development, which is the distance between the actual development level and the level of potential development when they work with a more expert other (Kozulin et al., 2003: 7-8; Gindis, 2003: 207-217). The activities were variable, flexible and with an emphasis on practical activities, which was suitable for disadvantaged students in both average and inclusive classrooms (Palincsar and Klenk, 1992). Worksheets, students' journals and a variety of dynamic assessments were a part of the formative assessment or dynamic assessment of students while they were on the learning path with their peers. The social interactions between students and their teachers were effective ways to assess and develop students' learning. Social issues were raised in the orientation and activities' parts of the GIU.

1.4 GIU are Based on Promoting Student Communication Skills

An important part of the qualities of science students before finishing basic education is that students should have the ability to communicate their scientific knowledge to other people in their society, particularly in the area of making decisions about social issues. The GIU placed an emphasis on students' communication skills, which were the abilities of students to participate with peers and with their teacher, answer questions, write journal entries, present their knowledge or models, and discuss issues with their classmates and teachers for learning molecular genetics instruction units in the classroom. The activities in each unit had to encourage and give opportunities for students to communicate among others. Language as a tool in communication that students used in their social interaction is a part of scaffolding that teacher set through classroom activities (Osborne, 1996: 60-68). The instructional materials were made to be uncomplicated for students, such as containing clear pictures or concrete instruments that students could touch and do activities with, so they can explain clearly by themselves.

2. Sequencing of GIU Development

2.1 The researcher studied the 'Basic Education Curriculum' (Ministry of Education, 2001), and the 'Handbook for Learning Management in the Section of Science' (IPST, 2002) for setting learning framework genetic contents, along with teaching and learning strategies. According to the curriculum reform in Thailand, the former versions of students' and teachers' handbooks of IPST [Science 045 (biology handbooks of teachers and students according to the second structure of the science curriculum in Thailand) and Science 048 (biology handbooks of teachers and students according to the third structure of the science curriculum in Thailand) were studied as well.

2.2 The researcher used information from the related researches of education in Thailand and other countries, social constructivist teaching and learning, disadvantaged students, genetics education, genetics alternative conceptions, and communication and classroom interactions; along with the first phase of this research, such as the difficulties of students in learning genetic concepts, teaching and learning in welfare schools, and the basic genetic concepts of disadvantaged students in welfare schools in order to develop the GIU framework. The researcher surveyed the genetic teaching and learning of disadvantaged students in welfare schools, where genetics was taught at high school level. The results of the surveys contributed to the development of teaching and learning strategies, instructional materials, and assessment and evaluation; which was suitable for disadvantaged students in schools

A and B. The researcher surveyed the basic genetic concepts of disadvantaged students in welfare schools, which taught genetics at high school level. The respondents answered the survey after they had studied basic genetic concepts. The results contributed to the development of some activities to adjust students' knowledge before studying to new concepts.

2.3 The researcher developed a GIU framework based on social constructivist approach; which was composed of learning outcomes, genetic concepts, activities, instructional materials, along with the assessment and evaluation of each unit. The framework was related to science content standards, the qualities of science students in the handbook of IPST and the genetic concepts in the former and current basic educational curriculum.

2.4 The researcher proposed the GIU framework to research committees for checking content validity and edited it after the committees gave feedback.

2.5 The researcher developed each unit of the GIU in the Thai language, which were composed of 12 units (18 periods) with instructional materials. (Each period was 50 minutes)

2.6 The researcher proposed the GIU to research committees, who were a genetics expert and two university science educators, for content validity, main ideas, learning activities, and language. The researcher then edited the GIU after the committees gave feedback. The GIU were validated in terms of content, appropriateness of the questions, language used, learning activities, and quality of influence in each unit. The whole units were validated by science teachers, who had experience in teaching science for disadvantaged students in welfare schools.

3. Genetic Topics of the Genetic Instructional Units

The twelve genetic topics of the Genetic Instructional Units consisted of; DNA definition and significance, DNA discovery, DNA chemical components and structure, Invention of DNA model, Presentation of DNA model, Genome, DNA properties (Part 1: DNA replication), DNA properties (Part 2: DNA Transcription), DNA properties (Part 3: Translation), Mutation, Genetic engineering, and Mini Molecular Genetics Fair. An overview of the Genetic Instructional Units is shown in Table 5.1 below. The overview of activities in each GIU is shown in Appendix C.

Units	Concepts	Activities
DNA	-The nucleus is the center of the controlling	-Teacher used 'Tsunami' and
definition and	system of a cell, which is important in the	'Human finger in fermented meat',
significance	processing of cell division and	which helped to set questions and
	reproduction, because the cell has	to raise students' thinking.
	chromosomes which have genetic materials	-Link to students' prior knowledge
	(DNA) inside them.	of chromosomes, DNA, and cell
	-DNA is genetic material which living	division by using worksheets.
	organisms can inherit from generation to	-Using daily live issues for
	generation.	problem solving in group
	-Chromosomes are composed of genetic	-Whole class discussion
	material and protein histone. Each living	
	organism can exchange pieces of	
	chromosome during cell division for	
	reproduction. Therefore, living organisms	
	in the next generation have some parts like	
	mother and some parts like the father.	
DNA	Scientific discovery to confirm that 'DNA	-Using DNA bands for finding
discovery	is genetic material', including the fact that	millionaire's son links to how
	DNA can be transferred from one living	scientists' discover DNA and
	organism to another or can help living	scientists' Nobel Prize experiment
	organisms transfer their traits from one	-Link to students' prior knowledge
	generation to the next, along with the fact	of grouping living organisms in
	that non living organisms which do not have	each group of the animal kingdom
	DNA cannot increase their numbers.	-Using scientific experiments
		raises group discussion of the
		discovering of DNA; that is
		scientific experiments confirm that

Table 5.1 Table of the Genetic Instructional Units

Units	Concepts	Activities
		DNA is genetic material and
		scientific knowledge can change
		when we have superior
		explanations or evidence.
DNA chemical	-DNA or deoxyribonucleic acid is	-Refers to DNA discovery and
components	composed of nucleotides which are two	links to studies about the chemical
and structure	strands in helix (double helix), which are	components of DNA.
	presented as a twisted ladder representing	-Do work sheet for finding
	the sugar-phosphate backbones of the two	students' prior knowledge of
	strands and whose rungs represent base	chemical components of DNA.
	pairs between Adenine (A) and Thymine	-Do 'Looking for chemical
	(T), and Guanine (G) and Cytosine (C).	components of DNA' activity sheet
	-Each polynucleotide is composed of	by using plastic models to find
	nucleotides, which link by the bonding of	components of nucleotide in small
	deoxyribose sugar and phosphate groups.	and whole class activities
	-The nucleotide is composed of a	-Whole class discussion of the
	nitrogenous base, deoxyribose sugar and the	variety of bases in DNA, chemical
	phosphate group.	components of DNA, and DNA
		structure
Invention of	-DNA model invention can be used to	-Use a DNA plastic model which
DNA model	explain DNA components and structure.	students invented in Unit 3, and a
	Moreover, it can promote group work, in	DNA paper model for similarity to
	which each number has a responsibility.	start the lesson.
		-Ask questions for revising
		students' knowledge of chemical
		components and the structure of
		DNA
		-Whole class of students set the
		criteria for marking their DNA
		model and invent their own DNA
		models in each small group
		-Whole class discussion

Units	Concepts	Activities
Presentation of	Scientific discovery has to have reliable	-Classroom was decorated by DNA
DNA model	reasons, along with imagination. People	paper models to motivate students
	who have scientific knowledge should have	into the lesson.
	the ability to communicate with other	-Each group of students presents
	people for understanding theories or	their DNA models in front of the
	principles, which may lead to the	class and handed in the conclusion
	discovering of other phenomena.	of members' responsibilities and
	Therefore, after understanding the	budgets to the teacher and also
	components and structure of DNA, students	gave points to their favorite
	should have the ability to communicate	presentation(s).
	their scientific knowledge to others.	-Whole class discuss the chemical
		components and structure of DNA
		by considering students' own DNA
		models
Genome	-Genome is the base ordering of entire DNA	-Revise prior knowledge of bases
	in each living organism.	ordering in students' DNA model.
	-When people can transcribe the entire	-Use songs from the 'Genomic
	DNA code from a living organism, they can	Music' album for explanation that
	understand the living mechanism of that	the music comes from the base
	living organism, which can lead to medical	ordering of some parts of a
	developing, sanitary, agriculture, and food	Labrador retriever's DNA, which
	technology per se.	is coded with music notes
		-Group discussion of the different
		kinds of living organisms will have
		different tempos, and the meaning
		and the significance of genomes.
		-Whole class discussion of the
		meaning and significance of
		genomes
DNA	-DNA can synthesize itself (DNA	-Check students' prior knowledge
properties	replication), which is semi-discontinuous.	of DNA by putting texts about
(Part 1: DNA	The new strand has the same structure and	chemical components of DNA into
replication)	series of nucleotide as the template strand.	a DNA structure chart.

Unite	Concents	Activities
Units	Concepts	Lies DNA plastic models with
		-Use DNA plastic models with
		activity sheets for doing a model of
		DNA replication in each small
		group.
		-Whole class discussion of the
		ordering of DNA replication
DNA	-DNA acts as a template for the production	-Checks students' prior knowledge
properties	of RNA.	of DNA and RNA
(Part 2: DNA	-Transcription is the production of an RNA	-Using the same DNA plastic
Transcription)	strand from a DNA template. The RNA	model which students studied
	strand moves from the 5'-end to the 3'-end.	about DNA replication in
	RNA has three types; mRNA, tRNA, and	Unit 7 and 'DNA transcription'
	rRNA.	worksheet for whole class
	-Each group of the three bases in mRNA is	discussion of DNA transcription
	called a codon. An anticodon is a three-	
	base sequence in tRNA. Each anticodon	
	matches with a specific codon.	
DNA	-Protein synthesis, translation, is the	-Teacher asks questions of codon
properties	manufacture of a protein with the sequence	and anticodon
(Part 3:	of amino acids specified by a mRNA	-Students watch videotape of
Translation)	molecule.	'Translation and protein synthesis'
	-AUG is the start codon of protein	and write answers on a
	synthesis.	'Translation and protein synthesis'
	-The process of protein synthesis or	worksheet in small group
	translation is: tRNA, which has anticodon	-Using 'V.M. Ingram's
	UAC which carries methionine, moves to	experiment' and 'Haemoglobins of
	match with mRNA, which has codon AUG;	people with and without sickle cell
	2 nd tRNA which has another amino acid,	anemia' transparencies and
	matches with the next codon on the mRNA	'Proteins with genetic traits'
	in ribosome, producing a peptide bond	worksheet for whole class
	between two amino acids; 1 st tRNA	discussion.
	separates from mRNA and ribosome,	
	ribosome moves through mRNA from 5'end	
	to 3' end, new tRNA with new amino acid	

Units	Concepts	Activities
	matches with mRNA and produces the	
	peptide bond again and again, until the	
	codon is either UAA or UAG or UGA	
	which are the stop codons of translation.	
Mutation	-Mutations may include base deletion, base	-Teacher asks questions about
	insertion, base change, or base inversion,	DNA, bases, and amino acids
	etc. which can be caused by radiation,	-Students read and see VCD daily
	chemical agents, food or temperature,	live issues about mutation, such as
	which are mutagens (mutation-causing	'A monkey face child'
	agents).	-Whole class discussion about the
	-Mutation can be both advantages and	causes of mutation; how to protect
	disadvantages.	yourself from mutation; and the
		effects of the mis-ordering of bases
Genetic	Genetic engineering is the technique for	-Whole class talk about Geneic
engineering	manipulating DNA molecules in vitro by	Modified Organisms (GMOs),
	cutting target DNA by using restriction	based on reports from a variety of
	enzymes. Then, ligate with vector by	media
	DNA ligase, and introduce the recombinant	-Two groups read 'Plant GMOs'
	DNA into a host cell for amplification.	story and two other groups read the
	The recombinant DNA, when transformed	'Genetic engineering' story.
	into cell, has to replicate itself.	Afterwards they can explain their
		understanding to each other. Each
		group pair answers 'GMOs and
		genetic engineering' worksheet
		-Do activity sheet by using actor
		cards and situation cards for
		playing their roles to make
		decisions about genetic
		engineering situations in daily life
		-Whole class discussion of genetic
		engineering and social values

Table 5.1 (Continued)

Units	Concepts	Activities
Mini	Students use their knowledge to construct	-Confirm classroom diagram,
Molecular	their artifact(s) with presentations to let	which shows the position of each
Genetics Fair	other people understand the concept which	group on the board and the set
	they want to present in groups.	times for preparing places and
		presentation
		-Each group of students present
		their own topics and answer
		questions from audiences
		-Whole class discussion on
		'Concept map of molecular
		genetics'

<u>Summary</u>

The design of the GIU was based on the existing situation of teaching and learning genetics in welfare schools, the basic genetic concepts of disadvantaged students in some Thai welfare schools, a social constructivist approach, and an aim to promote student communication skills. The sequencing of GIU development for genetics concepts was from easy to difficult concepts. The genetic topics of the GIU were comprised genetics materials, DNA investigation, DNA chemical components and structure, DNA properties (replication, transcription, and translation), genome, mutation, genetic engineering and applications, and molecular genetics science fair; teaching manuals; and students' workbooks. The GIU was composed of 12 units (18 periods). Each period was 50 minutes. Each unit included an introduction to the lesson using social issues from students' daily lives and that linked students' prior knowledge to new concepts. The GIU was validated in terms of content validity, main ideas, learning activities, and language by the researcher's research committee which included a genetics expert and two university science educators. The GIU was also validated by science teachers who had experience in teaching science for disadvantaged students in welfare schools. The units included a variety of classroom activities with an emphasis on language as a tool for social interaction among peers

and between students and teacher, as per se a social constructivist view of learning. In the conclusion part of each unit, an opportunity is provided for students to conclude genetic concepts in their journals or through discussion and presentation. Group work with groups of mixed genders and abilities was a part of the unit as was the use of concrete instructional materials. The results of the implementation of the GIU are presented in Chapter 6.