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Abstract

For positive integers k, m, and n, let S (n) be the sum of all elements in the finite set {x*:1 < x < n/m, (x,n) = 1}.
The formula for S7*(n) is established and simpler formulae for S;7* (n) under some conditions on m and n are verified. The explicit
formulae for Slza(n) and Szza(n), where 2%|n and a > 1, are also provided.
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1. Introduction

Throughout this article, let (m, n) denote the greatest
common divisor of integers m and n, and |X| denote the
number of elements in a finite set X. By an arithmetic function,
we mean a mapping f from the set of positive integers N into
the field of complex numbers C. There are many interesting
examples of arithmetic functions. Both of them are the Euler's
phi-function,

pm) =|{x: 1< x< n(x,n) =1}
and the Mdbius function defined by

1 ifn=1,
u(n) = [ 0 if p?|n for some prime p,
(=1)" ifn =p,p, - p,, where all p; are distinct primes.

An arithmetic function f is called multiplicative if f(mn) =
f(m)f (n) whenever (m,n) = 1. It is well-known that ¢ and
w are multiplicative and

o) =nﬁ<1—%),

i=1
where n = ppy? - p,;" is its prime factorization (Burton,
2011; Rosen, 2005; Niven, Zuckerman, & Montgomery, 1991).
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For positive integers k, m, and n, we define the set
of positive integers R}*(n) by
n
R (n) = {x" 1< x<—,(x,n) = 1}.
m

Observe that R7*(m) = {1} and Rf*(n) = @ if n < m. Let ¥.X
denote the sum of all elements in a finite set X of positive
integers. Then, we let

S (n) = z R ().
It is clear that S{*(m) = 1 and it suffices to study S7*(n) only

in the case n > m. Note that |[R1(n)| = ¢(n) foralln > 1 and
it was proved in (Burton, 2011) that

non
sim =20 s, (L)
There is an exercise in (Niven, Zuckerman, & Montgomery,
1991) to calculate S2 (n) by using the Mobius inversion formula
which asserts in the following theorem (Burton, 2011; Rosen,
2005; Niven, Zuckerman, & Montgomery, 1991).

Theorem 1.1. (Mdbius Inversion Formula). If F and f are
arithmetic functions with F(n) = X4/, f (d) for n = 1, then

n
f) = Z u(d)F (E) (n=1),
dln
where the sum Z is over all divisors d of n.
d|n
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The formula for S1(n) is as follows:

2 2 d

Shn) = %dzlnu(d) (F+3+7) @z 12)
By using the following facts (Burton, 2011):

Z wd) _ o) n=1), (1.3)

P d n

1 rn=1

;“(d) = {0 in>1 (1.4)

Dud=ypm @z, 15)

dln

where (1) = 1 and Y (n) = [I,»(1 — p) for n > 1, the product is over the prime divisors p of n, the formula (1.2) can be
rewritten as

2n? +
Sim) = M n>1), (1.6)
In another direction, Baum (1982) provided the formula for S?(n) as follows:
1
Si(n) = g(mj)(n) = Irly@) (n>2), 17
where n = r (mod 4) with r € {—1,0,1,2}, and he advised the reader to prove the following
2
2
(M ifn = 0 (mod 4),
2 _
Si(n) = M ifn =41 (mod 4), n>2) (1.8)
[ n2 -4
k—n ¢(n)24 () ifn = 2 (mod 4),

as an exercise.
Recently, Kanasri, Pornsurat, and Tongron (2019), established the formulae for S}(n) and SZ(n), which are the
generalizations of (1.1), (1.6) and (1.7), (1.8), respectively. Such formulae are as follows: for any positive integer k, we have

Sk = Y u@dige(3) (=D 19
dn
and forn > 2,
z u(d)d* gy (%) ifn = 0 (mod 4),
d|(n/2)
n/d—1 o
S2(n) = dz:lnu(d)dkgk( 5 ) ifn = +1 (mod 4), (1.10)
2d—1
Z u(d)d* (gk (Zn_d) -2k g, (n/T>) ifn = 2 (mod 4),
d|(n/2)

where
ge(®) =1k 4 2k 4. 4 ¢k
for all positive integers k and t. From (1.9) and (1.10), the explicit formulae for S3(n) and SZ(n) are provided in (Kanasri,
Pornsurat, & Tongron, 2019) as follows:
n3¢p(n) + n*yY(n
51y = TP F ()

2 n>1)

and

3 2
n3¢(n) 46r44n PY(n) ifn = 0 (mod 4),

532 (n) = {n3¢(n) — ZnEZ’f(n) Y5 ifn = +1 (mod 4), (n>2),

ltn3¢(n) - snzlxéin) T8:/7 ) (mod 4)

where Y3 (n) = [[n(1 - p*). In general, we have given in (Kanasri, Pornsurat, & Tongron, 2019) that form > 1,

Y (1) = 1and Y, (n) = [[n(1 —p™) forn > 1,
where the product is over the prime divisors p of n. We note that 1, = 1 and we also obtain

D u@dm =g (> 1.

dln
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However, there is no any general formula for S;* (n) for positive integers k, m, and n. Thus, we are interested in establishing such
formula. In this work, we establish the general formula for S;*(n) by the use of M&bius inversion formula and then verify some
simpler formulae for S;”*(n) under certain conditions on m and n. We also confirm that the known results (1.9) and (1.10) are
special cases of our results. Moreover, the explicit formulae for Sf“(n) and Szza(n), where 2%|n and a > 1, are provided.

2. Main Results

We first establish the formula for S;*(n) and then show that this formula yields the known results (1.9) and (1.10).
Theorem 2.1 Let k, m, and n be positive integers with n > m. Then

n
P = u@dtge(|-])
dln
where [x] is the largest integer less than or equal to a real number x. For n < dm, let g,,(0) = 0.

Proof. For a positive divisor d of n, define
n
m _ k. _ —
B] —{x 11 stm,(x,n) —d}.
Itis clear that
n k
B = {1k'2k’ . l—J } and BJ' N B[{; =@ ford, + d,,
dln m *

which implies that
[n/m]

-5y 3

dln
Next, we show that

n 2.2
If x* € B, then1 < x <n/mand (x,n) =d,s01 < x/d < n/dmand (x/d,n/d) = 1. Consequently, (x/d)* € RI*(n/d) and
s0 x* € d*R™(n/d). On the other hand, if y* € R*(n/d), then 1 < y < n/dmand (y,n/d) = 1. Itfollows thatd < dy < n/m
and (dy,n) = d. This shows that (dy)* € BT* and the desired result follows.
For d|n, we obtain by using (2.2) that

_ ok ™ geem (B

ZB,T—d ER,’?(d) = s (),

It follows by (2.1) that
n n nyk
ac([l) = 2 a5 () = . () s,
dln dln

because {d € N:d|n} ={n/d:d € Nand d|n}. By the Mébius inversion formula with f(n) = S"(n)/n* and F(n) =
gr(ln/m])/n¥, we get

Sk (n) Z”(d) kgk (L;:nl)

dn
This completes the proof. O
We note that (1.9) follows immediately from Theorem 2.1 because |n/d| = n/d for d|n.
We observe that the formula (1.10) is divided into three cases and some sums are over all divisors d of n/2 while the
sum in Theorem 2.1 is over all divisors d of n. To show that (1.10) is a special case of the result in Theorem 2.1, we verify some
simpler formulae for S;*(n) with m = p?, a prime power, under the condition m|n as the following two propositions.

Proposition 2.2 Let k and n be positive integers. If m = p® is a prime power such that pm|n, then
n
m — k -
SEm =) uddg ().
d|(n/m)

Proof. Let m = p® be a prime power such that pm|n. Then m|n and from Theorem 2.1, we have

S () =Zu(d>d"gk([ﬁ)
dln
= z y(d)dkgk n Z H(d)dkgk nJ)
d|((itl7m) d+(n/m)
= Y @i (5 Z p@d gy (|7-]). 23)
d|(n/m)

d+(n/m)
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We next show that the second sum in (2.3) vanishes. Since u(d) = 0 whenever g?|d for some prime g, it suffices to show that if
d|nand d t (n/m), then P 2|d. Write

— b0
n=p’q - q5
as its prime factorization, where b > a + 1and ¢; € N U {0} (1 <j < 5). Since pm|n, we obtain

n_ b-a €1
E—P q 'qs'

where b — a > 1. It follows from the assumption that p?~*1|d. Since b — a + 1 > 2, we now have p?|d. This completes the
proof. O

Proposition 2.3 Let k and n be positive integers. If m = p@ is a prime power such that n > m, m|n, and pm t n, then

Sm(n) = Z u@d* (gk (dm) P g <lpdm )>

d|(n/m)

Proof. Let m = p® be a prime power such that m|n and pm  n. Write

n=pPqy g
as its prime factorization. Note that m|n and pm t nimply a = b. Then

n C C: C,
p— 172 .. s
4, 93" " 4s

From Theorem 2.1, we have

Sm(n) = Z u(d)d" g (l%l)

d|n

= Z u(d)d"gk [d—J Z u(d)d"gk [d D
dlgll}lm) d’((n/m)

= u(d)d"gk(%ﬁ Z u(d)d"gk([%J)-
d|(n/m) d*g!;lm)

For d|n, it is not difficult to see that d + (n/m) if and only if p|d. Then

> u@dtge(|) =dzm#(d)d"gk(lﬁ)

d|n
dt(n/m) pld
- > ozt ;2.
uipe)\pe) g pem
peln
ple

since u(pe) = 0 if ple. Itis clear that pe|n and p t e if and only if e|(n/m). Consequently,

Z u(d)d" gy ([%J) =-p* 2 u(e)ek gy ([pem)

dln e|(n/m)
dt(n/m)
=0 > uaon (|g])
k\lpdml/
d|(n/m)
This completes the proof. O

We now verify (1.10) by using Theorem 2.1, Proposition 2.2, and Proposition 2.3. We consider three possible cases for
n > 2 as follows:
Case 1: n = 0 (mod 4). Then 4|n. From Proposition 2.2 with m = 2, we have

St = Y uddge ()
dl(n/2)

Case 2: n = +1 (mod 4). Then n is odd. From Theorem 2.1, we have

St = ) u(da*g (|53])

dln
The result follows from the fact that

)P

since n/d is odd for d|n.
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Case 3: n = 2 (mod 4). Then 2|n and 4 + n. From Proposition 2.3 with m = 2, we have

n
st = > uta (g (7) - 20 (157))
d|(n/2)
The result follows from the fact that

l J Tl/Zd Tl/Zd -1
4d 2 2 ’
since n/2d is odd for d|(n/2).

3. Some Explicit Formulae

In this section, we provide the explicit formulae for $2“(n) and S2°(n), where 2%|n and a > 1. The following lemma is
necessary.

Lemma 3.1 Let p® be a prime power and n be a positive integer such that p¢|n and n > p®. Then the following statements hold.
0 o (1) _ {¢(n)/p“ ifn = 0 (mod p*1),
p® ¢(m)/dp(P*) ifn =z 0 (mod ptl).
(i) " (1) _ {d)m(n) ifn = 0 (mod p¢*1),
™ \pa Y (m)/(1—p™) ifn # 0 (mod p®*t).

Proof. We treat two possible cases.

Case 1: n = 0 (mod p®**). Then write n = p”t for some positive integers b and t such that b > a + 1 and p t t. Since ¢ is
multiplicative, we obtain

?(5z) = 4" 9(0) =

( =[] a- = ]_[(1— a™) = ()

al(pb=2t) al(®t)
Case 2: n Z 0 (mod p*1). Then we can write n = p%t for some positive integer t such that p 4 t and so

NI
0 (5) =00 =252 = 300

1 = _am) — Hq|(pat)(1 B qm) _ 1»[)m(n)
m(pa)_l‘;l(l q") = 1—pm _1_pm'

¢>(p”)¢(t) ¢(n)

This completes the proof. O

Next, we give the formulae for Sfa(n) and Sé’a(n), where p? is a prime power such that p%|n, by using Lemma 3.1 as
the following.

Proposition 3.2 Let p® be a prime power and n be a positive integer such that p%|n and n > p%. Then

712(1;(27;) ifn = 0 (mod p*1),
sP*(n) =
) R
d|(n/p®
2n2¢(n)6;32p2a¢(n) ifn = 0 (mod p®*1),
WO (20 A S e ]+ el )

ifn £ 0 (mod p®*1).

Proof. We consider two possible cases.
Case 1: n = 0 (mod p®*1). By using Proposition 2.2, we have

a n
st ) n(@dg: (572)
d|(n/p®)

1 n n
- p(d)d( )(—+1)
2 Z ad)\pad
alliTb) [
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1 n? a
=3 ), H@ (g e
dl(n/p?)
_n? ¢(n/p?)
2p2a n/pa ’
_n’ ¢()/p"
2p2a n/pa ’
_n¢(®)
- 2p2a .
Again, by using Proposition 2.2, we obtain
a n
' = w@d (o)
dl(n/p )

by (1.3) and (1.4)

by Lemma 3.1 (i)

Z ud )d2< ad)( ag* )( aq 1)
dl(n/ @)
1 2n3
== u(d) (— +3p*n? + npzad>
op? dl(nz/p) d
1 o(n/p®)
= 6p3® (21’1 n/p° +n 2 lﬁ( ) ) by (1.3), (1.4) and (1.5)
= 6pl3a <2n d)i/)p/f +np?? 1/1(7l)>, by Lemma 3.1 (i) and (ii)
2n2¢(n)+np w(n)
6p3a

Case 2: n # 0 (mod p®*1). By using Proposition 2.3, we get

s = ) ﬂ(d)d(gl( R e “ﬁldJ))

dl(n/p®)
1
-5, w0 (i) g 2) el el )
n/p%)
e I T =)
dl(n/p® d|(n/p%)
S W )
(RS 5 sl ) prammso
and ) ) 2 i 2 .
o= Y (o) v (i)
dl(n/p®)
1 2
=5 > (i) i) G+ Ll (] +2) e+ )
=5 > e (o i ) (] + ) (] + )
d|(n/p%

(. 2z o]+ el )

aln7p®
by (1.3), (1.4), and (1.5)

455
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1 2n%2¢(n) np(n) 5 ,| n n n
- E(pzaqb(pa) + 1-ppe p dl(z/: )M(d)d lp““dJ (lp““d] * 1) (2 lp‘”ldJ * 1) ’
n/p%
by Lemma 3.1 (i) and (ii). This completes the proof. O
We note that the formulae for S,fa(n) with k > 2 can be obtained similarly to such formulae for the cases k = 1, 2 asin

Proposition 3.2.

Example 3.3 This example illustrates how to find S5 (n) and S3(n) for n = 9, 15, and 16 by the definition and our results. First,
we calculate these S2(n) (k = 1,2) by the definition as follows:

$3(9) =Z{x:1 < xsg,(x,9) - 1}:2{1,2}:3,

$3(9) =Z{x2:1sxsg,(x,9)=1}=2{12,22}=5,
S3(15) =Z{x:1$x %5(“5)_1} 2{124}_7
S3(15) =Z{x2:1£x 135 (x, 15)—1} 2{12 22,42} = 21,
$3(16) =z{x:1gxs§(x16)=1}=2{135}=9

si(16) = Z{xz 1< x<2 (16) = 1} 2{12 32,52} = 35,
Next, we calculate S2(9) and S2(15) (k = 1 ,2) by Proposition 3.2 as follows:

9¢(9 9-6
SO ===

2-92¢(9) +9-3%y(9 2:81-6+9-9-(-2
AL S OLETONE R RIS

53(15) =§<1§Z;§§§’)—3Z @ (7] )>

1/15-8
=§<ﬁ_3(1 1-1-2+(-1)-5-0- 1))
_1(2-15%¢(15)  15(15) 15
09 - EE00 e (2] 1) )
1(2-225-8 15-8
=\ 73 12-1-2-3+(-1)-52-0-1- 1))

Finally, we calculate S3(16) and S3 (16) by using Theorem 2.1 as follows:

5:16) = u(@dgs (|55])

d[i6
=1-19;(5) +(-=1)-29,(2) +0-4g,(1) + 0-8g,(0) + 0- 16g,(0)
=15-6=09,
3 2 16
5316) = u@dg, (|51])
3d
d|16
=1-12g,(5) + (=1) - 229,(2) + 0- 42g,(1) + 0 - 82g,(0) + 0 - 16%g,(0)
=55—-20 = 35. . .
Taking p = 2 in Proposition 3.2, we get the explicit formulae for S?"(n) and S?"(n), where 2%|n and a = 1, as the
following proposition.

Proposition 3.4 Let n and a be positive integers such that 2¢|n and n > 2%. Then

Z?T(Jrnl) ifn = 0 (mod 2¢*1),
S m) =

ne(n n

Z(fa(“) - lp—i ) ifn # 0 (mod 29*1),

and
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2
I ¢(3Z) mp(:?l ifn = 0 (mod 2%+1),
Szza(n) — 3:2 3-2
() nmp(n) o
3.3 3.2a ifn £ 0 (mod 2%t1).

457

Proof. If n =0 (mod 24*1), then the results easily follow from Proposition 3.2 by taking p = 2. Assume now that n #
0 (mod 2%*1), yielding n/2¢ is odd. Then, for d|(n/2%), we have n/2%d is odd and so

+1))

(n/2%)/d (n/Za)/d—l n— 2%
l2a+1d \ j 2 T patlg ”
It follows that
np(n)

(a2, 3, ol )

_1{n¢(n) n—2%\ (n—2%

2 (220. T2 ,u(d)d( 2a+1g >< 2a+1g + 1))

d|(n/2%)

ne(n) 1 (n?¢p(n/2%) an (M
=~ 37 < e 2 (ﬁ)) by (1.3) and (1.5)
- nfz(:) - 22i+2 <2a2ni(1n) + Zzall)(n)), by Lemma 3.1 (i) and (ii)
_np(n) P
- 22a+1 4

and
1{ 2n%2¢p(n) nyn) n n
(B 3 ol )l )
_1[n*p(n) np(n) n—2%d\ (n—2% n—2%
_g< 23a-2 ~  pa 2? “(d)d2< 2a+1 )( 2a+ig + 1)( 204
d|(n/2%)
1{ n? 1 — 2%
d|(n/2%)
1 n?p(m) ny(m) 1 [(n3¢p(n/2%) " n
( 23a-2  pa W(W — 22 (ﬁ)))' by (1.3) and (1.5)
2

= %(%(_nz) — %ﬁn) - 2%(211%(11) + 22an1p(n))),by Lemma 3.1 (i) and (ii)

n?¢(m) mp(n)
~ 3.23a 3.2a°

Hence, the results follow from Proposition 3.2.

We see that (1.7) and (1.8) for an even integer n can be verified by taking a = 1 in Proposition 3.4.

O

Example 3.5 This example illustrates how to find S¢(n) and S5 (n) for n = 16, 28, and 30 by the definition and our results. First,
we calculate these S (n) (k = 1,2) by the definition as follows:

S(16) =Z{x 1< xs%,(x,16) - 1}:2{1,3} =4

S3(16) =Z x%:1

stes) =)

S3(28) =

S430) =

2.
CHEOEEDY
2.

16
< x<—,(x16) = 1} = 2{12,32} =10,
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Next, we calculate S (16) and S#(28) (k = 1,2) by Proposition 3.4 as follows:

_16(16) 168

$H16) = —mm =, =4

san 1400 M0 _Te 10D,
stee) SR -HB TR 2o,

5;(28) = 222.(152(32.?) - 283?(2228) = 72% éiz - 238_‘46 = 35.

Finally, we calculate S{(30) and S5 (30) by using Theorem 2.1 as follows:

5:60) = u@dg (|54])

d|30

=1-19;(7) + (-1)-29,(3) + (=1) - 39:(2) + (=1) - 59, (1)
+1-6g,(1)+1-10g9,(0) +1-159,(0) + (—1) - 30g,(0)

=28—-12-9-54+6=38,
30
5160 = Y @, (|5])
d|30

=1-12g,(7) + (-1) - 22g,(3) + (—1) - 329,(2) + (1) - 529, (1)
+1-62g,(1) +1-102g,(0) + 1-152g,(0) + (=1) - 302g,(0)

=140 —-56 — 45— 25+ 36 = 50.
4, Conclusions

For positive integers k, m, and n, let

Sh(n) = Z{xk 1< «x S%,(x,n) = 1},
where X denotes the sum of all elements in a finite set X of
positive integers. The formulae for S1 (n) and S3(n) appeared
in (Burton, 2011) and (Niven, Zuckerman, & Montgomery,
1991), respectively, while the formulae for S2(n) and S2(n)
appeared in (Baum, 1982). Recently, the formulae for S} (n)
and S2(n), which are the generalizations of the results
mentioned above, was provided by Kanasri, Pornsurat, and
Tongron (2019). In the present work, we establish the formula
for S7*(n) as in Theorem 2.1, which is a generalization of all
previous results. Some conditions on m and n yield some
simpler formulae for S7*(n) as in Proposition 2.2 and
Proposition 2.3. We also provide the explicit formulae for
$2*(n) and S2*(n), where 2%|n, n > 2%, and a = 1, as in
Proposition 3.4.
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