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Abstract 
 

Unmeasured confounding can cause considerable problems for causal inference in observational studies and threaten 

the validity of the estimates of causal treatment effects. We investigate the robustness of a relatively new causal inference 

technique, targeted maximum likelihood estimation (TMLE), in terms of its robustness against the impact of unmeasured 

confounders. We benchmarked TMLE's performance with the inverse probability of treatment weighting (IPW) method. We 

utilized a plasmode-like simulation based on variables and parameters from the Study to Understand Prognoses and Preferences 

for Outcomes and Risks of Treatments (SUPPORT). We evaluated the accuracy and precision of the estimated treatment effects. 

Though TMLE performed better in most of the scenarios considered, our simulation study results suggest that both methods 

performed reasonably well in estimating the marginal odds ratio in the presence of unmeasured confounding. Nonetheless, the 

only remedy to unobserved confounding when making causal inference is by controlling for as many as possible confounders 

because not even TMLE can provide a safeguard against bias from unmeasured confounders. 
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1. Introduction 
 

Observational studies of health care interventions 

and treatments are critical for assessing treatment effects and 

making patient-centred treatment decisions. Apart from the 

infeasibility of conducting randomized experiments due to the 

cost and ethical reasons, observational studies, unlike 

randomized trials, answer questions of safety and comparative 

effectiveness that are of direct interest to health care providers 

and patients faced with a treatment decision (Goldberg, 

Schneeweiss, Kowal, & Gagne, 2011). In some randomized 

trials, patients are exposed to treatments without fully 

understanding their benefits and risks (Halpern, Ubel, Berlin, 

Townsend, & Asch, 2002).  

 
The increasingly available observational data 

sources, including large health care databases, provide an 

opportunity to evaluate new treatments and compare them 

with existing alternatives efficiently. Like every observational 

study, these evaluations require confounding control or 

adjustment. ‘Confounders’ refers to variables or factors 

associated with both treatment assignment and outcome. 

While in randomized experiments the randomization 

mechanism balances both measured and unmeasured 

confounders between treatment groups, observational studies 

usually suffer from confounding effects. When substantial 

imbalances exist between the treated and control groups in an 

observational study, biased treatment effect estimates are 

produced.  

Various techniques, including multivariable 

regression adjustment, propensity score matching, 

stratification and weighting, have been commonly used to 

account for observed or measured confounders (Stuart, 2010). 
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However, these techniques are not entirely immune to the 

effects of unmeasured confounding, which is not uncommon 

in clinical and medical studies; hence there still remain vexing 

problems. For instance, a large cohort study found evidence of 

the effectiveness of ascorbic acid (vitamin C) in reducing all-

cause mortality by 52% (relative risk: 0.48; 95% CI: 0.33 - 

0.70) (Khaw et al., 2001), after adjusting for age, sex, body 

mass index, smoking status, systolic blood pressure, serum 

cholesterol, diabetes, and vitamin C supplement use. This 

effect was, however, not found in randomized trials (relative 

risk: 1.00; 95% CI: 0.94 - 1.06, for vitamin C supplementation 

versus placebo) (Group, 2002); hence it was disputed whether 

the disparity of the results was due to the observational study 

being biased due to unmeasured confounding by, say, 

socioeconomic status or dietary habits (Concato & Horwitz, 

2004; D. Lawlor et al., 2005; D. A. Lawlor, Smith, 

Bruckdorfer, Kundu, & Ebrahim, 2004). 

Though several strategies, including sensitivity 

analysis, have been proposed and adopted to address the 

potential impact of unobserved confounders on causal 

inference estimation, they are not model estimation methods 

and do not have inbuilt facilities of determining the robustness 

to the impact of uncontrolled confounders. Sensitivity analysis 

is a systematic assessment of the changes in model estimation 

when the potential unobserved confounders are present versus 

when they are absent. This technique has been widely and 

increasingly utilized (Lin, Psaty, & Kronmal, 1998; Robins, 

Rotnitzky, & Scharfstein, 2000; Schneeweiss, 2006). 

Despite extensive studies of the performance of the 

methods for confounding control, the robustness of these 

methods to uncontrolled confounders has received almost no 

attention. Much more recently, targeted maximum likelihood 

estimation (TMLE) – a doubly-robust semiparametric method 

– has gained attention from applied researchers (Bodnar et al., 

2020; Herrera et al., 2018; Lim, Tellez, & Ismail, 2019; 

Rodríguez-Molina et al., 2019). TMLE estimates exposure 

effects or associations without relying on model specification. 

It combines semiparametric estimation, using machine 

learning algorithms, with an additional estimation process to 

optimize a parameter of interest (e.g. risk difference, risk 

ratio, or odds ratio) (Schuler & Rose, 2017; Van Der Laan & 

Rubin, 2006). We sought to examine the performance of 

TMLE in terms of its robustness to the impact of unmeasured 

confounders on estimated treatment or exposure effects. 

Using the inverse probability of treatment weighting 

(IPW) method, the most commonly used weighting method by 

applied researchers and practitioners, especially in the medical 

and health sciences, as a benchmark, we evaluated TMLE in a 

plasmode-based simulation study. Our plasmode simulation 

was inspired by a real empirical cohort study typical of health 

care interventions and treatments. The plasmode approach 

preserves the number and type of observed covariates in the 

original study, as well as the correlation structure among 

covariates. It attempts to simulate exposure and outcome to 

reflect the observed associations of these variables with those 

from the actual data (Franklin, Schneeweiss, Polinski, & 

Rassen, 2014). 

 

2. Materials and Methods 
 

Assume W to be a vector of covariates, and let T and 

Y denote the exposure (or treatment) indicator and observed 

outcome, respectively. Let Y (T = t) = Y (t) indicate an 

individual’s potential outcome under treatment T=t. A valid 

causal inference using IPW or TMLE requires some necessary 

assumptions. First, the time ordering assumption is required: 

the covariates W precede treatment T, T precedes Y in time, 

and Y depends on T and W, while T depends only on W. 

Secondly there is the consistency assumption, which requires 

that an individual's potential outcome under the received 

treatment equals the observed outcome: Y (T = t) = (Y | T = t). 

The third is the positivity assumption, which requires that 

(within strata of W), every individual had a non-zero 

probability of receiving one of the two treatment conditions, 

i.e., 0 < P (T = 1|W) < 1. Finally, the assumption of no 

unmeasured confounding (also known as the conditional 

exchangeability assumption) is of ultimate interest in this 

study. This assumption states that the potential outcomes Y (t) 

are independent of the observed treatment T given measured 

covariates; Y (T = t) ⊥ T | W. It implies that (within the strata 

of W), the outcome under the potential treatment T = 1, i.e, P 

(Y (1) = 1 | T = 1, W) equals the outcome under treatment 

condition T = 0, i.e, P (Y (1) = 1 | T = 0, W). In other words, 

all confounders have been measured. 

 

2.1 Targeted maximum likelihood estimation 
 

We briefly describe the implementation of TMLE 

with binary outcome and exposure or treatment for the 

estimation of the marginal odds ratio. Two probability models 

are initially specified and estimated based on the observed 

data on individuals i = 1, 2, …, n. First, the initial conditional 

probability of outcome Y, given the treatment and covariates, 

Q0 (T, W) = E0(Y | T, W) is estimated. Second, the conditional 

distribution of the treatment, given covariates W, g0 = P (T | 

W), is estimated. 

The estimate  (Ti, Wi) and the predictions  (1, 

Wi) and  (0, Wi) can be estimated with the standard logistic 

regression; machine learning tools like the Super Learner may 

also be used. Super Learner is an ensemble learner of a pre-

specified library of algorithms with parameters. It uses cross-

validation to adaptively create an optimally weighted 

combination of estimates from candidate algorithms (Van der 

Laan, Polley, & Hubbard, 2007). 

The estimates  (1, Wi) and  (0, Wi) are then 

plugged in into the substitution estimator of the parameter of 

interest, log odds ratio, to obtain an untargeted estimate:   

 

 = logit { } - logit { }, 

Where logit (x) = log  . 

 

Initial estimates of Q0 (T, W) are then updated along 

a path of some fluctuation parameters, incorporating 

additional information from the propensity score function to 

reduce residual confounding in Q0 (T, W). This updating 

involves two steps: Firstly, gn, is used in a clever covariate  

(T, W) to define a parametric working model to fluctuate Q0 

(T, W). 

 

 (T, W) =  
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For each individual with Ti =1 and Ti  =0, the clever 

covariates are calculated as  (1, Wi) =  and  (0, 

Wi) = , respectively. In addition to adding the 

columns  (1, Wi) and  (0, Wi), these values are then 

combined to form a column  (Ti, Wi) in the data matrix. 

In the final step, the fluctuation parameter  is 

estimated by fitting an intercept-free logistic regression of Y 

on  (T, W) with the logit of  (T, W)  being an offset 

(fixed quantity), where is the resulting coefficient of the 

clever covariate  (T, W). Accordingly, the estimate  is 

updated into a new estimate  of  (T, W): 

 

Logit  (T, W) = Logit  (T, W) +   (T, W). 

 

Consequently, the predictions from the updated 

model are used to estimate the probabilities of the 

counterfactual outcomes:  

 

Logit  (1, W) = Logit  (1, W) +   (1, W), and 

Logit  (0, W) = Logit  (0, W) +   (0, W), 

 

The updated estimates  and are 

empirically averaged and used to compute the targeted 

estimator the marginal odds ratio: 
 

 =  

 

The standard error can be estimated with the 

efficient influence function (Van der Laan & Rose, 2011), and 

the Wald-type confidence intervals can be calculated 

correspondingly. 

 

2.2 Inverse probability of treatment weighting 
 

Marginal treatment effects can be estimated in the 

presence of confounding with the IPW estimator. IPW reduces 

confounding by correcting each ith individual's contribution 

by weight equal to the inverse of the estimated probability of 

exposure or treatment receipt (Rosenbaum, 1983). This 

probability is usually estimated by logistic regression. By 

applying IP weighting, a pseudo-population, where the 

distribution of covariates is comparable across treatment 

groups, is created (Robins, Hernan, & Brumback, 2000). 

Therefore, by contrasting the marginal outcome between the 

two treatment conditions in the created pseudo-population, an 

unbiased estimate of the marginal treatment effect is produced 

via a weighted unadjusted logistic regression for the outcome. 

We used a robust sandwich-type variance estimator (Robins, 

Hernan, et al., 2000) to estimate the standard error of the IPW 

estimator. 

 

2.3 Simulation study 
 

We adopted a plasmode-like simulation design to 

emulate real-world datasets with complex correlation and 

effect structures. This approach allows us to specify different 

prediction models for the exposure and outcome variables 

based on the covariance matrix and original estimates of the 

regression coefficients. We based our simulations on a 

previously published cohort study on the effectiveness of right 

heart catheterization (RHC) for critically ill patients (Connors 

et al., 1996; Murphy & Cluff, 1990). The study, known as the 

SUPPORT study, was a five-centre study of decision making 

and outcomes in hospitalized and severely sick adult patients. 

Among other things, we chose this cohort due to its relatively 

high number of confounder variables, thus providing a 

challenging dataset for selecting potential confounders. 

In brief, the dataset comprises information on 5735 

patients, 2184 (38%) of them being treated with RHC (Ti=1) 

within 24 hours of admission in an intensive care unit, and 

3551 (72%) assigned to the control group (Ti =0); the outcome 

of interest was mortality at 30 days of admission. A total of 

1918 patients (33.4%) died within 30 days. Full details of this 

data, including the variable description and summary 

statistics, have been published elsewhere (Connors et al., 

1996; Crump, Hotz, Imbens, & Mitnik, 2009; Hirano & 

Imbens, 2001). 

The full set of potential confounders W (49 pre-

specified variables) from the original data were retained. The 

estimated coefficients (66 estimated parameters) from the data 

were used as parameters of the simulation. Both the treatment 

and outcome variables were generated based on logistic 

regression models:  

1) for the treatment variable T as a function of the 

covariates W 

logit P (T = 1 | W) =  + , 

2) for the observed outcome as a function of the 

treatment variable and the covariates W.  

logit P (Y = 1 | W) =  + T + . 

The parameter values for intercepts  and  were 

unaltered to preserve the treatment and outcome prevalences 

in the real data.  

To study the impact of unmeasured confounding, we 

assumed the model adjusts for the full covariate set to contain 

the true treatment effect. We then partition the covariate space 

into two subsets of potential confounders that were used to 

assess the robustness of TMLE to the impact of not adjusting 

for the complete covariate set. In the first set (W1), also 

known as the simple set, we adjusted for predefined important 

confounders, including demographic characteristics. These 

covariates include sex, age, race, primary disease category, 

type of insurance, and APACHE score. 

In the second set, known as the moderate set (W2), 

we included variables from the simple set (W1) and combined 

literature knowledge with variables associated with RHC use 

from the original analysis (Connors et al., 1996). These 

covariates include cancer status, support model estimate of 

surviving two months, comorbidities, mean blood pressure, 

white blood cell count, albumin, sodium, pH levels, do-not-

resuscitate DNR status on day 1, heart rate, respiratory rate, 

and temperature. In each of the two covariate sets, other 

measured confounders in the full set were intentionally 

omitted. 

Apart from the degree of unmeasured confounding 

(the two covariate sets size), other factors we varied were 

sample size (n = 1000, 5000) and confounding weight (1, 

1.15, 1.3, 1.45). By confounding weight, we mean the 
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multipliers multiplied to the estimated covariate coefficients 

to increase the amount of confounding in the simulated data. 

In total, we have 2 sample sizes x 4 confounding weights x 2 

covariate sets = 16 different simulation scenarios. We then 

simulated two potential outcomes: one assumed that the 

patient received the RHC treatment Y(1), and the other 

assumed that the patient did not receive the RHC treatment 

Y(0). For each of the 16 scenarios, we generated 1000 

simulated datasets by repeating this process 1000 times, and 

we averaged two sets of potential outcomes and calculated the 

true marginal odds ratio.  

After simulation of the datasets, we investigated the 

impact of unmeasured confounding on TMLE relative to IPW 

in terms of accuracy and precision of treatment effect 

estimates. For each simulation scenario, we applied each of 

the TMLE and IPW methods of treatment effect estimation. 

For TMLE, due to computational simplicity, we used 

generalized linear models (GLMs) to estimate both the PS and 

outcome models.  For both methods, the covariates were 

included as main terms in both the PS and outcome model. 

We did not consider interactions between covariates. 

For each method, we estimated the marginal odds 

ratio and its bias, mean squared error (MSE), model-based 

standard errors, and 95% confidence interval (CI). CI 

coverage is the proportion of times the estimated confidence 

intervals contain the specified parameter value. TMLE was 

implemented using the tmle package (Gruber & Van der Laan, 

2011) in R version 4.0.0. 

 

3. Results 
 

We present the simulation results based on the 

scenarios and performance metrics explained in the earlier 

section. We focus on the performance of the TMLE method, 

using IPW as a threshold for evaluating the results. For both 

estimation approaches, except for the 95% CI coverage, there 

were no substantial differences in the bias, MSE, and standard 

error of estimated treatment effects, given the small and 

moderate covariate set adjustments. In all considered 

scenarios, it was observed that the MSE increased as the 

confounding weight increases, irrespective of the sample size. 

The same pattern was observed for the standard error and 95% 

CI coverage. For the bias, an opposite pattern was observed. 

The absolute bias was consistently decreasing with increasing 

confounding weights. However, this pattern was clear and 

distinct for the large sample size (n = 5000) only. 

In Figure 1, the absolute bias of estimated treatment 

effects is presented for the different scenarios explained in the 

earlier section. The bias is generally low in the moderate-sized 

sample (values ranged from 0.013 – 0.240) and is generally 

high given high sample size (values ranged from 0.119 – 

0.158). For moderate sample size (n = 1000), TMLE produced 

slightly lower bias only when the confounding strength was 

higher than 1.15. However, no notable difference was 

observed given the large sample size (n = 5000).   

TMLE maintained lower MSE between the two 

methods, for a moderate sample (n = 1000), with the 

difference in MSE being increasingly larger as the 

confounding weight increased (Figure 2). However, 

indistinguishable estimates were observed for a large sample 

size (n = 5000).   

In Figure 3, the results of the model-based standard 

error of estimated treatment effects are presented for the 

different scenarios explained in the earlier section. The TMLE 

standard errors were incredibly smaller in all the scenarios 

(TMLE range: 0.005 – 0.116, IPW range: 0.072 – 0.337). 

Much smaller standard errors were observed in the large 

sample size (n = 5000) scenarios. In terms of the 95% CI 

coverage, there was no clear pattern of superiority between the 

two methods; both techniques generally achieved reasonably 

high coverages overall (Figure 4). For moderate sample size 

(n = 1000), both methods produced 95% CI above the nominal 

coverage rate, while for large sample size (n = 5000), higher 

coverage rates were achieved at confounding weights higher 

than 1.15.  

 

 
 

Figure 1. Bias of estimated treatment effects. Top panels: n = 1000, 

A) small covariate set scenarios. B) moderate covariate set 

scenarios. Bottom panels: n = 5000, C) small covariate set 
scenarios. D) moderate covariate set scenarios 

  

 
 
Figure 2. Mean squared error of estimated treatment effects. Top 

panels: n = 1000, A) small covariate set scenarios. B) 

moderate covariate set scenarios. Bottom panels: n = 5000, 
C) small covariate set scenarios. D) moderate covariate set 

scenarios 
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Figure 3. Model-based standard error of estimated treatment effects. 
Top panels: n = 1000, A) small covariate set scenarios. B) 

moderate covariate set scenarios. Bottom panels: n = 5000, 

C)  small covariate set scenarios. D) moderate covariate set 
scenarios 

 

 
Figure 4. 95% confidence interval coverage of estimated treatment 

effects. Top panels: n = 1000, A) small covariate set 
scenarios. B) moderate covariate set scenarios. Bottom 

panels: n = 5000, C)  small covariate set scenarios. D) 

moderate covariate set scenarios  

 
4. Discussion 

 

Unmeasured confounding may threaten the validity 

of the estimates of causal treatment effects. An excellent 

causal inference in observational studies is as good as the 

controlled, observed confounders. Accordingly, an excellent 

observational study strives to control for a rich set of 

covariates - as many as available, to minimize the risk of 

unmeasured confounding. In this study, we investigate a 

relatively new method of estimating causal treatment effects, 

TMLE, in terms of its robustness to the impact of unmeasured 

confounding. Using a plasmode-like simulation study, we 

compared its performance with IPW, a relatively popular and 

commonly used method in applied studies. While focusing on 

TMLE, we summarize our findings and place them in the 

context of existing literature, where necessary.     

Though TMLE performed better in most cases, our 

simulation study results suggest that both methods performed 

reasonably well in estimating the marginal odds ratio in the 

presence of unmeasured confounding. The outperformance of 

TMLE was most striking for the model-based standard errors. 

In most scenarios, there were no substantial differences in the 

performance of estimated treatment effects, given the small 

and moderate covariate set adjustments. In other words, 

increasing (or decreasing) the number of unobserved 

confounders did not substantially change the estimates. Except 

for the standard error, in all the other performance metrics, 

including bias, mean squared error, and 95% confidence 

interval coverage, both methods' performances were 

indistinguishable for a large sample size (n = 5000).  

We used parametric models for the initial treatment 

and outcome model estimation due to computational 

simplicity. However, to take optimal advantage of the 

properties of TMLE, data-adaptive methods, such as Super 

Learner (Van der Laan et al., 2007), are recommended when 

implementing TMLE. The potential integration of data-

adaptive methods while retaining valid inference is a unique 

strength of TMLE. 

Our study is not devoid of limitations. Although we 

covered some scenarios, our simulated data were based on one 

actual cohort, exemplifying only one type of complex data 

structure in the data. Even a Monte Carlo simulation study can 

never capture the whole space of possible data scenarios as 

they occur in reality; the generalizability of results is a 

potential limitation in our plasmode simulation study. 

Assignment of a broad range of covariate distributions or 

parameter values is not usually possible; the covariates 

parameter values are instead adopted directly from a real-

world setting and fixed for simulation. Therefore, our results 

cannot necessarily be generalized to settings that have not 

been evaluated; hence we cannot draw definitive conclusions 

on the comparative performance of the TMLE and IPW 

estimators. However, the utilized data set is typical of medical 

and health studies. It has already provided valuable insights 

and evaluation regarding the performance of TMLE in the 

presence of (multiple) unmeasured confounders. Additionally, 

we did not explore other outcome types, including continuous 

and time-to-event outcomes, in the context of this study.  

We look forward to filling the gaps left by these 

limitations. 

 

5. Conclusions 
 

Unmeasured confounding is still a vexing problem 

in observational studies. Not even TMLE can provide a 

safeguard against bias from unmeasured confounders. 

Therefore, more efforts should be devoted to collecting and 

controlling for as many as available covariates in an 

observational study. If data on any confounder are available, it 

should be controlled for in the estimation of effects. For 

instance, in a study of the relationship between plasma 

ascorbic acid level and mortality, it was noted that, despite 

being recorded, information on the participants' social class 

and physical activity was not used in the analysis (Khaw et 

al., 2001). Lawlor and colleagues (D. A. Lawlor et al., 2004) 

showed that if these variables were indeed confounders of the 

ascorbic acid and mortality association, even a moderate 

effect of any of them would have resulted in considerable 
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residual confounding in the reported estimates. We further 

support the recommendation that sensitivity analysis of 

(multiple) unmeasured confounders should routinely be 

performed to guide the discussion on the possible direction, 

magnitude, and its impact (Cornfield et al., 1959; Greenland, 

1996, 2005; Lash & Fink, 2003; Lin et al., 1998). 
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