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Abstract 
 

The aim of this study is to establish new confidence intervals for the single coefficient of variation of an inverse-

gamma distribution using Bayesian methods based on the Jeffreys, reference, and uniform priors and compare them with the 

Wald method. The Bayesian methods are constructed with either the credible confidence interval or the highest posterior density 

(HPD) interval. These concepts were extended to find the difference between the coefficients of variation for two independent 

inverse-gamma populations. The performances of the proposed confidence intervals were evaluated using coverage probabilities 

and expected lengths via Monte Carlo simulations. The results indicate that the Bayesian HPD interval based on the reference 

prior can be recommended for constructing confidence intervals for the coefficient of variation of a single inverse-gamma 

distribution and the Bayesian HPD interval based on the Jeffreys prior can be recommended for constructing confidence intervals 

for the difference between the coefficients of variation of two inverse-gamma distributions. Rainfall data from northern Thailand 

were used to illustrate the efficacies of the proposed methods. 
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1. Introduction 
 

The inverse-gamma distribution is right-skewed and 

a member of the two-parameter family of continuous 

probability distributions on the positive real line. Also called 

the inverted gamma distribution or the reciprocal gamma 

distribution, it is most often used as a conjugate prior 

distribution in Bayesian statistics (Glen & Leemis, 2017). In 

general, the inverse-gamma distribution is applied to point 

estimation. For example, Abid and Al-Hassany (2016) 

estimated the maximum likelihood, moments, percentile, 

least-squares, and weighted least-squares estimators for an 

inverted gamma distribution. Llera and Beckmann (2016) 

introduced five algorithms based on the moment, maximum 

likelihood, and full Bayesian estimation of the parameters of 

an inverse-gamma distribution. However, interval estimation 

of the parameters of an inverse-gamma distribution has not yet

 
been reported. Interval estimation is defined as the estimation 

of a population parameter by specifying a range of values 

bounded by upper and lower limits within which the true 

value is asserted to lie. It is distinct from point estimation in 

which a single value is assigned as the true value of the 

parameter. However, interval estimation provides more 

information on a population than point estimation (Casella & 

Berger, 2002).  

The coefficient of variation is one of the parameters 

of interest for studying interval estimation because it is a 

statistical measure of the dispersion of data points around the 

mean. It is a helpful quantity to describe the variation when 

evaluating results from different populations (Liu, 2012), 

which is commonly used to compare the data dispersion 

between distinct series of data. Therefore, many scholars have 

investigated confidence intervals for parameter functions of 

the coefficient of variation. For example, Pang, Leung, 

Huang, and Liu (2005) proposed confidence intervals for the 

coefficient of variation of a three-parameter Weibull 

distribution by using a simulation-based Bayesian approach. 

Mahmoudvand and Hassani (2009) proposed confidence 
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intervals for the coefficient of variation of a normal 

distribution. Buntao and Niwitpong (2013) provided 

confidence intervals for the difference between the 

coefficients of variation of lognormal distributions. 

Sangnawakij and Niwitpong (2016) examined confidence 

intervals for the single coefficient of variation and the 

difference between the coefficients of variation of two-

parameter exponential distributions using the method of 

variance of estimates recovery (MOVER), the generalized 

confidence interval (GCI), and the asymptotic confidence 

interval. Thangjai and Niwitpong (2017) proposed confidence 

intervals based on adjusted MOVER, GCI, and a large sample 

method for weighted coefficients of variation. Chankham, 

Niwitpong, and Niwitpong (2019) proposed new confidence 

intervals for the coefficient of variation and the difference 

between the coefficients of variation of inverse Gaussian 

distributions using GCI and the percentile bootstrap (PB) 

confidence interval. Yosboonruang, Niwitpong, and 

Niwitpong (2019) established new confidence intervals for the 

single coefficient of variation of a delta-lognormal distribution 

using Bayesian methods and compared them with the fiducial 

GCI (FGCI). Recently, Kaewprasert, Niwitpong, and 

Niwitpong (2020) proposed the score, Wald, and PB methods 

to establish confidence intervals for the single coefficient of 

variation of an inverse-gamma distribution, and subsequently 

recommended the Wald method for constructing confidence 

intervals in this scenario. 

The goal of this study is to propose new confidence 

intervals for the single coefficient of variation of an inverse-

gamma distribution using Bayesian methods and comparing 

them with the Wald method proposed by Kaewprasert, 

Niwitpong, and Niwitpong (2020). Moreover, the approach is 

extended to the difference between the coefficients of 

variation of two independent inverse-gamma distributions. 

 

2. Materials and Methods 
 

 Let ),Gamma( ~ baY  with shape parameter a  and rate parameter b . The transformation 
Y

YgX
1

)(   is 

defined as an inverse-gamma distribution with probability density function (pdf) X  defined as 
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with the shape parameter    and scale parameter  , denoted as ),IG( ~ X . 

 The population mean and variance of the inverse-gamma distribution are respectively defined as 
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The coefficient of variation of an inverse-gamma distribution can be modified as follows:
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Since   is an unknown parameter, it must be estimated. 

 The log-likelihood function of  and   is respectively given by 
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Thus, the respective maximum likelihood estimators for   and  , are 
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Therefore, the sample coefficient of variation for  is given by 

2ˆ

1
ˆ





 . 

 

2.1 Confidence intervals for a single of coefficient of variation of inverse gamma distribution 
  

We approximate fiducial quantities based on cube-root transformed samples. Let
 
Wi = Yi

1/3, for i = 1, 2, …. n 

(Krishnamoorthy & Wang, 2016). Therefore, using the Wilson and Hilferty (1931) approximation, Wi = Yi
1/3= (1/Xi)1/3 = Xi

-1/3 is 

approximately normal with mean  and variance 
2  respectively given by 
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For ),N( ~ 2

i W , the pdf of a normal distribution is as follows: 
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To find the confidence interval for the coefficient of variation, we use the following approach that requires the expressions in 

Equation (7). Define 
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Recall that 
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where U is a chi-squared distribution with n-1 degrees of freedom and Z is a standard normal random variable. 

 Solving Equation (10) for    and 
2 , let w  and s  be the observed values of W  and S , respectively. 

The fiducial quantities for the parameter are given by  
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Solving the fiducial quantities for  and   can be obtained in terms of   and 
2 , respectively, as follows: 
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Let

 

),( 2 be an unknown parameter. The likelihood of W is 
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Therefore, the Fisher information matrix is defined as 
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In the following section, the Bayesian methods based on the Jeffreys, reference, and uniform priors are presented. 

 

2.1.1 The Jeffreys Prior 
  

The Jeffreys (1961) prior is defined as ))(det()(  Ip  , where )(I is the Fisher information matrix. From the 

Fisher information matrix ),( 2I , the Jeffreys prior is obtained as  
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The joint posterior density function is defined as 

 














n

i

iwwp
1

2

2

2/12

2

2 .)(
2

1
exp)(

1
),( 





      (17) 

The respective marginal posteriors of   and 
2 for the Jeffreys prior (Dongchu & Keying, 1996) are  

 )n,ˆN( ~, 22  w          (18) 

and 
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The Bayesian confidence interval for the coefficient of variation is constructed by substitution by w,2  and w2  in 

Equations (12) and (3), respectively. 

 Therefore, the )%1(100   two-sided confidence interval for  based on the Jeffreys prior is defined as  

 
 JJJ ULCI  ,           (20) 

where 
JL

 and  
JU

are the lower and upper bounds of the )%1(100   credible confidence interval and the HPD interval of  

 , respectively. 

 Let )( xp   be a posterior density function. When )( xp   is not symmetric, the HPD interval is as defined by Box 

and Tiao (1992), and the )%1(100   HPD interval for   is simply given by  

    pxppR  )(:)(         (21) 

where R is a region in the parameter space of   and 
p  is the largest constant value such that      1)( pRP  (Chen & 

Shao, 1998). 

 

2.1.2 The reference prior 
  

The reference prior approach was developed by Bernardo (1979) and modified for multiparameter problems by Berger 

and Bernardo (1992). Although the approach cannot be simply described, it can be roughly thought of as trying to modify the 

Jeffreys prior by reducing the dependence among the parameters (Yang & Berger, 1998). 

 The reference prior is given by 
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The joint posterior density function of the reference prior is defined as 
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The respective marginal posteriors of   and 
2  for the reference prior (Dongchu & Keying, 1996) are  
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Equations (24) and (25) can be substituted into Equations (12) and (3), respectively. 

Therefore, the )%1(100   two-sided confidence interval for  based on the reference prior is defined as 

 
 RRR ULCI  ,          (26) 

where  RL
 and  RU

are the lower and upper bounds of the )%1(100   credible confidence interval of the coefficient of 

variation. 

 

2.1.3 The uniform prior 
  

A prior just means a constant density with the value of the constant typically chosen as 1, as popularized by Laplace 

(1812). The uniform prior is defined as 
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The joint posterior density function for the uniform prior is defined as 
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The respective marginal posteriors of   and 
2  for the uniform prior are given by 
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Equations (29) and (30) can be substituted into Equations (12) and (3), respectively. 

Therefore, the )%1(100   two-sided confidence interval for  based on the uniform prior is defined as  

 
 UUU ULCI  ,          (31) 

where 
UL  and 

UU are the lower and upper bounds of the )%1(100   credible confidence interval of the coefficient of 

variation. 

 

Algorithm 1 
 

Step 1 Generate 
ix
 
from IG distribution. 

Step 2 Compute 3/1x .  

Step 3 Compute  w,2  from Equation (18), Equation (24), and Equation (29). 

Step 4 Compute  w2  from Equation (19), Equation (25), and Equation (30). 

Step 5 Compute    and   from Equation (12), and Equation (3) by substituting w,2  and w2 .  

Step 6 Repeat Step 3-5 5,000 times. 

Step 7 Compute the 95% credible and HPD interval for   from Equation (20), Equation (26), and Equation (31). 

Step 8 Repeat Step 1-7 15,000 times to compute the CP and the EL. 

 

2.2 Confidence intervals for the difference of coefficients of variation of inverse gamma distribution 
  

In this section, we explain the methods for constructing the confidence intervals for the difference between the 

coefficients of variation of two independent inverse-gamma distributions. Suppose that ),IG( ~ 111 X  and 

),IG( ~ 222 X  are independent, then the difference between their coefficients of variation is simply

 

 2

1

2

1

21

21








  .       (32) 

The confidence intervals for the parameter   can be constructed as follows. 

 

2.2.1 The Bayesian method based on the Jeffreys prior 
  

The marginal posteriors of i  and 
2

i  are defined in Equations (18) and (19), respectively. To construct the 

Bayesian methods based on the Jeffreys prior,  is substituted by i  and 
2

i , for i = 1,2, in  Equations (12) and (32), 

respectively. 

Therefore, the )%1(100   two-sided confidence interval for  based on the Jeffreys prior is defined as 

 
 JJJ ULCI  ,          (33) 

where 
JL  and 

JU are the lower and upper bounds of the )%1(100   credible confidence intervals for the difference between 

the coefficients of variation of two inverse-gamma distributions. 

 

2.2.2 The Bayesian method based on the reference prior 
  

The marginal posteriors of i  and 
2

i  are defined in Equations (24) and (25), respectively. Moreover,
 i  and 

2

i  

can be substituted into Equations (12) and (32), respectively. 

Therefore, the )%1(100   two-sided confidence interval for  based on the reference prior is defined as  

 
 RRR ULCI  ,  .         (34) 
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2.2.3 The Bayesian method based on the uniform prior 
  

The marginal posterior of i  and 
2

i , for i = 1, 2, are defined in Equations (29) and (30), respectively. Subsequently, 

i  and can be substituted into Equation (12). By the difference between the coefficients of variation of two inverse-gamma 

distributions in Equation (32), the )%1(100   two-sided confidence interval for  based on the uniform prior is given by  

  UUU ULCI  , .          (35) 

 

Algorithm 2 
 

Step 1 Generate ix ; i = 1, 2 from IG distribution. 

Step 2 Compute 
3/1

1


x and 

3/1

2


x  .  

Step 3 Compute wi ,2 ; i = 1, 2 from Equation (18), Equation (24), and Equation (29). 

Step 4 Compute  wi

2  ; i = 1, 2 from Equation (19), Equation (25), and Equation (30). 

Step 5 Compute  i  for i = 1, 2 from Equation (12). 

Step 6 Compute    from Equation (36). 

Step 7 Repeat Step 3-6 5,000 times. 

Step 8 Compute the 95% credible and HPD interval for   from Equation (33), Equation (34), and Equation (35). 

Step 9 Repeat Step 1-8 15,000 times to compute the CP and the EL. 

 

3. Simulation Studies 
  

To compare the performances of the proposed methods, their coverage probabilities and expected lengths were 

estimated via Monte Carlo simulation with the R statistical program (R Core Team, 2020). In each scenario, the best-performing 

confidence interval was chosen with a coverage probability greater than or close to the nominal confidence level and the shortest 

expected length. 

 For one inverse-gamma population, the data were generated for an inverse-gamma distribution with 1  and varying 

  to obtain the required coefficient of variation   0.1, 0.2, 0.3, 0.4, and 0.5. The sample sizes were n 10, 30, 50, and 

100. Subsequently, the performances of the confidence intervals at the nominal confidence interval of 95% for   were 

computed. 

 For two inverse-gamma populations, the data were generated for two independent inverse-gamma distributions 

with ),IG( ~ iiiX  , for i = 1, 2, where 
i  was fixed at 1 and 2

1
2


i

i


 . The coefficients of variation were set as 

),( 21  = (0.1, 0.2), (0.2, 0.3), (0.2, 0.4), (0.3, 0.4), (0.3, 0.5), (0.4, 0.5), and (0.5, 0.5). For equal sample sizes (n1 = n2), we used 

(10, 10), (30, 30), (50, 50), and (100, 100), and for unequal sample sizes (n1   n2), we used (10, 30), (30, 50), and (50, 100). 

Next, the coverage probabilities and expected lengths for the 95% confidence intervals for the difference between the coefficients 

of variation n   were evaluated. For all of the simulations, the number of replications was set as 15,000, with 5,000 repetitions 

used for the Bayesian methods. 

 

4. Results and Discussion 
  

The coverage probabilities and expected lengths of the 95% confidence intervals for   are reported in Table 1.It can 

be seen that the Bayesian HPD intervals based on the reference and uniform priors were greater than or close to the nominal 

confidence level of 0.95 in almost all cases. Although the coverage probabilities of the Bayesian credible confidence intervals 

using all three priors were less than the nominal confidence level 0.95 for almost all cases, their expected lengths were shorter 

than those obtained with the Wald method. Moreover, for sample size n = 50 and 100 with   0.1 and 0.2, the Bayesian HPD 

interval based on the uniform prior performed better than the other methods. Therefore, the Bayesian HPD interval based on the 

reference prior is recommended for constructing the confidence interval for the coefficient of variation of a single inverse-gamma 

distribution. 

 The coverage probabilities and expected lengths of the 95% two-sided confidence interval for
 
  with equal and 

unequal sample sizes are listed in Tables 2 and 3, respectively. The results show that the Bayesian HPD intervals provided 

coverage probabilities that were greater than or close to the nominal confidence level 0.95 in almost all cases, with the expected 

lengths of the Bayesian HPD interval based on the Jeffreys prior being the shortest. For equal and unequal sample sizes, the 
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Bayesian HPD interval based on the Jeffreys prior performed better than the other methods in almost all cases, except for equal 

sample size with (1, 2) = (0.1, 0.2) when the Bayesian HPD interval based on the reference prior performed better than the 

others. Therefore, the Bayesian HPD interval based on the Jeffreys prior is recommended for constructing the confidence interval 

for the difference between the coefficients of variation of two inverse-gamma distributions with equal and unequal sample sizes. 

 
Table 1. The coverage probabilities and expected lengths of the 95% confidence intervals for the coefficient of variation of a single inverse-

gamma distribution. 
 

n  
Coverage probability (Expected length) 

CIJ CIR CIU CIHPD.J CIHPD.R CIHPD.U CIW 

         

10 0.10 0.9376 

(0.1009) 

0.9498 

(0.1153) 

0.9277 

(0.1630) 

0.9198 

(0.0931) 

0.9501 

(0.1053) 

0.9724 

(0.1445) 

0.9722 

(0.2172) 

 0.20 0.9394 
(0.2259) 

0.9477 
(0.2667) 

0.9282 
(0.4105) 

0.9228 
(0.2034) 

0.9528 

(0.2357) 

0.9822 
(0.3419) 

0.9991 
(0.7585) 

 0.30 0.9348 

(0.4267) 

0.9510 

(0.5244) 

0.9281 

(0.8701) 

0.9192 

(0.3627) 
0.9534 

(0.4321) 

0.9857 

(0.6666) 

0.9971 

(1.5023) 
 0.40 0.9380 

(0.7703) 

0.9506 

(0.9569) 

0.9381 

(1.5349) 

0.9214 

(0.6081) 
0.9530 

(0.7340) 

0.9873 

(1.1196) 

0.9912 

(1.8331) 

 0.50 0.9382 
(1.1665) 

0.9542 
(1.4136) 

0.9492 
(2.1593) 

0.9202 
(0.8798) 

0.9518 

(1.0453) 

0.9846 
(1.5450) 

0.9813 
(2.0490) 

30 0.10 0.9440 

(0.0534) 

0.9514 

(0.0556) 

0.9408 

(0.0601) 

0.9356 

(0.0518) 
0.9516 

(0.0539) 

0.9532 

(0.0582) 

0.9605 

(0.0609) 
 0.20 0.9471 

(0.1146) 

0.9489 

(0.1193) 

0.9464 

(0.1301) 

0.9398 

(0.1106) 
0.9500 

(0.1150) 

0.9614 

(0.1250) 

0.9560 

(0.1332) 

 0.30 0.9470 
(0.1940) 

0.9498 
(0.2029) 

0.9435 
(0.2261) 

0.9438 
(0.1850) 

0.9520 

(0.1930) 

0.9642 
(0.2138) 

0.9591 
(0.2359) 

 0.40 0.9431 

(0.3161) 

0.9457 

(0.3358) 

0.9404 

(0.3879) 

0.9410 

(0.2935) 
0.9536 

(0.3100) 

0.9692 

(0.3522) 

0.9562 

(0.4315) 

 0.50 0.9473 

(0.4827) 

0.9522 

(0.5255) 

0.9456 

(0.6419) 

0.9450 

(0.4286) 
0.9585 

(0.4607) 

0.9754 

(0.5463) 

0.9864 

(0.8125) 

50 0.10 0.9497 
(0.0408) 

0.9472 
(0.0417) 

0.9451 
(0.0436) 

0.9443 
(0.0400) 

0.9478 
(0.0409) 

0.9530 

(0.0427) 

0.9556 
(0.0439) 

 0.20 0.9466 

(0.0868) 

0.9508 

(0.0887) 

0.9480 

(0.0931) 

0.9423 

(0.0848) 

0.9490 

(0.0867) 
0.9540 

(0.0908) 

0.9549 

(0.0947) 
 0.30 0.9469 

(0.1444) 

0.9506 

(0.1484) 

0.9443 

(0.1574) 

0.9426 

(0.1402) 
0.9530 

(0.1440) 

0.9574 

(0.1524) 

0.9531 

(0.1622) 

 0.40 0.9462 
(0.2260) 

0.9484 
(0.2341) 

0.9467 
(0.2512) 

0.9442 
(0.2167) 

0.9523 

(0.2241) 

0.9614 
(0.2395) 

0.9509 
(0.2673) 

 0.50 0.9462 

(0.3271) 

0.9480 

(0.3391) 

0.9463 

(0.3762) 

0.9439 

(0.3074) 
0.9535 

(0.3177) 

0.9681 

(0.3490) 

0.9455 

(0.4219) 
100 

 

0.10 0.9534 

(0.0295) 

0.9492 

(0.0288) 

0.9470 

(0.0295) 

0.9452 

(0.0281) 

0.9492 

(0.0285) 
0.9510 

(0.0291) 

0.9514 

(0.0296) 

 0.20 0.9478 
(0.0603) 

0.9490 
(0.0610) 

0.9480 
(0.0624) 

0.9444 
(0.0595) 

0.9480 
(0.0601) 

0.9521 

(0.0615) 

0.9512 
(0.0633) 

 0.30 0.9470 

(0.0995) 

0.9493 

(0.1008) 

0.9478 

(0.1035) 

0.9451 

(0.0978) 

0.9500 

(0.0990) 

0.9519 

(0.1016) 

0.9477 

(0.1065) 
 0.40 0.9453 

(0.1527) 

0.9472 

(0.1555) 

0.9453 

(0.1601) 

0.9440 

(0.1493) 
0.9504 

(0.1520) 

0.9540 

(0.1563) 

0.9451 

(0.1689) 

 0.50 0.9508 
(0.2138) 

0.9474 
(0.2173) 

0.9491 
(0.2263) 

0.9458 
(0.2074) 

0.9522 

(0.2108) 

0.9600 
(0.2192) 

0.9419 
(0.2454) 

         

 
Table 2. The coverage probabilities and expected lengths of the 95% confidence intervals for the difference between the coefficients of 

variation of two inverse-gamma distributions (n1 = n2) 

 

(n1, n2) (1, 2) 

Coverage probability (Expected length) 

CIJ CIR CIU CIHPD.J CIHPD.R CIHPD.U 

        

(10, 10) (0.1, 0.2) 0.9354 

(0.2585) 

0.9546 

(0.3045) 

0.9717 

(0.4682) 

0.9492 

(0.2473) 
0.9688 

(0.2890) 

0.9908 

(0.4330) 

 (0.2, 0.3) 0.9391 
(0.5182) 

0.9525 
(0.6346) 

0.9728 
(1.0651) 

0.9637 

(0.4876) 

0.9772 
(0.5911) 

0.9948 
(0.9731) 

 (0.2, 0.4) 0.9406 

(0.8366) 

0.9510 

(1.0453) 

0.9729 

(1.6959) 
0.9535 

(0.7262) 

0.9735 

(0.8950) 

0.9924 

(1.4458) 
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Table 2. Continued. 

 

(n1, n2) (1, 2) 

Coverage probability (Expected length) 

CIJ CIR CIU CIHPD.J CIHPD.R CIHPD.U 

        

(10, 10) (0.3, 0.4) 0.9362 

(0.9756) 

0.9534 

(1.2227) 

0.9774 

(2.0139) 
0.9709 

(0.8964) 

0.9852 

(1.1200) 

0.9965 

(1.8622) 
 (0.3, 0.5) 0.9426 

(1.3343) 

0.9548 

(1.6487) 

0.9783 

(2.5868) 
0.9663 

(1.1686) 

0.9793 

(1.4477) 

0.9966 

(2.3251) 

 (0.4, 0.5) 0.9384 
(1.5972) 

0.9537 
(1.9873) 

0.9811 
(3.1383) 

0.9814 

(1.4645) 

0.9888 
(1.8309) 

0.9973 
(2.9446) 

 (0.5, 0.5) 0.9402 

(1.9336) 

0.9508 

(2.3932) 

0.9807 

(3.6612) 

0.9873 

(1.7913) 

0.9912 

(2.2251) 

0.9978 

(3.4632) 
(30, 30) (0.1, 0.2) 0.9450 

(0.1281) 

0.9504 

(0.1336) 

0.9557 

(0.1459) 

0.9476 

(0.1259) 
0.9565 

(0.1312) 

0.9654 

(0.1431) 

 (0.2, 0.3) 0.9442 
(0.2304) 

0.9475 
(0.2420) 

0.9535 
(0.2690) 

0.9541 

(0.2265) 

0.9582 
(0.2377) 

0.9691 
(0.2636) 

 (0.2, 0.4) 0.9442 

(0.3402) 

0.9469 

(0.3618) 

0.9536 

(0.4177) 
0.9520 

(0.3247) 

0.9583 

(0.3438) 

0.9730 

(0.3918) 
 (0.3, 0.4) 0.9446 

(0.3831) 

0.9456 

(0.4097) 

0.9541 

(0.4689) 
0.9615 

(0.3734) 

0.9664 

(0.3979) 

0.9757 

(0.4523) 

 (0.3, 0.5) 0.9475 
(0.5336) 

0.9467 
(0.5847) 

0.9520 
(0.7004) 

0.9631 

(0.4984) 

0.9659 
(0.5403) 

0.9773 
(0.6343) 

 (0.4, 0.5) 0.9432 

(0.6095) 

0.9480 

(0.6647) 

0.9538 

(0.8014) 
0.9712 

(0.5841) 

0.9756 

(0.6335) 

0.9832 

(0.7534) 
 (0.5, 0.5) 0.9457 

(0.7417) 

0.9488 

(0.8159) 

0.9598 

(1.0065) 
0.9794 

(0.7122) 

0.9820 

(0.7796) 

0.9894 

(0.9529) 

(50, 50) (0.1, 0.2) 0.9460 
(0.0967) 

0.9478 
(0.0989) 

0.9531 
(0.1040) 

0.9465 
(0.0955) 

0.9505 

(0.0976) 

0.9582 
(0.1026) 

 (0.2, 0.3) 0.9450 

(0.1712) 

0.9481 

(0.1757) 

0.9528 

(0.1858) 
0.9520 

(0.1692) 

0.9554 

(0.1736) 

0.9628 

(0.1835) 
 (0.2, 0.4) 0.9480 

(0.2446) 

0.9492 

(0.2527) 

0.9487 

(0.2713) 
0.9520 

(0.2381) 

0.9557 

(0.2457) 

0.9629 

(0.2631) 

 (0.3, 0.4) 0.9481 
(0.2747) 

0.9496 
(0.2836) 

0.9517 
(0.3035) 

0.9583 

(0.2707) 

0.9612 
(0.2793) 

0.9661 
(0.2985) 

 (0.3, 0.5) 0.9458 

(0.3622) 

0.9504 

(0.3786) 

0.9512 

(0.4154) 
0.9574 

(0.3502) 

0.9641 

(0.3650) 

0.9693 

(0.3978) 
 (0.4, 0.5) 0.9483 

(0.4109) 

0.9515 

(0.4296) 

0.9545 

(0.4685) 
0.9675 

(0.4029) 

0.9698 

(0.4206) 

0.9741 

(0.4570) 

 (0.5, 0.5) 0.9484 
(0.4851) 

0.9489 
(0.5087) 

0.9524 
(0.5588) 

0.9704 

(0.4771) 

0.9717 
(0.4994) 

0.9763 
(0.5471) 

(100, 100) (0.1, 0.2) 0.9486 

(0.0669) 

0.9521 

(0.0677) 

0.9501 

(0.0694) 

0.9480 

(0.0663) 
0.9530 

(0.0671) 

0.9533 

(0.0688) 
 (0.2, 0.3) 0.9478 

(0.1172) 

0.9486 

(0.1186) 

0.9503 

(0.1219) 
0.9514 

(0.1162) 

0.9524 

(0.1176) 

0.9535 

(0.1209) 

 (0.2, 0.4) 0.9477 

(0.1650) 

0.9498 

(0.1680) 

0.9503 

(0.1731) 
0.9585 

(0.1626) 

0.9531 

(0.1654) 

0.9571 

(0.1704) 

 (0.3, 0.4) 0.9494 

(0.1846) 

0.9498 

(0.1867) 

0.9518 

(0.1929) 
0.9535 

(0.1829) 

0.9540 

(0.1850) 

0.9562 

(0.1911) 
 (0.3, 0.5) 0.9462 

(0.2372) 

0.9472 

(0.2422) 

0.9491 

(0.2507) 
0.9508 

(0.2332) 

0.9540 

(0.2380) 

0.9557 

(0.2462) 

 (0.4, 0.5) 0.9488 
(0.2667) 

0.9427 
(0.2714) 

0.9504 
(0.2816) 

0.9581 

(0.2641) 

0.9534 
(0.2686) 

0.9592 
(0.2786) 

 (0.5, 0.5) 0.9444 
(0.3085) 

0.9472 
(0.3143) 

0.9509 
(0.3279) 

0.9567 

(0.3061) 

0.9606 
(0.3118) 

0.9636 
(0.3252) 

        

 

Table 3. The coverage probabilities and expected lengths of the 95% confidence intervals for the difference between the coefficients of 

variation of two inverse-gamma distributions (n1   n2) 

 

(n1, n2) (1, 2) 

Coverage probability (Expected length) 

CIJ CIR CIU CIHPD.J CIHPD.R CIHPD.U 

        

(10, 30) 

 

(0.1, 0.2) 0.9448 

(0.1590) 

0.9502 

(0.1742) 

0.9614 

(0.2202) 
0.9585 

(0.1574) 

0.9662 

(0.1722) 

0.9793 

(0.2150) 
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Table 3. Continued. 
 

(n1, n2) (1, 2) 

Coverage probability (Expected length) 

CIJ CIR CIU CIHPD.J CIHPD.R CIHPD.U 

        

(10, 30) 

 

(0.2, 0.3) 0.9422 

(0.3156) 

0.9492 

(0.3552) 

0.9606 

(0.5002) 
0.9624 

(0.3090) 

0.9690 

(0.3448) 

0.9864 

(0.4674) 
 (0.2, 0.4) 0.9419 

(0.4117) 

0.9480 

(0.4588) 

0.9658 

(0.6206) 
0.9689 

(0.4031) 

0.9742 

(0.4484) 

0.9893 

(0.5984) 

 (0.3, 0.4) 0.9404 
(0.5728) 

0.9528 
(0.6792) 

0.9592 
(1.0329) 

0.9696 

(0.5465) 

0.9797 
(0.6365) 

0.9910 
(0.9207) 

 (0.3, 0.5) 0.9394 

(0.7054) 

0.9502 

(0.8219) 

0.9616 

(1.2186) 

0.9779 

(0.6757) 

0.9834 

(0.7822) 

0.9917 

(1.1334) 
 (0.4, 0.5) 0.9363 

(1.0038) 

0.9546 

(1.2000) 

0.9632 

(1.8331) 
0.9720 

(0.9230) 

0.9856 

(1.0884) 

0.9940 

(1.6139) 

 (0.5, 0.5) 0.9375 
(1.3649) 

0.9502 
(1.6447) 

0.9656 
(2.4283) 

0.9651 

(1.1958) 

0.9786 
(1.4214) 

0.9938 
(2.0561) 

(30, 50) 

 

(0.1, 0.2) 0.9473 

(0.1032) 

0.9478 

(0.1064) 

0.9546 

(0.1128) 
0.9520 

(0.1023) 

0.9522 

(0.1055) 

0.9603 

(0.1119) 
 (0.2, 0.3) 0.9462 

(0.1888) 

0.9500 

(0.1948) 

0.9542 

(0.2095) 
0.9558 

(0.1873) 

0.9601 

(0.1933) 

0.9638 

(0.2079) 

 (0.2, 0.4) 0.9472 
(0.2580) 

0.9475 
(0.2682) 

0.9537 
(0.2897) 

0.9580 

(0.2532) 

0.9584 
(0.2630) 

0.9655 
(0.2838) 

 (0.3, 0.4) 0.9455 

(0.3080) 

0.9469 

(0.3214) 

0.9565 

(0.3515) 
0.9618 

(0.3048) 

0.9628 

(0.3181) 

0.9722 

(0.3475) 
 (0.3, 0.5) 0.9462 

(0.3927) 

0.9492 

(0.4108) 

0.9533 

(0.4549) 
0.9622 

(0.3836) 

0.9659 

(0.4011) 

0.9718 

(0.4427) 

 (0.4, 0.5) 0.9457 
(0.4782) 

0.9485 
(0.5064) 

0.9586 
(0.5711) 

0.9713 

(0.4698) 

0.9728 
(0.4965) 

0.9802 
(0.5577) 

 (0.5, 0.5) 0.9461 
(0.6178) 

0.9496 
(0.6653) 

0.9548 
(0.7918) 

0.9718 

(0.5921) 

0.9767 
(0.6338) 

0.9844 
(0.7414) 

(50, 100) (0.1, 0.2) 0.9500 

(0.0735) 

0.9512 

(0.0746) 

0.9578 

(0.0769) 
0.9525 

(0.0731) 

0.9534 

(0.0741) 

0.9600 

(0.0764) 
 (0.2, 0.3) 0.9473 

(0.1339) 

0.9493 

(0.1361) 

0.9520 

(0.1411) 
0.9521 

(0.1331) 

0.9543 

(0.1353) 

0.9565 

(0.1403) 

 (0.2, 0.4) 0.9461 
(0.1777) 

0.9497 
(0.1809) 

0.9537 
(0.1874) 

0.9508 

(0.1759) 

0.9552 
(0.1790) 

0.9597 
(0.1855) 

 (0.3, 0.4) 0.9453 

(0.2142) 

0.9499 

(0.2191) 

0.9514 

(0.2288) 
0.9555 

(0.2128) 

0.9580 

(0.2176) 

0.9607 

(0.2272) 
 (0.3, 0.5) 0.9477 

(0.2622) 

0.9480 

(0.2684) 

0.9517 

(0.2810) 
0.9582 

(0.2595) 

0.9561 

(0.2657) 

0.9626 

(0.2782) 

 (0.4, 0.5) 0.9474 
(0.3203) 

0.9464 
(0.3282) 

0.9507 
(0.3478) 

0.9588 

(0.3173) 

0.9620 
(0.3250) 

0.9657 
(0.3441) 

 (0.5, 0.5) 0.9409 

(0.4033) 

0.9444 

(0.4171) 

0.9514 

(0.4506) 
0.9586 

(0.3942) 

0.9634 

(0.4069) 

0.9706 

(0.4374) 
        

 

5. An Empirical Application 
 

 Kaewprasert, Niwitpong, and Niwitpong (2020) provided the data of yearly rainfall amounts (mm) that we used to 

compute the confidence intervals for the coefficient of variation of a single inverse-gamma distribution. To illustrate the 

efficacies of the confidence intervals proposed in this paper, we used monthly rainfall data (mm) from the Mae Taeng district, 

Chiang Mai province, Thailand (Upper Northern Region Irrigation Hydrology Center, 2021). There were 27 observations from 

July, 1994 to 2020. The density and Q-Q plots for the rainfall data showing that they follow an inverse-gamma distribution are 

shown in Figure.1. For the two inverse-gamma populations, the yearly rainfall data (mm) from the Chae Hom and Mae Tha 

districts in Lampang province with the same sample sizes were used to compute the confidence intervals for the difference 

between the coefficients of variation of two inverse-gamma distributions. There were 23 observations from 1998 to 2020. The 

density and Q-Q plots of the two sets of rainfall data showing that they follow inverse-gamma distributions are exhibited in 

Figures 2 and 3, respectively. We tested the distributions of these datasets using the minimum Akaike information criterion (AIC) 

and the Bayesian information criterion (BIC), which are respectively defined as 

 AIC = −2lnL + 2k           (36) 

and 

 BIC = −2lnL + kln(n)          (37) 

where L is the likelihood function, k is the number of parameters, and n is the number of recorded measurements. It was found 

that both of the rainfall datasets fit an inverse-gamma distribution, as confirmed by the AIC and BIC value in Table 4 because the 

AIC and BIC values for this distribution were the smallest. 
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Figure 1. Density and Q-Q plots to check that the rainfall dataset from Mae Taeng, Chiang Mai, fits an inverse-gamma distribution 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 2. The densities of the rainfall data from the Chae Hom and Mae Tha districts, Lampang province 

 

 

 

 

 

 

 

 
Figure 3. Q-Q plots for fitting the rainfall data from the Chae Hom and Mae Tha districts, Lampang, to inverse-gamma distributions 

 

Table 4. AIC and BIC results to check the distributions of the rainfall datasets 
 

Rainfall data Densities Normal Cauchy Exponential Log normal Gamma IG 

        

Mae Taeng, 

Chiang Mai 

AIC 316.95 323.38 346.08 310.53 311.95 309.65 

BIC 319.54 325.98 347.38 313.12 314.54 312.25 

Chae Hom, 
Lampang 

AIC 324.03 335.78 368.93 322.00 322.43 321.71 
BIC 326.30 338.05 370.07 324.27 324.70 323.98 

Mae Tha, 

Lampang 

AIC 316.33 321.41 368.34 312.83 313.80 312.04 

BIC 318.61 323.68 369.47 315.10 316.07 314.31 
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The summary statistics were computed for the 

rainfall dataset from Mae Taeng district as n = 27, ̂ = 8.62, 

and the maximum likelihood estimator for   as ̂ = 0.39. 

The 95% confidence intervals for τ were calculated, as 

reported in Table 5. In accordance with the simulation results 

in the previous section, the expected length of the Bayesian 

HPD intervals based on the reference and uniform priors were 

shorter than that using the Wald method but longer than the 

Bayesian HPD interval based on the Jeffreys prior. Thus, the 

Bayesian HPD intervals using the three priors performed 

better than the Wald method in terms of length.    

 We used our proposed confidence intervals to 

estimate the difference between the coefficients of variation 

for the rainfall datasets from the Chae Hom and Mae Tha 

districts, Lampang province. Here, we present the summary 

statistical values: the number of observations was equal (n1 = 

n2 = 23), 
1̂ = 18.76, 

2̂ = 28.22, 
1̂ = 0.24, 

2̂ = 0.19, and 

̂ = 0.05. Finally, the 95% confidence intervals for   were 

calculated, as reported in Table 6. It was found that the length 

of the Bayesian HPD interval based on the Jeffreys prior was 

the shortest and performed better than the respective Bayesian 

credible confidence interval, which corresponds to the results 

of the simulation study.
 

 

6. Conclusions 
 

 We proposed new confidence intervals for the single 

and difference between the coefficients of variation of 

inverse-gamma distributions. The performance of the 

confidence intervals was evaluated using the coverage 

probability and expected length through Monte Carlo 

simulations. For the single coefficient of variation of an 

inverse-gamma distribution, the simulation study results show 

that the coverage probabilities of the Bayesian HPD intervals 

based on the reference and uniform priors were greater than or 

close to the nominal confidence level of 0.95 in almost all 

cases. Moreover, the Bayesian credible confidence intervals 

and the Bayesian HPD intervals performed better than the 

Wald method in terms of expected length. 

 For the difference between the coefficients of 

variation of two inverse-gamma populations, the Bayesian 

HPD interval based on the Jeffreys prior performed well in 

terms of coverage probability and its expected length was 

shorter than the other methods. Therefore, the Bayesian HPD 

interval based on the Jeffreys prior is recommended for 

constructing the confidence interval for the difference 

between the coefficients of variation of inverse-gamma 

distributions. 
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Table 5. The 95% confidence intervals for the single coefficient of 

variation for the rainfall dataset from Mae Taeng district, 
Chiang Mai province 

 

Methods 

Confidence intervals for τ 
Length of 

intervals 
Lower bound Upper bound 

    

CIJ 0.2970 0.5557 0.2587 
CIR 0.3024 0.5781 0.2757 

CIU 0.3142 0.6321 0.3179 

CIHPD.J 0.2968 0.5134 0.2166 
CIHPD.R 0.3022 0.5320 0.2298 

CIHPD.U 0.3140 0.5758 0.2617 

CIW 0.2985 0.7032 0.4047 
    

 
Table 6. The 95% confidence intervals for the difference between 

the coefficients of variation of the rainfall datasets from 
the Chae Hom and Mae Tha districts, Lampang province 

 

Methods 

Confidence intervals for   
Length of 

intervals 
Lower bound Upper bound 

    

CIJ -0.0447 0.1895 0.2342 
CIR -0.0488 0.1999 0.2487 

CIU -0.0589 0.2251 0.2840 

CIHPD.J -0.0379 0.1895 0.2275 

CIHPD.R -0.0412 0.1999 0.2411 

CIHPD.U -0.0491 0.2251 0.2742 
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