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Abstract 
 

For positive integers 𝑘, 𝑚, and 𝑛, let 𝑆𝑘
𝑚(𝑛) be the sum of all elements in the finite set {𝑥𝑘: 1 ≤ 𝑥 ≤ 𝑛 𝑚⁄ , (𝑥, 𝑛) = 1}. 

The formula for 𝑆𝑘
𝑚(𝑛) is established and simpler formulae for 𝑆𝑘

𝑚(𝑛) under some conditions on 𝑚 and 𝑛 are verified. The explicit 

formulae for 𝑆1
2𝑎(𝑛) and 𝑆2

2𝑎(𝑛), where 2𝑎|𝑛 and 𝑎 ≥ 1, are also provided.  
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1. Introduction 
 

Throughout this article, let (𝑚, 𝑛) denote the greatest 

common divisor of integers 𝑚 and 𝑛, and |𝑋| denote the 

number of elements in a finite set 𝑋. By an arithmetic function, 

we mean a mapping 𝑓 from the set of positive integers ℕ into 

the field of complex numbers ℂ. There are many interesting 

examples of arithmetic functions. Both of them are the Euler's 

phi-function, 

𝜙(𝑛) = | {𝑥 ∶  1 ≤  𝑥 ≤  𝑛, (𝑥, 𝑛) = 1}|, 
and the Möbius function defined by  

𝜇(𝑛) = {
1
0

(−1)𝑟
     

if 𝑛 = 1,
if 𝑝2|𝑛 for some prime 𝑝,
if 𝑛 = 𝑝1𝑝2⋯𝑝𝑟 , where all 𝑝𝑖 are distinct primes.

 

An arithmetic function 𝑓 is called multiplicative if 𝑓(𝑚𝑛) =
𝑓(𝑚)𝑓(𝑛) whenever (𝑚, 𝑛) = 1. It is well-known that 𝜙 and 

𝜇 are multiplicative and  

𝜙(𝑛) = 𝑛∏(1 −
1

𝑝𝑖
) ,

𝑟

𝑖=1

 

where 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑟
𝑎𝑟 is its prime factorization (Burton, 

2011; Rosen, 2005; Niven, Zuckerman, & Montgomery, 1991). 

 
For positive integers 𝑘, 𝑚, and 𝑛, we define the set 

of positive integers 𝑅𝑘
𝑚(𝑛) by 

𝑅𝑘
𝑚(𝑛) = {𝑥𝑘 ∶ 1 ≤  𝑥 ≤

𝑛

𝑚
, (𝑥, 𝑛) = 1} . 

Observe that 𝑅𝑘
𝑚(𝑚) = {1} and 𝑅𝑘

𝑚(𝑛) = ∅ if 𝑛 < 𝑚. Let ∑𝑋 

denote the sum of all elements in a finite set 𝑋 of positive 

integers. Then, we let 

𝑆𝑘
𝑚(𝑛) =∑𝑅𝑘

𝑚(𝑛). 

It is clear that 𝑆𝑘
𝑚(𝑚) = 1 and it suffices to study 𝑆𝑘

𝑚(𝑛) only 

in the case 𝑛 > 𝑚. Note that |𝑅1
1(𝑛)| = 𝜙(𝑛) for all 𝑛 ≥ 1 and 

it was proved in (Burton, 2011) that 

𝑆1
1(𝑛) =

𝑛𝜙(𝑛)

2
         (𝑛 > 1). (1.1) 

There is an exercise in (Niven, Zuckerman, & Montgomery, 

1991) to calculate 𝑆2
1(𝑛) by using the Möbius inversion formula 

which asserts in the following theorem (Burton, 2011;  Rosen, 

2005;  Niven, Zuckerman, & Montgomery, 1991). 
 

Theorem 1.1. (Möbius Inversion Formula). If 𝐹 and 𝑓 are 

arithmetic functions with 𝐹(𝑛) = ∑ 𝑓(𝑑)𝑑|𝑛  for 𝑛 ≥ 1, then 

𝑓(𝑛) =∑𝜇(𝑑)𝐹 (
𝑛

𝑑
)

𝑑|𝑛

         (𝑛 ≥ 1), 

where the sum 

|


d n

 is over all divisors 𝑑 of 𝑛. 
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The formula for 𝑆2
1(𝑛) is as follows: 

𝑆2
1(𝑛) =

𝑛2

6
∑𝜇(𝑑) (

2𝑛

𝑑
+ 3 +

𝑑

𝑛
)

𝑑|𝑛

         (𝑛 ≥ 1). (1.2) 

By using the following facts (Burton, 2011): 

∑
𝜇(𝑑)

𝑑
𝑑|𝑛

=
𝜙(𝑛)

𝑛
         (𝑛 ≥ 1), (1.3) 

∑𝜇(𝑑)

𝑑|𝑛

= {
1      ;  𝑛 = 1
0      ;  𝑛 > 1

, (1.4) 

∑𝜇(𝑑)𝑑

𝑑|𝑛

= 𝜓(𝑛)         (𝑛 ≥ 1), (1.5) 

where 𝜓(1) = 1 and 𝜓(𝑛) = ∏ (1 − 𝑝)𝑝|𝑛  for 𝑛 > 1, the product is over the prime divisors 𝑝 of 𝑛, the formula (1.2) can be 

rewritten as 

𝑆2
1(𝑛) =

2𝑛2𝜙(𝑛) + 𝑛𝜓(𝑛)

6
         (𝑛 > 1), (1.6) 

In another direction, Baum (1982) provided the formula for 𝑆1
2(𝑛) as follows: 

𝑆1
2(𝑛) =

1

8
(𝑛𝜙(𝑛) − |𝑟|𝜓(𝑛))         (𝑛 > 2), (1.7) 

where 𝑛 ≡ 𝑟 (mod 4) with 𝑟 ∈ {−1,0,1,2}, and he advised the reader to prove the following 

𝑆2
2(𝑛) =

{
  
 

  
 
𝑛2𝜙(𝑛) + 2𝑛𝜓(𝑛)

24
if 𝑛 ≡ 0 (mod 4),

𝑛2𝜙(𝑛) − 𝑛𝜓(𝑛)

24
if 𝑛 ≡ ±1 (mod 4),

𝑛2𝜙(𝑛) − 4𝑛𝜓(𝑛)

24
if 𝑛 ≡ 2 (mod 4),

         (𝑛 > 2) (1.8) 

as an exercise.  

Recently, Kanasri, Pornsurat, and Tongron (2019), established the formulae for 𝑆𝑘
1(𝑛) and 𝑆𝑘

2(𝑛), which are the 

generalizations of (1.1), (1.6) and (1.7), (1.8), respectively. Such formulae are as follows: for any positive integer 𝑘, we have 

𝑆𝑘
1(𝑛) =∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (

𝑛

𝑑
)

𝑑|𝑛

         (𝑛 ≥ 1) (1.9) 

and for 𝑛 > 2,  

𝑆𝑘
2(𝑛) =

{
 
 
 

 
 
 ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (

𝑛

2𝑑
)

𝑑|(𝑛 2⁄ )

if 𝑛 ≡ 0 (mod 4),

∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (
𝑛/𝑑 − 1

2
)

𝑑|𝑛

if 𝑛 ≡ ±1 (mod 4),

∑ 𝜇(𝑑)𝑑𝑘 (𝑔𝑘 (
𝑛

2𝑑
) − 2𝑘𝑔𝑘 (

𝑛/2𝑑 − 1

2
))

𝑑|(𝑛 2⁄ )

if 𝑛 ≡ 2 (mod 4),

 (1.10) 

where 

𝑔𝑘(𝑡) = 1
𝑘 + 2𝑘 +⋯+ 𝑡𝑘 

for all positive integers 𝑘 and 𝑡. From (1.9) and (1.10), the explicit formulae for 𝑆3
1(𝑛) and 𝑆3

2(𝑛) are provided in (Kanasri, 

Pornsurat, & Tongron, 2019) as follows: 

𝑆3
1(𝑛) =

𝑛3𝜙(𝑛) + 𝑛2𝜓(𝑛)

4
         (𝑛 > 1) 

and 

𝑆3
2(𝑛) =

{
  
 

  
 
𝑛3𝜙(𝑛) + 4𝑛2𝜓(𝑛)

64
if 𝑛 ≡ 0 (mod 4),

𝑛3𝜙(𝑛) − 2𝑛2𝜓(𝑛) + 𝜓3(𝑛)

64
if 𝑛 ≡ ±1 (mod 4),

𝑛3𝜙(𝑛) − 8𝑛2𝜓(𝑛) + 8𝜓3(𝑛)/7

64
if 𝑛 ≡ 2 (mod 4),

         (𝑛 > 2), 

where 𝜓3(𝑛) = ∏ (1 − 𝑝3)𝑝|𝑛 . In general, we have given in (Kanasri, Pornsurat, & Tongron, 2019) that for 𝑚 ≥ 1, 

𝜓𝑚(1) = 1 and  𝜓𝑚(𝑛) = ∏ (1 − 𝑝𝑚)𝑝|𝑛  for 𝑛 > 1, 

where the product is over the prime divisors 𝑝 of 𝑛. We note that  𝜓1 = 𝜓 and we also obtain  

∑𝜇(𝑑)𝑑𝑚

𝑑|𝑛

= 𝜓𝑚(𝑛)          (𝑛 > 1). 
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However, there is no any general formula for 𝑆𝑘
𝑚(𝑛) for positive integers 𝑘, 𝑚, and 𝑛. Thus, we are interested in establishing such 

formula. In this work, we establish the general formula for 𝑆𝑘
𝑚(𝑛) by the use of Möbius inversion formula and then verify some 

simpler formulae for 𝑆𝑘
𝑚(𝑛) under certain conditions on 𝑚 and 𝑛. We also confirm that the known results (1.9) and (1.10) are 

special cases of our results. Moreover, the explicit formulae for 𝑆1
2𝑎(𝑛) and 𝑆2

2𝑎(𝑛), where 2𝑎|𝑛 and 𝑎 ≥ 1, are provided. 

 

2. Main Results 
 

We first establish the formula for 𝑆𝑘
𝑚(𝑛) and then show that this formula yields the known results (1.9) and (1.10).  

 

Theorem 2.1 Let 𝑘, 𝑚, and 𝑛 be positive integers with 𝑛 > 𝑚. Then 

𝑆𝑘
𝑚(𝑛) =∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊

𝑛 

𝑑𝑚
⌋)

𝑑|𝑛

, 

where ⌊𝑥⌋ is the largest integer less than or equal to a real number 𝑥. For 𝑛 < 𝑑𝑚, let 𝑔𝑘(0) = 0. 
 

Proof. For a positive divisor 𝑑 of 𝑛, define 

𝐵𝑑
𝑚 = {𝑥𝑘: 1 ≤ 𝑥 ≤

𝑛

𝑚
, (𝑥, 𝑛) = 𝑑}. 

It is clear that 

⋃ 𝐵𝑑
𝑚

𝑑|𝑛
= {1𝑘 , 2𝑘 , … , ⌊

𝑛

𝑚
⌋
𝑘

}  and 𝐵𝑑1
𝑚 ∩ 𝐵𝑑2

𝑚 = ∅ for 𝑑1 ≠ 𝑑2, 

which implies that 

𝑔𝑘 (⌊
𝑛

𝑚
⌋) = ∑ 𝑖𝑘

⌊𝑛/𝑚⌋

𝑖=1

=∑∑𝐵𝑑
𝑚

𝑑|𝑛

. (2.1) 

Next, we show that 

𝐵𝑑
𝑚 = 𝑑𝑘𝑅𝑘

𝑚 (
𝑛

𝑑
). (2.2) 

If 𝑥𝑘 ∈ 𝐵𝑑
𝑚, then 1 ≤ 𝑥 ≤ 𝑛/𝑚 and (𝑥, 𝑛) = 𝑑, so 1 ≤ 𝑥/𝑑 ≤ 𝑛/𝑑𝑚 and (𝑥/𝑑, 𝑛/𝑑) = 1. Consequently, (𝑥/𝑑)𝑘 ∈ 𝑅𝑘

𝑚(𝑛/𝑑) and 

so 𝑥𝑘 ∈ 𝑑𝑘𝑅𝑘
𝑚(𝑛/𝑑). On the other hand, if 𝑦𝑘 ∈ 𝑅𝑘

𝑚(𝑛/𝑑), then 1 ≤ 𝑦 ≤ 𝑛/𝑑𝑚 and (𝑦, 𝑛/𝑑) = 1. It follows that 𝑑 ≤ 𝑑𝑦 ≤ 𝑛/𝑚 

and (𝑑𝑦, 𝑛) = 𝑑. This shows that (𝑑𝑦)𝑘 ∈ 𝐵𝑑
𝑚 and the desired result follows. 

For 𝑑|𝑛, we obtain by using (2.2) that 

∑𝐵𝑑
𝑚 = 𝑑𝑘∑𝑅𝑘

𝑚 (
𝑛

𝑑
) = 𝑑𝑘𝑆𝑘

𝑚 (
𝑛

𝑑
). 

It follows by (2.1) that 

𝑔𝑘 (⌊
𝑛

𝑚
⌋) =∑𝑑𝑘𝑆𝑘

𝑚 (
𝑛

𝑑
)

𝑑|𝑛

=∑(
𝑛

𝑑
)
𝑘

𝑆𝑘
𝑚(𝑑)

𝑑|𝑛

, 

because {𝑑 ∈ ℕ: 𝑑|𝑛} = {𝑛 𝑑⁄ : 𝑑 ∈ ℕ and 𝑑|𝑛}. By the Möbius inversion formula with 𝑓(𝑛) = 𝑆𝑘
𝑚(𝑛)/𝑛𝑘 and 𝐹(𝑛) =

𝑔𝑘(⌊𝑛/𝑚⌋)/𝑛
𝑘, we get 

𝑆𝑘
𝑚(𝑛)

𝑛𝑘
=∑𝜇(𝑑)

𝑑𝑘

𝑛𝑘
𝑔𝑘 (⌊

𝑛

𝑑𝑚
⌋)

𝑑|𝑛

. 

This completes the proof.                        

We note that (1.9) follows immediately from Theorem 2.1 because ⌊𝑛 𝑑⁄ ⌋ = 𝑛 𝑑⁄  for 𝑑|𝑛. 

We observe that the formula (1.10) is divided into three cases and some sums are over all divisors 𝑑 of 𝑛/2 while the 

sum in Theorem 2.1 is over all divisors 𝑑 of 𝑛. To show that (1.10) is a special case of the result in Theorem 2.1, we verify some 

simpler formulae for 𝑆𝑘
𝑚(𝑛) with 𝑚 = 𝑝𝑎, a prime power, under the condition 𝑚|𝑛 as the following two propositions.  

 

Proposition 2.2 Let 𝑘 and 𝑛 be positive integers. If 𝑚 = 𝑝𝑎 is a prime power such that 𝑝𝑚|𝑛, then 

𝑆𝑘
𝑚(𝑛) = ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (

𝑛 

𝑑𝑚
)

𝑑|(𝑛 𝑚⁄ )

. 

 

Proof. Let 𝑚 = 𝑝𝑎 be a prime power such that 𝑝𝑚|𝑛. Then 𝑚|𝑛 and from Theorem 2.1, we have 

𝑆𝑘
𝑚(𝑛) =∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊

𝑛

𝑑𝑚
⌋)

𝑑|𝑛

= ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑|(𝑛 𝑚⁄ )

+ ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑∤(𝑛 𝑚⁄ )

= ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (
𝑛

𝑑𝑚
)

𝑑|(𝑛 𝑚⁄ )

+ ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑∤(𝑛 𝑚⁄ )

.

 

 

 

 

 

 

 

(2.3) 
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We next show that the second sum in (2.3) vanishes. Since 𝜇(𝑑) = 0 whenever 𝑞2|𝑑 for some prime 𝑞, it suffices to show that if 

𝑑|𝑛 and 𝑑 ∤ (𝑛 𝑚⁄ ), then 𝑝2|𝑑. Write 

𝑛 = 𝑝𝑏𝑞1
𝑐1⋯𝑞𝑠

𝑐𝑠 

as its prime factorization, where 𝑏 ≥ 𝑎 + 1 and 𝑐𝑗 ∈ ℕ ∪ {0}  (1 ≤ 𝑗 ≤ 𝑠). Since 𝑝𝑚|𝑛, we obtain 
𝑛

𝑚
= 𝑝𝑏−𝑎𝑞1

𝑐1⋯𝑞𝑠
𝑐𝑠 , 

where 𝑏 − 𝑎 ≥ 1. It follows from the assumption that 𝑝𝑏−𝑎+1|𝑑. Since 𝑏 − 𝑎 + 1 ≥ 2, we now have 𝑝2|𝑑. This completes the 

proof.                         

 

Proposition 2.3 Let 𝑘 and 𝑛 be positive integers. If 𝑚 = 𝑝𝑎 is a prime power such that 𝑛 > 𝑚, 𝑚|𝑛, and 𝑝𝑚 ∤ 𝑛, then 

𝑆𝑘
𝑚(𝑛) = ∑ 𝜇(𝑑)𝑑𝑘 (𝑔𝑘 (

𝑛

𝑑𝑚
) − 𝑝𝑘𝑔𝑘 (⌊

𝑛 

𝑝𝑑𝑚
⌋))

𝑑|(𝑛 𝑚⁄ )

. 

 

Proof. Let 𝑚 = 𝑝𝑎 be a prime power such that 𝑚|𝑛 and 𝑝𝑚 ∤ 𝑛. Write  

𝑛 = 𝑝𝑏𝑞1
𝑐1⋯𝑞𝑠

𝑐𝑠 

as its prime factorization. Note that  𝑚|𝑛 and  𝑝𝑚 ∤ 𝑛 imply 𝑎 = 𝑏. Then 
𝑛

𝑚
= 𝑞1

𝑐1𝑞2
𝑐2⋯𝑞𝑠

𝑐𝑠 . 

 

From Theorem 2.1, we have 

𝑆𝑘
𝑚(𝑛) =∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊

𝑛

𝑑𝑚
⌋)

𝑑|𝑛

= ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑|(𝑛 𝑚⁄ )

+ ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑∤(𝑛 𝑚⁄ )

= ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (
𝑛

𝑑𝑚
)

𝑑|(𝑛 𝑚⁄ )

+ ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑∤(𝑛 𝑚⁄ )

.

 

For 𝑑|𝑛, it is not difficult to see that 𝑑 ∤ (𝑛 𝑚⁄ ) if and only if  𝑝|𝑑. Then 

∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑∤(𝑛 𝑚⁄ )

=∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛
𝑝|𝑑

= ∑ 𝜇(𝑝𝑒)(𝑝𝑒)𝑘𝑔𝑘 (⌊
𝑛

𝑝𝑒𝑚
⌋)

𝑝𝑒|𝑛
𝑝∤𝑒

,
 

since 𝜇(𝑝𝑒) = 0 if 𝑝|𝑒. It is clear that 𝑝𝑒|𝑛 and 𝑝 ∤ 𝑒 if and only if 𝑒|(𝑛/𝑚). Consequently, 

∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑑𝑚
⌋)

𝑑|𝑛

𝑑∤(𝑛 𝑚⁄ )

= −𝑝𝑘 ∑ 𝜇(𝑒)𝑒𝑘𝑔𝑘 (⌊
𝑛

𝑝𝑒𝑚
⌋)

𝑒|(𝑛 𝑚⁄ )

,

= −𝑝𝑘 ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊
𝑛

𝑝𝑑𝑚
⌋)

𝑑|(𝑛 𝑚⁄ )

.

 

This completes the proof.                       

We now verify (1.10) by using Theorem 2.1, Proposition 2.2, and Proposition 2.3. We consider three possible cases for 

𝑛 > 2 as follows: 

Case 1: 𝑛 ≡ 0 (mod 4). Then 4|𝑛. From Proposition 2.2 with 𝑚 = 2, we have  

𝑆𝑘
2(𝑛) = ∑ 𝜇(𝑑)𝑑𝑘𝑔𝑘 (

𝑛 

2𝑑
)

𝑑|(𝑛 2⁄ )

. 

Case 2: 𝑛 ≡ ±1 (mod 4). Then 𝑛 is odd. From Theorem 2.1, we have 

𝑆𝑘
2(𝑛) =∑𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊

𝑛 

2𝑑
⌋)

𝑑|𝑛

. 

The result follows from the fact that  

⌊
𝑛

2𝑑
⌋ = ⌊

𝑛 𝑑⁄

2
⌋ =

𝑛 𝑑⁄ − 1

2
, 

since 𝑛/𝑑 is odd for 𝑑|𝑛. 
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Case 3: 𝑛 ≡ 2 (mod 4). Then 2|𝑛 and 4 ∤ 𝑛. From Proposition 2.3 with 𝑚 = 2, we have 

𝑆𝑘
2(𝑛) = ∑ 𝜇(𝑑)𝑑𝑘 (𝑔𝑘 (

𝑛

2𝑑
) − 2𝑘𝑔𝑘 (⌊

𝑛 

4𝑑
⌋))

𝑑|(𝑛 2⁄ )

. 

The result follows from the fact that 

⌊
𝑛

4𝑑
⌋ = ⌊

𝑛 2𝑑⁄

2
⌋ =

𝑛 2𝑑⁄ − 1

2
, 

since 𝑛/2𝑑 is odd for 𝑑|(𝑛 2⁄ ). 
 

3. Some Explicit Formulae 
 

In this section, we provide the explicit formulae for 𝑆1
2𝑎(𝑛) and 𝑆2

2𝑎(𝑛), where 2𝑎|𝑛 and 𝑎 ≥ 1. The following lemma is 

necessary. 

 

Lemma 3.1 Let 𝑝𝑎 be a prime power and 𝑛 be a positive integer such that 𝑝𝑎|𝑛 and 𝑛 > 𝑝𝑎. Then the following statements hold. 

 (i)  𝜙 (
𝑛

𝑝𝑎
) = {

𝜙(𝑛) 𝑝𝑎⁄ if 𝑛 ≡ 0 (mod 𝑝𝑎+1),

𝜙(𝑛) 𝜙(𝑝𝑎)⁄ if 𝑛 ≢ 0 (mod 𝑝𝑎+1).
 

 (ii)  𝜓𝑚 (
𝑛

𝑝𝑎
) = {

𝜓𝑚(𝑛) if 𝑛 ≡ 0 (mod 𝑝𝑎+1),

𝜓𝑚(𝑛)/(1 − 𝑝
𝑚) if 𝑛 ≢ 0 (mod 𝑝𝑎+1).

 

 

Proof. We treat two possible cases. 

Case 1: 𝑛 ≡ 0 (mod 𝑝𝑎+1). Then write 𝑛 = 𝑝𝑏𝑡 for some positive integers 𝑏 and 𝑡 such that 𝑏 ≥ 𝑎 + 1 and 𝑝 ∤ 𝑡. Since 𝜙 is 

multiplicative, we obtain 

𝜙 (
𝑛

𝑝𝑎
) = 𝜙(𝑝𝑏−𝑎)𝜙(𝑡) =

𝜙(𝑝𝑏)𝜙(𝑡)

𝑝𝑎
=
𝜙(𝑛)

𝑝𝑎
, 

𝜓𝑚 (
𝑛

𝑝𝑎
) = ∏ (1 − 𝑞𝑚)

𝑞|(𝑝𝑏−𝑎𝑡)

= ∏ (1 − 𝑞𝑚)

𝑞|(𝑝𝑏𝑡)

= 𝜓𝑚(𝑛). 

Case 2: 𝑛 ≢ 0 (mod 𝑝𝑎+1). Then we can write 𝑛 = 𝑝𝑎𝑡 for some positive integer  𝑡 such that 𝑝 ∤ 𝑡 and so 

𝜙 (
𝑛

𝑝𝑎
) = 𝜙(𝑡) =

𝜙(𝑝𝑎)𝜙(𝑡)

𝜙(𝑝𝑎)
=
𝜙(𝑛)

𝜙(𝑝𝑎)
, 

𝜓𝑚 (
𝑛

𝑝𝑎
) =∏(1 − 𝑞𝑚)

𝑞|𝑡

=
∏ (1 − 𝑞𝑚)𝑞|(𝑝𝑎𝑡)

1 − 𝑝𝑚
=
𝜓𝑚(𝑛)

1 − 𝑝𝑚
. 

This completes the proof.                        

Next, we give the formulae for 𝑆1
𝑝𝑎(𝑛) and 𝑆2

𝑝𝑎(𝑛), where 𝑝𝑎 is a prime power such that 𝑝𝑎|𝑛, by using Lemma 3.1 as 

the following. 

 

Proposition 3.2 Let 𝑝𝑎 be a prime power and 𝑛 be a positive integer such that 𝑝𝑎|𝑛 and 𝑛 > 𝑝𝑎. Then 

𝑆1
𝑝𝑎(𝑛) =

{
 
 

 
 
𝑛𝜙(𝑛)

2𝑝2𝑎
if 𝑛 ≡ 0 (mod 𝑝𝑎+1),

1

2
(
𝑛𝜙(𝑛)

𝑝𝑎𝜙(𝑝𝑎)
− 𝑝 ∑ 𝜇(𝑑)𝑑 ⌊

𝑛

𝑝𝑎+1𝑑
⌋ (⌊

𝑛

𝑝𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 𝑝𝑎⁄ )

) if 𝑛 ≢ 0 (mod 𝑝𝑎+1),

 

𝑆2
𝑝𝑎(𝑛) =

{
  
 

  
 
2𝑛2𝜙(𝑛) + 𝑛𝑝2𝑎𝜓(𝑛)

6𝑝3𝑎
                                                          if 𝑛 ≡ 0 (mod 𝑝𝑎+1),

1

6
(
2𝑛2𝜙(𝑛)

𝑝2𝑎𝜙(𝑝𝑎)
+

𝑛𝜓(𝑛)

(1 − 𝑝)𝑝𝑎
− 𝑝2 ∑ 𝜇(𝑑)𝑑2 ⌊

𝑛

𝑝𝑎+1𝑑
⌋ (⌊

𝑛

𝑝𝑎+1𝑑
⌋ + 1) (2 ⌊

𝑛

𝑝𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 𝑝𝑎⁄ )

)

                                                                                                    if 𝑛 ≢ 0 (mod 𝑝𝑎+1).

 

 

Proof. We consider two possible cases. 

Case 1: 𝑛 ≡ 0 (mod 𝑝𝑎+1). By using Proposition 2.2, we have 
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Again, by using Proposition 2.2, we obtain 

𝑆2
𝑝𝑎(𝑛) = ∑ 𝜇(𝑑)𝑑2𝑔2 (

𝑛 

𝑝𝑎𝑑
)

𝑑|(𝑛 𝑝𝑎⁄ )

=
1

6
∑ 𝜇(𝑑)𝑑2 (

𝑛 

𝑝𝑎𝑑
) (

𝑛 

𝑝𝑎𝑑
+ 1)

𝑑|(𝑛 𝑝𝑎⁄ )

(
2𝑛 

𝑝𝑎𝑑
+ 1)

=
1

6𝑝3𝑎
∑ 𝜇(𝑑) (

2𝑛3 

𝑑
+ 3𝑝𝑎𝑛2 + 𝑛𝑝2𝑎𝑑)

𝑑|(𝑛 𝑝𝑎⁄ )

=
1

6𝑝3𝑎
(2𝑛3

𝜙(𝑛 𝑝𝑎⁄ )

𝑛 𝑝𝑎⁄
+ 𝑛𝑝2𝑎𝜓(

𝑛

𝑝𝑎
) ) , by (1.3), (1.4) and (1.5)

=
1

6𝑝3𝑎
(2𝑛3

𝜙(𝑛)/𝑝𝑎

𝑛 𝑝𝑎⁄
+ 𝑛𝑝2𝑎𝜓(𝑛)) , by Lemma 3.1 (i) and (ii)

=
2𝑛2𝜙(𝑛) + 𝑛𝑝2𝑎𝜓(𝑛)

6𝑝3𝑎
.

 

Case 2: 𝑛 ≢ 0 (mod 𝑝𝑎+1). By using Proposition 2.3, we get 

𝑆1
𝑝𝑎(𝑛) = ∑ 𝜇(𝑑)𝑑 (𝑔1 (

𝑛

𝑝𝑎𝑑
) − 𝑝𝑔1 (⌊

𝑛 

𝑝𝑎+1𝑑
⌋))

𝑑|(𝑛 𝑝𝑎⁄ )

 

=
1

2
∑ 𝜇(𝑑)𝑑 ((

𝑛 

𝑝𝑎𝑑
) (

𝑛 

𝑝𝑎𝑑
+ 1) − 𝑝 ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ (⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1))

𝑑|(𝑛 𝑝𝑎⁄ )

 

=
1

2
(
𝑛2

𝑝2𝑎
∑

𝜇(𝑑)

𝑑
𝑑|(𝑛 𝑝𝑎⁄ )

− 𝑝 ∑ 𝜇(𝑑)𝑑

𝑑|(𝑛 𝑝𝑎⁄ )

⌊
𝑛 

𝑝𝑎+1𝑑
⌋ (⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1)) , by (1.4) 

=
1

2
(
𝑛2

𝑝2𝑎
𝜙(𝑛 𝑝𝑎⁄ )

𝑛 𝑝𝑎⁄
− 𝑝 ∑ 𝜇(𝑑)𝑑

𝑑|(𝑛 𝑝𝑎⁄ )

⌊
𝑛 

𝑝𝑎+1𝑑
⌋ (⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1)) , by (1.3) 

=
1

2
(
𝑛𝜙(𝑛)

𝑝𝑎𝜙(𝑝𝑎)
− 𝑝 ∑ 𝜇(𝑑)𝑑 ⌊

𝑛

𝑝𝑎+1𝑑
⌋ (⌊

𝑛

𝑝𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 𝑝𝑎⁄ )

) , by Lemma 3.1 (i) 

and 

𝑆2
𝑝𝑎(𝑛) = ∑ 𝜇(𝑑)𝑑2 (𝑔2 (

𝑛

𝑝𝑎𝑑
) − 𝑝2𝑔2 (⌊

𝑛 

𝑝𝑎+1𝑑
⌋))

𝑑|(𝑛 𝑝𝑎⁄ )

 

=
1

6
∑ 𝜇(𝑑)𝑑2 ((

𝑛 

𝑝𝑎𝑑
)(

𝑛 

𝑝𝑎𝑑
+ 1) (

2𝑛 

𝑝𝑎𝑑
+ 1) − 𝑝2  ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ (⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1) (2 ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1))

𝑑|(𝑛 𝑝𝑎⁄ )

 

=
1

6
∑ 𝜇(𝑑)𝑑2 (

2𝑛3

𝑝3𝑎𝑑3
+

3𝑛2

𝑝2𝑎𝑑2
+

𝑛

𝑝𝑎𝑑
− 𝑝2  ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ (⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1) (2 ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1))

𝑑|(𝑛 𝑝𝑎⁄ )

 

=
1

6
(
2𝑛3

𝑝3𝑎
𝜙(𝑛 𝑝𝑎⁄ )

𝑛 𝑝𝑎⁄
+
𝑛

𝑝𝑎
𝜓 (

𝑛

𝑝𝑎
) − 𝑝2  ∑ 𝜇(𝑑)𝑑2 ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ (⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1) (2 ⌊

𝑛 

𝑝𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 𝑝𝑎⁄ )

), 

by (1.3), (1.4), and (1.5) 
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=
1

6
(
2𝑛2𝜙(𝑛)

𝑝2𝑎𝜙(𝑝𝑎)
+

𝑛𝜓(𝑛)

(1 − 𝑝)𝑝𝑎
− 𝑝2 ∑ 𝜇(𝑑)𝑑2 ⌊

𝑛

𝑝𝑎+1𝑑
⌋ (⌊

𝑛

𝑝𝑎+1𝑑
⌋ + 1) (2 ⌊

𝑛

𝑝𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 𝑝𝑎⁄ )

), 

by Lemma 3.1 (i) and (ii). This completes the proof.                    

We note that the formulae for 𝑆𝑘
𝑝𝑎(𝑛) with 𝑘 > 2 can be obtained similarly to such formulae for the cases 𝑘 = 1, 2 as in 

Proposition 3.2.  

 

Example 3.3 This example illustrates how to find 𝑆1
3(𝑛) and 𝑆2

3(𝑛) for 𝑛 = 9, 15, and 16 by the definition and our results. First, 

we calculate these 𝑆𝑘
3(𝑛) (𝑘 = 1,2) by the definition as follows: 

𝑆1
3(9) =∑{𝑥 ∶ 1 ≤  𝑥 ≤

9

3
, (𝑥, 9) = 1} =∑{1,2} = 3 ,

𝑆2
3(9) =∑{𝑥2 ∶ 1 ≤  𝑥 ≤

9

3
, (𝑥, 9) = 1} =∑{12, 22} = 5 ,

𝑆1
3(15) =∑{𝑥 ∶ 1 ≤  𝑥 ≤

15

3
, (𝑥, 15) = 1} =∑{1,2,4} = 7,

𝑆2
3(15) =∑{𝑥2 ∶ 1 ≤  𝑥 ≤

15

3
, (𝑥, 15) = 1} =∑{12, 22, 42} = 21,

𝑆1
3(16) =∑{𝑥 ∶ 1 ≤  𝑥 ≤

16

3
, (𝑥, 16) = 1} =∑{1,3,5} = 9,

𝑆2
3(16) =∑{𝑥2 ∶ 1 ≤  𝑥 ≤

16

3
, (𝑥, 16) = 1} =∑{12, 32, 52} = 35.

 

Next, we calculate 𝑆𝑘
3(9) and 𝑆𝑘

3(15) (𝑘 = 1,2) by Proposition 3.2 as follows: 

𝑆1
3(9) =

9𝜙(9)

2 ⋅ 32
=
9 ⋅ 6

2 ⋅ 9
= 3,

𝑆2
3(9) =

2 ⋅ 92𝜙(9) + 9 ⋅ 32𝜓(9)

6 ⋅ 33
=
2 ⋅ 81 ⋅ 6 + 9 ⋅ 9 ⋅ (−2)

6 ⋅ 27
= 5,

𝑆1
3(15) =

1

2
(
15𝜙(15)

3𝜙(3)
− 3∑𝜇(𝑑)𝑑 ⌊

15

32𝑑
⌋ (⌊

15

32𝑑
⌋ + 1)

𝑑|5

)

=
1

2
(
15 ⋅ 8

3 ⋅ 2
− 3(1 ⋅ 1 ⋅ 1 ⋅ 2 + (−1) ⋅ 5 ⋅ 0 ⋅ 1)) = 7,

𝑆2
3(15) =

1

6
(
2 ⋅ 152𝜙(15)

32𝜙(3)
+
15𝜓(15)

(1 − 3)3
− 32∑𝜇(𝑑)𝑑2 ⌊

15

32𝑑
⌋ (⌊

15

32𝑑
⌋ + 1) (2 ⌊

15

32𝑑
⌋ + 1)

𝑑|5

)

=
1

6
(
2 ⋅ 225 ⋅ 8

9 ⋅ 2
−
15 ⋅ 8

2 ⋅ 3
− 9(1 ⋅ 12 ⋅ 1 ⋅ 2 ⋅ 3 + (−1) ⋅ 52 ⋅ 0 ⋅ 1 ⋅ 1)) = 21.

 

Finally, we calculate 𝑆1
3(16) and 𝑆2

3(16) by using Theorem 2.1 as follows: 

𝑆1
3(16) = ∑ 𝜇(𝑑)𝑑𝑔1 (⌊

16 

3𝑑
⌋)

𝑑|16

= 1 ⋅ 1𝑔1(5) + (−1) ⋅ 2𝑔1(2) + 0 ⋅ 4𝑔1(1) + 0 ⋅ 8𝑔1(0) + 0 ⋅ 16𝑔1(0)

= 15 − 6 = 9,

𝑆2
3(16) = ∑ 𝜇(𝑑)𝑑2𝑔2 (⌊

16 

3𝑑
⌋)

𝑑|16

= 1 ⋅ 12𝑔2(5) + (−1) ⋅ 2
2𝑔2(2) + 0 ⋅ 4

2𝑔2(1) + 0 ⋅ 8
2𝑔2(0) + 0 ⋅ 16

2𝑔2(0)

= 55 − 20 = 35.

 

Taking 𝑝 = 2 in Proposition 3.2, we get the explicit formulae for 𝑆1
2𝑎(𝑛) and 𝑆2

2𝑎(𝑛), where 2𝑎|𝑛 and 𝑎 ≥ 1, as the 

following proposition.  

 

Proposition 3.4 Let 𝑛 and 𝑎 be positive integers such that 2𝑎|𝑛 and 𝑛 > 2𝑎. Then 

𝑆1
2𝑎(𝑛) = {

𝑛𝜙(𝑛)

22𝑎+1
if 𝑛 ≡ 0 (mod 2𝑎+1),

𝑛𝜙(𝑛)

22𝑎+1
−
𝜓(𝑛)

4
if 𝑛 ≢ 0 (mod 2𝑎+1),

 

and 
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𝑆2
2𝑎(𝑛) =

{
 

 
𝑛2𝜙(𝑛)

3 ⋅ 23𝑎
 +

𝑛𝜓(𝑛)

3 ⋅ 2𝑎+1
if 𝑛 ≡ 0 (mod 2𝑎+1),

𝑛2𝜙(𝑛)

3 ⋅ 23𝑎
−
𝑛𝜓(𝑛)

3 ⋅ 2𝑎
if 𝑛 ≢ 0 (mod 2𝑎+1).

 

 

Proof. If 𝑛 ≡ 0 (mod 2𝑎+1), then the results easily follow from Proposition 3.2 by taking 𝑝 = 2. Assume now that 𝑛 ≢
0 (mod 2𝑎+1), yielding 𝑛 2𝑎⁄  is odd. Then, for 𝑑|(𝑛 2𝑎⁄ ), we have 𝑛 2𝑎𝑑⁄  is odd and so 

⌊
𝑛

2𝑎+1𝑑
⌋ = ⌊

(𝑛 2𝑎⁄ ) 𝑑⁄

2
⌋ =

(𝑛 2𝑎⁄ ) 𝑑⁄ − 1

2
=
𝑛 − 2𝑎𝑑

2𝑎+1𝑑
. 

It follows that  

1

2
(
𝑛𝜙(𝑛)

2𝑎𝜙(2𝑎)
− 2 ∑ 𝜇(𝑑)𝑑 ⌊

𝑛

2𝑎+1𝑑
⌋ (⌊

𝑛

2𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 2𝑎⁄ )

) 

=
1

2
(
𝑛𝜙(𝑛)

22𝑎−1
− 2 ∑ 𝜇(𝑑)𝑑 (

𝑛 − 2𝑎𝑑

2𝑎+1𝑑
)(
𝑛 − 2𝑎𝑑

2𝑎+1𝑑
+ 1)

𝑑|(𝑛 2𝑎⁄ )

) 

=
𝑛𝜙(𝑛)

22𝑎
−

1

22𝑎+2
(
𝑛2𝜙(𝑛 2𝑎⁄ )

𝑛 2𝑎⁄
− 22𝑎𝜓 (

𝑛

2𝑎
)) , by (1.3) and (1.5) 

=
𝑛𝜙(𝑛)

22𝑎
−

1

22𝑎+2
(
2𝑎𝑛𝜙(𝑛)

2𝑎−1
+ 22𝑎𝜓(𝑛)) , by Lemma 3.1 (i) and (ii) 

=
𝑛𝜙(𝑛)

22𝑎+1
−
𝜓(𝑛)

4
 

and 

1

6
(
2𝑛2𝜙(𝑛)

22𝑎𝜙(2𝑎)
−
𝑛𝜓(𝑛)

2𝑎
− 22 ∑ 𝜇(𝑑)𝑑2 ⌊

𝑛

2𝑎+1𝑑
⌋ (⌊

𝑛

2𝑎+1𝑑
⌋ + 1) (2 ⌊

𝑛

2𝑎+1𝑑
⌋ + 1)

𝑑|(𝑛 2𝑎⁄ )

) 

=
1

6
(
𝑛2𝜙(𝑛)

23𝑎−2
−
𝑛𝜓(𝑛)

2𝑎
− 22 ∑ 𝜇(𝑑)𝑑2 (

𝑛 − 2𝑎𝑑

2𝑎+1𝑑
) (
𝑛 − 2𝑎𝑑

2𝑎+1𝑑
+ 1)(

𝑛 − 2𝑎𝑑

2𝑎𝑑
+ 1)

𝑑|(𝑛 2𝑎⁄ )

) 

=
1

6
(
𝑛2𝜙(𝑛)

23𝑎−2
−
𝑛𝜓(𝑛)

2𝑎
−

1

23𝑎
∑ 𝜇(𝑑) (

𝑛 − 2𝑎𝑑

𝑑
) (𝑛 + 2𝑎𝑑)𝑛

𝑑|(𝑛 2𝑎⁄ )

) 

=
1

6
(
𝑛2𝜙(𝑛)

23𝑎−2
−
𝑛𝜓(𝑛)

2𝑎
−

1

23𝑎
(
𝑛3𝜙(𝑛 2𝑎⁄ )

𝑛 2𝑎⁄
− 22𝑎𝑛𝜓 (

𝑛

2𝑎
))) , by (1.3) and (1.5) 

=
1

6
(
𝑛2𝜙(𝑛)

23𝑎−2
−
𝑛𝜓(𝑛)

2𝑎
−

1

23𝑎
(2𝑛2𝜙(𝑛) + 22𝑎𝑛𝜓(𝑛))) , by Lemma 3.1 (i) and (ii) 

=
𝑛2𝜙(𝑛)

3 ⋅ 23𝑎
−
𝑛𝜓(𝑛)

3 ⋅ 2𝑎
. 

Hence, the results follow from Proposition 3.2.                          

We see that (1.7) and (1.8) for an even integer 𝑛 can be verified by taking 𝑎 = 1 in Proposition 3.4.  

 

Example 3.5 This example illustrates how to find 𝑆1
4(𝑛) and 𝑆2

4(𝑛) for 𝑛 = 16, 28, and 30 by the definition and our results. First, 

we calculate these 𝑆𝑘
4(𝑛) (𝑘 = 1,2) by the definition as follows: 

𝑆1
4(16) =∑{𝑥 ∶ 1 ≤  𝑥 ≤

16

4
, (𝑥, 16) = 1} =∑{1,3} = 4 ,

𝑆2
4(16) =∑{𝑥2 ∶ 1 ≤  𝑥 ≤

16

4
, (𝑥, 16) = 1} =∑{12, 32} = 10 ,

𝑆1
4(28) =∑{𝑥 ∶ 1 ≤  𝑥 ≤

28

4
, (𝑥, 28) = 1} =∑{1,3,5} = 9,

𝑆2
4(28) =∑{𝑥2 ∶ 1 ≤  𝑥 ≤

28

4
, (𝑥, 28) = 1} =∑{12, 32, 52} = 35,

𝑆1
4(30) =∑{𝑥 ∶ 1 ≤  𝑥 ≤

30

4
, (𝑥, 30) = 1} =∑{1,7} = 8,

𝑆2
4(30) =∑{𝑥2 ∶ 1 ≤  𝑥 ≤

30

4
, (𝑥, 30) = 1} =∑{12, 72} = 50.
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Next, we calculate 𝑆𝑘
4(16) and 𝑆𝑘

4(28) (𝑘 = 1,2) by Proposition 3.4 as follows: 

𝑆1
4(16) =

16𝜙(16)

22⋅2+1
=
16 ⋅ 8

32
= 4,

𝑆2
4(16) =

162𝜙(16)

3 ⋅ 23⋅2
 +
16𝜓(16)

3 ⋅ 22+1
=
256 ⋅ 8

3 ⋅ 64
+
16 ⋅ (−1)

3 ⋅ 8
= 10,

𝑆1
4(28) =

28𝜙(28)

22⋅2+1
−
𝜓(28)

4
=
28 ⋅ 12

32
−
6

4
= 9,

𝑆2
4(28) =

282𝜙(28)

3 ⋅ 23⋅2
−
28𝜓(28)

3 ⋅ 22
=
784 ⋅ 12

3 ⋅ 64
−
28 ⋅ 6

3 ⋅ 4
= 35.

 

Finally, we calculate 𝑆1
4(30) and 𝑆2

4(30) by using Theorem 2.1 as follows: 

𝑆1
4(30) = ∑ 𝜇(𝑑)𝑑𝑔1 (⌊

30

4𝑑
⌋)

𝑑|30

= 1 ⋅ 1𝑔1(7) + (−1) ⋅ 2𝑔1(3) + (−1) ⋅ 3𝑔1(2) + (−1) ⋅ 5𝑔1(1)

     +1 ⋅ 6𝑔1(1) + 1 ⋅ 10𝑔1(0) + 1 ⋅ 15𝑔1(0) + (−1) ⋅ 30𝑔1(0)

= 28 − 12 − 9 − 5 + 6 = 8,

𝑆2
4(30) = ∑ 𝜇(𝑑)𝑑2𝑔2 (⌊

30 

4𝑑
⌋)

𝑑|30

= 1 ⋅ 12𝑔2(7) + (−1) ⋅ 2
2𝑔2(3) + (−1) ⋅ 3

2𝑔2(2) + (−1) ⋅ 5
2𝑔2(1)

     +1 ⋅ 62𝑔2(1) + 1 ⋅ 10
2𝑔2(0) + 1 ⋅ 15

2𝑔2(0) + (−1) ⋅ 30
2𝑔2(0)

= 140 − 56 − 45 − 25 + 36 = 50.

 

4. Conclusions 
 

For positive integers 𝑘, 𝑚, and 𝑛, let 

𝑆𝑘
𝑚(𝑛) =∑{𝑥𝑘 ∶ 1 ≤  𝑥 ≤

𝑛

𝑚
, (𝑥, 𝑛) = 1}, 

where ∑𝑋 denotes the sum of all elements in a finite set 𝑋 of 

positive integers. The formulae for 𝑆1
1(𝑛) and 𝑆2

1(𝑛) appeared 

in (Burton, 2011) and (Niven, Zuckerman, & Montgomery, 

1991), respectively, while the formulae for 𝑆1
2(𝑛) and 𝑆2

2(𝑛) 
appeared in (Baum, 1982). Recently, the formulae for 𝑆𝑘

1(𝑛) 
and 𝑆𝑘

2(𝑛), which are the generalizations of the results 

mentioned above, was provided by Kanasri, Pornsurat, and 

Tongron (2019). In the present work, we establish the formula 

for 𝑆𝑘
𝑚(𝑛) as in Theorem 2.1, which is a generalization of all 

previous results. Some conditions on 𝑚 and 𝑛 yield some 

simpler formulae for 𝑆𝑘
𝑚(𝑛) as in Proposition 2.2 and 

Proposition 2.3. We also provide the explicit formulae for 

𝑆1
2𝑎(𝑛) and 𝑆2

2𝑎(𝑛), where 2𝑎|𝑛, 𝑛 > 2𝑎, and 𝑎 ≥ 1, as in 

Proposition 3.4.  
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