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Abstract 
 

For an integer 𝑘 ≥ 2, a 𝑘-step Fibonacci function is a function 𝑓:ℤ → ℤ defined by 𝑓(𝑛 + 𝑘) = 𝑓(𝑛 + 𝑘 − 1) +
𝑓(𝑛 + 𝑘 − 2) +⋯+ 𝑓(𝑛) for any integer 𝑛. We mainly show the existence of primitive period of a 𝑘-step Fibonacci function in 

modulo 𝑚. Moreover, the explicit primitive period of a 𝑘-step Fibonacci function, when 𝑘 = 2,3,4, under some conditions is also 

established. 
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1. Introduction 
 

The Fibonacci numbers, commonly denoted by 𝐹𝑛, 

form a sequence called the Fibonacci sequence for which each 

number is the sum of the two preceding ones starting from 0 

and 1. That is, (Koshy, 2001) 

𝐹0 = 0, 𝐹1 = 1 and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

for any natural number 𝑛 ≥ 2. The beginning of the sequence 

is thus: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,… 

Similar to the Fibonacci numbers, each Lucas number, 

commonly denoted by 𝐿𝑛  is defined to be the sum of the two 

previous terms starting from 2 and 1. That is (Koshy, 2001) 

𝐿0 = 2, 𝐿1 = 1 and 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 

for any natural number 𝑛 ≥ 2. The beginning of the sequence 

is thus:  

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521,… 

This sequence is called the Lucas sequence. 

In 1967, Elmore (1967) studied a Fibonacci function 

𝑓:ℝ → ℝ defined by 𝑓(𝑥 + 2) = 𝑓(𝑥 + 1) + 𝑓(𝑥) for any real 

number 𝑥. Considering such a Fibonacci function 𝑓:ℤ → ℤ, we 

have the Fibonacci sequence if 𝑓(0) = 0 and 𝑓(1) = 1. In 

addition, we have the Lucas sequence if 𝑓(0) = 2 and 𝑓(1) =
1. 

Thongngam and Chinram (2019) recently studied 

periods of a Fibonacci function 𝑓:ℤ → ℤ modulo 𝑚 as follows: 

 

 
Theorem 1. (Thongngam & Chinram, 2019) Let 𝑓:ℤ → ℤ be a 

Fibonacci function. 

1) If 𝑓(0) = 0, then 𝑓(−𝑛) = (−1)𝑛+1𝑓(𝑛) for any positive 

integer 𝑛. 

2) If 𝑓(0) = 2𝑓(1), then 𝑓(−𝑛) = (−1)𝑛𝑓(𝑛) for any positive 

integer 𝑛. 

Here is the result that we are mainly going to generalize in our 

work.  

 

Theorem 2. (Thongngam & Chinram, 2019) If 𝑓:ℤ → ℤ  is a 

Fibonacci function and 𝑚 is a positive integer > 1, then there 

exists an integer 1 ≤ 𝑙 ≤ 𝑚2 such that 𝑓(𝑛 + 𝑙) ≡
𝑓(𝑛) (mod 𝑚) for any integer 𝑛.  

 

Definition 1. (Thongngam & Chinram, 2019) Let 𝑓:ℤ → ℤ be 

a Fibonacci function and 𝑚 be a positive integer > 1. A 

positive integer 𝑙 such that 𝑓(𝑛 + 𝑙) ≡ 𝑓(𝑛) (mod 𝑚) for any 

integer 𝑛 is called a Period of 𝑓 modulo 𝑚. The Primitive 

Period of 𝑓 modulo 𝑚, written as 𝑙 ≔ 𝑙(𝑚) is the smallest of 

such positive integers 𝑙. 
 

Theorem 3. (Thongngam & Chinram, 2019) Let 𝑙 be a positive 

integer. 𝑙 is a period of 𝑓 modulo 𝑚 if and only if 𝑙(𝑚)|𝑙. 
 

Theorem 4. (Thongngam & Chinram, 2019) Let 𝑚 and 𝑛 be 

positive integers > 1. If gcd(𝑚, 𝑛) = 1, then 𝑙(𝑚𝑛) =
lcm[𝑙(𝑚), 𝑙(𝑛)]. 
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These results are generalizations on periods of the Fibonacci and the Lucas sequences. See (Jameson, 2018) for more information 

about periods of the Fibonacci sequence. 

In this work, we are interested in a 𝑘-step Fibonacci function 𝑓:ℤ → ℤ  defined by 𝑓(𝑛 + 𝑘) = 𝑓(𝑛 + 𝑘 − 1) +
𝑓(𝑛 + 𝑘 − 2) +⋯+ 𝑓(𝑛) for all integers 𝑛 and 𝑘 ≥ 2. Notice that a 2-step Fibonacci function is a regular Fibonacci function. 

Some elementary properties on periods modulo 𝑚 of such a function are provided and the above theorems are special cases of our 

results. Moreover, we give the primitive period of some certain 𝑘-step Fibonacci functions under some additional conditions. 

 

2. Main Results 
 

Again, a 𝑘-step Fibonacci function 𝑓:ℤ → ℤ is defined by 𝑓(𝑛 + 𝑘) = 𝑓(𝑛 + 𝑘 − 1) + 𝑓(𝑛 + 𝑘 − 2) + ⋯+ 𝑓(𝑛) for 

all integers 𝑛 and 𝑘 ≥ 2.  

 

Example 1. Let 𝑓:ℤ → ℤ  be a 3-step Fibonacci function such that 𝑓(0) = 0, 𝑓(1) = 1 and 𝑓(2) = 2. Then we have the following 

tables: 

 
Table 1. The values of the 3-step Fibonacci function 𝑓(𝑛) 
 

𝑛 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 
                

𝑓(𝑛) 9 −38 27 −2 −13 12 −3 −4 5 −2 −1 2 −1 0 1 
                

 

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
                

𝑓(𝑛) 0 1 2 3 6 11 20 37 68 125 230 423 778 1431 2632 
                

 

Note that 𝑓(𝑛) = 2𝑓(𝑛 + 3) − 𝑓(𝑛 + 4), for example, 𝑓(−16) = 2𝑓(−13) − 𝑓(−12), 𝑓(−15) = 2𝑓(−12) − 𝑓(−11), 
𝑓(−14) = 2𝑓(−11) − 𝑓(−10), … 

The following lemma shows that 𝑓(𝑛) depends on only some two consecutive functions for any integer 𝑛. 

 

Lemma 1. Let 𝑓 be a 𝑘-step Fibonacci function. Then 𝑓(𝑛) = 2𝑓(𝑛 + 𝑘) − 𝑓(𝑛 + 𝑘 + 1) for any integer 𝑛. 

 

Proof. Let 𝑛 be an integer. Then we have 

(𝑓(𝑛)   = 𝑓(𝑛 + 𝑘 + 1) + 𝑓(𝑛) − 𝑓(𝑛 + 𝑘 + 1) 
= 𝑓(𝑛 + 𝑘) + 𝑓(𝑛 + 𝑘 − 1) + ⋯+ 𝑓(𝑛 + 1) + 𝑓(𝑛) − 𝑓(𝑛 + 𝑘 + 1) 
= 𝑓(𝑛 + 𝑘) + 𝑓(𝑛 + 𝑘) − 𝑓(𝑛 + 𝑘 + 1) 
= 2𝑓(𝑛 + 𝑘) − 𝑓(𝑛 + 𝑘 + 1) ) 

as desired.          □ 

Lemma 1 yields another proof of Theorem 1 as follows: 

Another proof of Theorem 1.  

1) Let 𝑓(0) = 0. From Lemma 1, we have 

𝑓(−1)     = 2𝑓(1) − 𝑓(2) 

= 2𝑓(1) − (𝑓(1) + 𝑓(0)) 

= (−1)1+1𝑓(1), 
𝑓(−2)     = 2𝑓(0) − 𝑓(1) 

= −(𝑓(2) − 𝑓(0)) 

= (−1)2+1𝑓(2), 
𝑓(−3)     = 2𝑓(−1) − 𝑓(0) 

= 𝑓(1) + 𝑓(1) + 𝑓(0) 
= (−1)3+1𝑓(3). ) 

Assume that 𝑓(−𝑙) = (−1)𝑙+1𝑓(𝑙) for all 1 ≤ 𝑙 ≤ 𝑛 and 𝑛 ≥ 3. By Lemma 1, consider 

(𝑓(−(𝑛 + 1))  = 2𝑓(−(𝑛 − 1)) − 𝑓(−(𝑛 − 2)) 

= (−1)𝑛(𝑓(𝑛 − 1) + 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2)) 

= (−1)𝑛+1+1𝑓(𝑛 + 1). 
The statement holds by the Principle of Strong Mathematical Induction. 

2) Let 𝑓(0) = 2𝑓(1). From Lemma 1, we have 

𝑓(−1)     = 2𝑓(1) − 𝑓(2) 

= 2𝑓(1) − (𝑓(1) + 𝑓(0)) 

= (−1)1𝑓(1), 
𝑓(−2)     = 2𝑓(0) − 𝑓(1) 

= 𝑓(1) + 𝑓(0) 
= (−1)2𝑓(2), 



Y. Tongron, & S. Kerdmongkon / Songklanakarin J. Sci. Technol. 44 (2), 323-331, 2022  325 

𝑓(−3)  = 2𝑓(−1) − 𝑓(0) 

= −(𝑓(1) + 𝑓(1) + 𝑓(0)) 

= (−1)3𝑓(3). 
Assume that 𝑓(−𝑙) = (−1)𝑙𝑓(𝑙) for all 1 ≤ 𝑙 ≤ 𝑛 and 𝑛 ≥ 3. By Lemma 1, consider 

(𝑓(−(𝑛 + 1))  = 2𝑓(−(𝑛 − 1)) − 𝑓(−(𝑛 − 2)) 

= (−1)𝑛−1(𝑓(𝑛 − 1) + 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2)) 
= (−1)𝑛−1 𝑓(𝑛 + 1). ) 

The statement holds by the Principle of Strong Mathematical Induction.  □ 

Next, we study some properties on periods modulo 𝑚 of 𝑘-step Fibonacci functions.  

 

Theorem 5. Let 𝑓:ℤ → ℤ be a 𝑘-step Fibonacci function and 𝑚 be a positive integer > 1. Then there exists an integer 1 ≤ 𝑙 ≤
𝑚𝑘 such that 𝑓(𝑛 + 𝑙) ≡ 𝑓(𝑛) (mod 𝑚) for any integer 𝑛. 

 

Proof. Consider all integers 0 ≤ 𝑎 ≤ 𝑚𝑘 which can be 𝑚𝑘 + 1 possible values. And consider 𝑘-tuple (𝑓(𝑎), 𝑓(𝑎 + 1), … , 𝑓(𝑎 +

𝑘 − 1)) modulo 𝑚 which can be 𝑚𝑘 possible values as follows: 

 
(0,0,… ,0,0), (0,0,… ,0,1), … , (0,0,… ,0,𝑚 − 1),
(0,0,… ,1,0), (0,0,… ,1,1), … , (0,0,… ,1,𝑚 − 1),

⋮ ⋮ ⋮
(𝑚 − 1,… ,𝑚 − 1,0), (𝑚 − 1,… ,𝑚 − 1,1), … , (𝑚 − 1,… ,𝑚 − 1,𝑚 − 1).

 

By the Pigeonhole Principle, there exist integers 0 ≤ 𝑖 < 𝑗 ≤ 𝑚𝑘 such that (𝑓(𝑗), 𝑓(𝑗 + 1), … , 𝑓(𝑗 + 𝑘 − 1)) ≡

(𝑓(𝑖), 𝑓(𝑖 + 1), … , 𝑓(𝑖 + 𝑘 − 1)) (mod 𝑚). 

Then 𝑓(𝑗 + 𝛼) ≡ 𝑓(𝑖 + 𝛼) (mod 𝑚) for all 𝛼 ∈ {0,1,… , 𝑘 − 1}. Put 𝑙 ≔ 𝑗 − 𝑖 and observe that 1 ≤ 𝑙 ≤ 𝑚𝑘. Note that 

𝑓(𝑖 + 𝛼 + 𝑙) ≡ 𝑓(𝑖 + 𝛼) (mod 𝑚) for all 𝛼 ∈ {0,1,… , 𝑘 − 1}. We divide our proof into two cases: 𝑛 ≥ 𝑖 and 𝑛 ≤ 𝑖.  
 

Case 1: Assume that 𝑓(𝑟 + 𝑙) ≡ 𝑓(𝑟) (mod 𝑚) for all 𝑖 ≤ 𝑟 ≤ 𝑛 and 𝑛 ≥ 𝑖 + 𝑘 − 1. Then 
𝑓(𝑛 + 1) = 𝑓(𝑛) + 𝑓(𝑛 − 1) +⋯+ 𝑓(𝑛 − 𝑘 + 1)

≡ 𝑓(𝑛 + 𝑙) + 𝑓(𝑛 − 1 + 𝑙) +⋯+ 𝑓(𝑛 − 𝑘 + 1 + 𝑙) (mod 𝑚)

≡ 𝑓(𝑛 + 1 + 𝑙) (mod 𝑚).

 

By the Principle of Strong Mathematical Induction, 𝑓(𝑛 + 𝑙) ≡ 𝑓(𝑛) (mod 𝑚) for any integer 𝑛 ≥ 𝑖. 
 

Case 2: Assume that 𝑓(𝑟 + 𝑙) ≡ 𝑓(𝑟) (mod 𝑚) for all 𝑛 ≤ 𝑟 ≤ 𝑖 + 𝑘 − 1 and 𝑛 ≤ 𝑖. Then 
𝑓(𝑛 − 1) = 𝑓(𝑛 + 𝑘 − 1) − 𝑓(𝑛 + 𝑘 − 2) − ⋯− 𝑓(𝑛)

≡ 𝑓(𝑛 + 𝑘 − 1 + 𝑙) − 𝑓(𝑛 + 𝑘 − 2 + 𝑙) −⋯− 𝑓(𝑛 + 𝑙) (mod 𝑚)

≡ 𝑓(𝑛 − 1 + 𝑙) (mod 𝑚).

 

By the Principle of Strong Mathematical Induction, 𝑓(𝑛 + 𝑙) ≡ 𝑓(𝑛) (mod 𝑚) for any integer 𝑛 ≤ 𝑖. These complete the proof. 

Observe that a period of any 𝑘-step Fibonacci function always exists.  

 

Definition 2. Let 𝑓:ℤ → ℤ be a 𝑘-step Fibonacci function and 𝑚 be a positive integer > 1. A positive integer 𝑙 such that 𝑓(𝑛 + 𝑙) ≡
𝑓(𝑛) (mod 𝑚) for any integer 𝑛 is called a Period of 𝑓 modulo 𝑚. The smallest positive integer 𝑙 such that 𝑓(𝑛 + 𝑙) ≡
𝑓(𝑛) (mod 𝑚) for any integer 𝑛 is called the Primitive Period of 𝑓 modulo 𝑚 and written 𝑙 ≔ 𝑙𝑓(𝑚). 

By The Well Ordering Principle, the unique primitive period of any 𝑘-step Fibonacci function modulo 𝑚 always exists. 

The following corollary shows bounds on the primitive period. The proof of the corollary immediately follows from Theorem 6. 

 

Corollary 1. If 𝑙𝑓(𝑚) is the primitive period of a 𝑘-step Fibonacci function 𝑓 modulo 𝑚, then 1 ≤ 𝑙𝑓(𝑚) ≤ 𝑚
𝑘. 

The relation between a period and the primitive period of a 𝑘-step Fibonacci function modulo 𝑚 is described in the 

following theorem. 

 

Theorem 6. Let 𝑓:ℤ → ℤ be a 𝑘-step Fibonacci function and 𝑙, 𝑚 be positive integers > 1. 𝑙 is a period of 𝑓 modulo 𝑚 if and only 

if 𝑙𝑓(𝑚) | 𝑙. 

 

Proof. Assume that 𝑙 is a period of 𝑓 modulo 𝑚. Then 𝑙 ≥ 𝑙𝑓(𝑚). By the Division Algorithm, there exist two positive integers 𝑞 

and 𝑟 with 0 ≤ 𝑟 < 𝑙𝑓(𝑚) for which 𝑙 = 𝑞𝑙𝑓(𝑚) + 𝑟. 

Consider 
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𝑓(𝑛) ≡ 𝑓(𝑛 + 𝑙) (mod 𝑚)

≡ 𝑓 (𝑛 + 𝑟 + 𝑞𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓 (𝑛 + 𝑟 + (𝑞 − 1)𝑙𝑓(𝑚) + 𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓 (𝑛 + 𝑟 + (𝑞 − 1)𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓 (𝑛 + 𝑟 + (𝑞 − 2)𝑙𝑓(𝑚) + 𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓 (𝑛 + 𝑟 + (𝑞 − 2)𝑙𝑓(𝑚)) (mod 𝑚)

 ⋮

≡ 𝑓 (𝑛 + 𝑟 + 𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓(𝑛 + 𝑟) (mod 𝑚)

 

for any integer 𝑛. If 𝑟 > 0, then 𝑟 is a period of 𝑓 modulo 𝑚 with 𝑟 < 𝑙𝑓(𝑚): a contradiction. Thus, 𝑟 = 0 and so 𝑙 = 𝑞𝑙𝑓(𝑚). It 

follows that 𝑙𝑓(𝑚) | 𝑙. 

Conversely, assume that 𝑙𝑓(𝑚) | 𝑙. Then 𝑙 = 𝑞𝑙𝑓(𝑚) for some positive integer 𝑞. Consider 

𝑓(𝑛) ≡ 𝑓 (𝑛 + 𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓 (𝑛 + 2𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓 (𝑛 + 3𝑙𝑓(𝑚)) (mod 𝑚)

 ⋮

≡ 𝑓 (𝑛 + 𝑞𝑙𝑓(𝑚)) (mod 𝑚)

≡ 𝑓(𝑛 + 𝑙) (mod 𝑚)

 

for any integer 𝑛. Hence, 𝑙 is a period of 𝑓 modulo 𝑚.    □ 

 

Example 2. Let 𝑓:ℤ → ℤ  be a 3-step Fibonacci function such that 𝑓(0) = 0, 𝑓(1) = 1 and 𝑓(2) = 2. From Example 1, we have 

the following tables: 

 
Table 2. The values of the 3-step Fibonacci function 𝑓(𝑛) in modulo 2 and 3 
 

𝑛 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 
              

𝑓(𝑛) 27 −2 −13 12 −3 −4 5 −2 −1 2 −1 0 1 

𝑓(𝑛) (mod 2) 1 0 1 0 1 0 1 0 1 0 1 0 1 
𝑓(𝑛) (mod 3) 0 1 2 0 0 2 2 1 2 2 2 0 1 
              

 

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 
              

𝑓(𝑛) 0 1 2 3 6 11 20 37 68 125 230 423 778 

𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 0 1 0 
𝑓(𝑛) (mod 3) 0 1 2 0 0 2 2 1 2 2 2 0 1 

              

 

Then 1 ≤ 𝑙𝑓(2) = 2 ≤ 2
3 and 1 ≤ 𝑙𝑓(3) = 13 ≤ 3

3. Observe that 4 is also a period of 𝑓 modulo 2 and 𝑙𝑓(2) | 4. 

Similarly, we can calculate that 26 is also a period of 𝑓 modulo 3 and 𝑙𝑓(3) | 26. 

The final theorem of this section explains a relation among 𝑙𝑓(𝑚), 𝑙𝑓(𝑛) and 𝑙𝑓(𝑚𝑛) when gcd(𝑚, 𝑛) = 1. 

 

Theorem 7. Let 𝑓:ℤ → ℤ be a 𝑘-step Fibonacci function and 𝑚, 𝑛 be positive integers > 1. If gcd(𝑚, 𝑛) = 1, then 𝑙𝑓(𝑚𝑛) =

lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)]. 

 

Proof. Assume that gcd(𝑚, 𝑛) = 1. Since 𝑙𝑓(𝑚𝑛) is a period of 𝑓 modulo 𝑚𝑛, 𝑓 (𝑁 + 𝑙𝑓(𝑚𝑛)) ≡ 𝑓(𝑁) (mod 𝑚𝑛) for any integer 

𝑁.  

Then 𝑓 (𝑁 + 𝑙𝑓(𝑚𝑛)) ≡ 𝑓(𝑁) (mod 𝑚) and 𝑓 (𝑁 + 𝑙𝑓(𝑚𝑛)) ≡ 𝑓(𝑁) (mod 𝑛) 

for any integer 𝑁. Consequently, 𝑙𝑓(𝑚𝑛) is a period of 𝑓 modulo 𝑚 and 𝑛 respectively. By Theorem 6, we have 𝑙𝑓(𝑚) | 𝑙𝑓(𝑚𝑛) 

and 𝑙𝑓(𝑛) | 𝑙𝑓(𝑚𝑛). 

Therefore, lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)] | 𝑙𝑓(𝑚𝑛). 

Conversely, since 𝑙𝑓(𝑚) | lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)] and 𝑙𝑓(𝑛) |  lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)], we obtain from Theorem 6 that 

lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)] is a period of 𝑓 modulo 𝑚 and 𝑛 respectively. Hence, 
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𝑓(𝑁 + lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)]) ≡ 𝑓(𝑁) (mod 𝑚) and 𝑓(𝑁 + lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)]) ≡ 𝑓(𝑁) (mod 𝑛) 

for any integer 𝑁. Since gcd(𝑚, 𝑛) = 1, 

𝑓(𝑁 + lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)]) ≡ 𝑓(𝑁) (mod 𝑚𝑛) 

for any integer 𝑁 and so lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)] is a period of 𝑓 modulo 𝑚𝑛. We conclude from Theorem 6 that  

𝑙𝑓(𝑚𝑛) |  lcm[𝑙𝑓(𝑚), 𝑙𝑓(𝑛)]. 

The proof is complete.         

 

Example 3. Let 𝑓:ℤ → ℤ be a 3-step Fibonacci function such that 𝑓(0) = 0, 𝑓(1) = 1 and 𝑓(2) = 2. Consider the following 

tables: 

 
Table 3. The values of the 3-step Fibonacci function 𝑓(𝑛) in modulo 2, 3, and 6 
 

𝑛 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 
           

𝑓(𝑛) −5264 −3055 5426 −2893 −522 2011 −1404 85 692 −627 
𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 
𝑓(𝑛) (mod 3) 1 2 2 2 0 1 0 1 2 0 
𝑓(𝑛) (mod 6) 4 5 2 5 0 1 0 1 2 3 

           

 

𝑛 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 

           

𝑓(𝑛) 150 215 −262 103 56 −103 56 9 −38 27 

𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 
𝑓(𝑛) (mod 3) 0 2 2 1 2 2 2 0 1 0 
𝑓(𝑛) (mod 6) 0 5 2 1 2 5 2 3 4 3 

           

 

𝑛 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 

           

𝑓(𝑛) −2 −13 12 −3 −4 5 −2 −1 2 −1 

𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 
𝑓(𝑛) (mod 3) 1 2 0 0 2 2 1 2 2 2 
𝑓(𝑛) (mod 6) 4 5 0 3 2 5 4 5 2 5 

           

 

𝑛 −2 −1 0 1 2 3 4 5 6 7 

           

𝑓(𝑛) 0 1 0 1 2 3 6 11 20 37 

𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 
𝑓(𝑛) (mod 3) 0 1 0 1 2 0 0 2 2 1 
𝑓(𝑛) (mod 6) 0 1 0 1 2 3 0 5 2 1 

           

 

𝑛 8 9 10 11 12 13 14 15 16 17 
           

𝑓(𝑛) 68 125 230 423 778 1431 2632 4841 8904 16377 
𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 

𝑓(𝑛) (mod 3) 2 2 2 0 1 0 1 2 0 0 
𝑓(𝑛) (mod 6) 2 5 2 3 4 3 4 5 0 3 

           

 

𝑛 18 19 20 21 22 23 24 25 26 27 

           

𝑓(𝑛) 30122 55403 101902 187427 344732 634061 1166220 2145013 3945294 7256527 
𝑓(𝑛) (mod 2) 0 1 0 1 0 1 0 1 0 1 
𝑓(𝑛) (mod 3) 2 2 1 2 2 2 0 1 0 1 
𝑓(𝑛) (mod 6) 2 5 4 5 2 5 0 1 0 1 

           

 

We see that 𝑙𝑓(6) = 26 = lcm[2,13] = lcm[𝑙𝑓(2), 𝑙𝑓(3)]. 
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4. Explicit Primitive Periods 
 

In this section, we find the explicit period of a 𝑘-step Fibonacci function 𝑓 under some conditions for 𝑘 = 2,3,4. Let 

𝑓(0), 𝑓(1),… , 𝑓(𝑘 − 1) be the starting values. We observe that 𝑙 is a period of 𝑓 modulo 𝑚 if and only if 𝑙 is the first positive 

integer so that 𝑓(𝑛 + 𝑙) ≡ 𝑓(𝑛) (mod 𝑚) for all 𝑛 ∈ {0,1, … , 𝑘 − 1}. First, we provide necessary and sufficient conditions for a 

𝑘-step Fibonacci function 𝑓 such that 𝑙𝑓(𝑚) = 1. 

 

Lemma 2. Let 𝑚 be a positive integer and 𝑓:ℤ → ℤ be a 𝑘-step Fibonacci function with the starting values 𝑓(0) = 𝑎0, 𝑓(1) =
𝑎1, … , 𝑓(𝑘 − 1) = 𝑎𝑘−1 and gcd(𝑚, 𝑘 − 1) = 1. Then 𝑚|𝑎𝑖 for all 𝑖 ∈ {0,1,… , 𝑘 − 1} if and only if 𝑙𝑓(𝑚) = 1. 

 

Proof. Assume that 𝑎0 ≡ 𝑎1 ≡ ⋯ ≡ 𝑎𝑘−1 ≡ 0 (mod 𝑚). We can prove by induction on 𝑛 with the definition of a 𝑘-step Fibonacci 

function that 𝑓(𝑛 + 1) ≡ 𝑓(𝑛) ≡ 0 (mod 𝑚) for all integers 𝑛 and so 𝑙𝑓(𝑚) = 1. On the other hand, assume that 𝑙𝑓(𝑚) = 1. Now, 

we have that 𝑎0 ≡ 𝑎1 ≡ ⋯ ≡ 𝑎𝑘−1 ≡ 𝑎0 + 𝑎1 +⋯+ 𝑎𝑘−2 + 𝑎𝑘−1 (mod 𝑚). 
Then 

(𝑘 − 1)𝑎𝑖 = 𝑎𝑖 + 𝑎𝑖 +⋯+𝑎𝑖⏞          
𝑘−1 terms

≡ 𝑎0 + 𝑎1 +⋯+ 𝑎𝑘−2 ≡ 0 (mod 𝑚). 
for all 𝑖 ∈ {0,1, … , 𝑘 − 1}. The result follows from gcd(𝑚, 𝑘 − 1) = 1.    

Now, we show the desired results for a 𝑘-step Fibonacci function with a period greater than 1. We start with the result 

for 𝑘 = 2 as follows: 

 

Theorem 8. Let 𝑓:ℤ → ℤ be a 2-step Fibonacci function with the starting values 𝑓(0) = 𝑎 and 𝑓(1) = 𝑏. Assume that 2𝑚 ∤ 𝑎 or 

2𝑚 ∤ 𝑏. For a positive integer 𝑚, 𝑚|𝑎 and 𝑚|𝑏 if and only if 𝑙𝑓(2𝑚) = 3. 

 

Proof. Let 𝑚 be a positive integer. Then 
𝑓(3) = 𝑎 + 2𝑏
𝑓(4) = 2𝑎 + 3𝑏.

 

Assume that 𝑚|𝑎 and 𝑚|𝑏. Then there exist integers 𝑖 and 𝑗 such that 𝑎 = 𝑚𝑖 and 𝑏 = 𝑚𝑗. It follows that 

𝑓(3) = 𝑚𝑖 + 2𝑚𝑗 ≡ 𝑚𝑖 = 𝑓(0) (mod 2𝑚), 
𝑓(4) = 2𝑚𝑖 + 3𝑚𝑗 ≡ 𝑚𝑗 = 𝑓(1)  (mod 2𝑚). 

Thus, 3 is a period of 𝑓 modulo 2𝑚. We conclude by Theorem 6 and Lemma 2 that 𝑙𝑓(2𝑚) = 3.  Conversely, assume that 𝑙𝑓(2𝑚) =

3. Then 

𝑎 + 2𝑏 = 𝑓(3) ≡ 𝑓(0) = 𝑎 (mod 2𝑚), 
2𝑎 + 3𝑏 = 𝑓(4) ≡ 𝑓(1) = 𝑏 (mod 2𝑚). 

These implies that 𝑚|𝑏 and 𝑚|𝑎.        

 

Example 4. Let 𝑓:ℤ → ℤ  be a 2-step Fibonacci function with the starting values 𝑓(0) = 4 and 𝑓(1) = 6. Observe that 4 ∤ 𝑓(1), 
2|𝑓(0), and 2|𝑓(1). Consider  

𝑓(0) = 4 ≡ 0 (mod 4), 
𝑓(1) = 6 ≡ 2 (mod 4), 
𝑓(2) = 10 ≡ 2 (mod 4), 
𝑓(3) = 16 ≡ 0 (mod 4), 
𝑓(4) = 26 ≡ 2 (mod 4), 
𝑓(5) = 42 ≡ 2 (mod 4), 

⋮ 
We see that 𝑙𝑓(4) = 3.  

 

Example 5. Let 𝑓:ℤ → ℤ  be a 2-step Fibonacci function with the starting values 𝑓(0) = 1 and 𝑓(1) = 2. Observe that 𝑓(0) and 

𝑓(1) are not divisible by 3. Consider  

𝑓(0) = 1 ≡ 1 (mod 6), 
𝑓(1) = 2 ≡ 2 (mod 6), 
𝑓(2) = 3 ≡ 3 (mod 6), 
𝑓(3) = 5 ≡ 5 (mod 6), 

⋮ 
We see that 𝑙𝑓(4) ≠ 3.  

Next, the result for a 3-step Fibonacci function is as follows: 

 

Theorem 9. Let 𝑚 be a positive odd integer and 𝑓:ℤ → ℤ  be a 3-step Fibonacci function with the starting values 𝑓(0) = 𝑎, 𝑓(1) =
𝑏, and 𝑓(2) = 𝑐. Assume that 3𝑚 ∤ 𝑎, 3𝑚 ∤ 𝑏, or 3𝑚 ∤ 𝑐. Then the following statements hold.  

1. If 𝑚|𝑎,𝑚|𝑏, and 𝑚|𝑐, then 𝑙𝑓(3𝑚) = 13. 

2. If 𝑙𝑓(3𝑚) = 13, then 
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91𝑎 + 141𝑏 + 168𝑐 ≡ 0 (mod 𝑚)

168𝑎 + 259𝑏 + 309𝑐 ≡ 0 (mod 𝑚)

309𝑎 + 477𝑏 + 568𝑐 ≡ 0 (mod 𝑚).
 

 

Proof. We have from the assumption that 
𝑓(13) = 274𝑎 + 423𝑏 + 504𝑐

𝑓(14) = 504𝑎 + 778𝑏 + 927𝑐
𝑓(15) = 927𝑎 + 1431𝑏 + 1705𝑐.

 

1. Assume that 𝑚|𝑎,𝑚|𝑏, and 𝑚|𝑐. Then there exist integers 𝑟, 𝑠, and 𝑡 such that 𝑎 = 𝑚𝑟, 𝑏 = 𝑚𝑠, and 𝑐 = 𝑚𝑡. We obtain from 

the above that 

𝑓(13) = 274𝑚𝑟 + 423𝑚𝑠 + 504𝑚𝑡 ≡ 𝑚𝑟 = 𝑓(0) (mod 3𝑚), 
𝑓(14) = 504𝑚𝑟 + 778𝑚𝑠 + 927𝑚𝑡 ≡ 𝑚𝑠 = 𝑓(1) (mod 3𝑚), 
𝑓(15) = 927𝑚𝑟 + 1431𝑚𝑠 + 1705𝑚𝑡 ≡ 𝑚𝑡 = 𝑓(2) (mod 3𝑚). 

Therefore, 13 is a period of 𝑓 modulo 3𝑚. It follows by Theorem 6 and Lemma 2 that 𝑙𝑓(3𝑚) = 13. 

2.Assume that 𝑙𝑓(3𝑚) = 13. The result immediately follows from the fact that 

274𝑎 + 423𝑏 + 504𝑐 = 𝑓(13) ≡ 𝑓(0) = 𝑎 (mod 3𝑚), 
504𝑎 + 778𝑏 + 927𝑐 = 𝑓(14) ≡ 𝑓(1) = 𝑏 (mod 3𝑚), 
927𝑎 + 1431𝑏 + 1705𝑐 = 𝑓(15) ≡ 𝑓(2) = 𝑐 (mod 3𝑚). 
            

Example 6. Let 𝑓:ℤ → ℤ  be a 3-step Fibonacci function with the starting values 𝑓(0) = 6, 𝑓(1) = 3 and 𝑓(2) = 0. Observe that 

𝑓(0) and 𝑓(1) are not divisible by 9. We also note that 3|𝑓(0), 3|𝑓(1), and 3|𝑓(2). Consider  

𝑓(0) = 6 ≡ 6 (mod 9), 
𝑓(1) = 3 ≡ 3 (mod 9), 
𝑓(2) = 0 ≡ 0 (mod 9), 

⋮ 
𝑓(13) = 2913 ≡ 6 (mod 9), 
𝑓(14) = 5358 ≡ 3 (mod 9), 
𝑓(15) = 9855 ≡ 0 (mod 9), 

⋮ 
We see that 𝑙𝑓(9) = 13.  

It is not hard to prove that if 𝑚 = 3 or 𝑚 = 7 in Theorem 9, then 𝑙𝑓(3𝑚) = 13 implies 𝑚|𝑎,𝑚|𝑏, and 𝑚|𝑐.  

 

Corollary 2. Let 𝑓:ℤ → ℤ be a 3-step Fibonacci function with the starting values 𝑓(0) = 𝑎, 𝑓(1) = 𝑏, and 𝑓(2) = 𝑐. Then the 

following statements hold. 

1. If 𝑙𝑓(9) = 13 and 𝑎, 𝑏, or 𝑐 is not divisible by 9, then 3|𝑎, 3|𝑏, and 3|𝑐. 

2. If 𝑙𝑓(21) = 13 and 𝑎, 𝑏, or 𝑐 is not divisible by 21, then 7|𝑎, 7|𝑏, and 7|𝑐. 

Finally, the next theorem yields the result for a 4-step Fibonacci function is as follows: 

 

Theorem 10. Let 𝑚 be a positive integer and 𝑓:ℤ → ℤ be a 4-step Fibonacci function with the starting values 𝑓(0) = 𝑎, 𝑓(1) =
𝑏, 𝑓(2) = 𝑐, and 𝑓(3) = 𝑑. Assume that gcd(4𝑚, 3) = 1 and 𝑎, 𝑏, 𝑐, or 𝑑 is not divisible by 4𝑚. Then the following statements 

hold.  

1. If 𝑚|𝑎,𝑚|𝑏,𝑚|𝑐, and 𝑚|𝑑, then  

𝑙𝑓(4𝑚) = {
5 if 𝑏 + 𝑐 + 𝑑, 𝑎 + 𝑏 + 2𝑐 + 2𝑑, 2𝑎 + 3𝑏 + 3𝑐 + 4𝑑,

and 4𝑎 + 6𝑏 + 7𝑐 + 7𝑑 are divisible by 2𝑚,
10 otherwise.

 

2. If 𝑙𝑓(4𝑚) = 10, then 

7𝑎 + 11𝑏 + 13𝑐 + 14𝑑 ≡ 0 (mod 𝑚)

14𝑎 + 21𝑏 + 25𝑐 + 27𝑑 ≡ 0 (mod 𝑚)

27𝑎 + 41𝑏 + 48𝑐 + 52𝑑 ≡ 0 (mod 𝑚)

52𝑎 + 79𝑏 + 93𝑐 + 100𝑑 ≡ 0 (mod 𝑚).

 

 

Proof. Consider 
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1. Assume that 𝑚|𝑎,𝑚|𝑏,𝑚|𝑐, and 𝑚|𝑑. Then there exist integers 𝑟, 𝑠, 𝑡 and 𝑢 such that 𝑎 = 𝑚𝑟, 𝑏 = 𝑚𝑠, 𝑐 = 𝑚𝑡, and 𝑑 = 𝑚𝑢. 

We have from the above that 

𝑓(10) = 29𝑚𝑟 + 44𝑚𝑠 + 52𝑚𝑡 + 56𝑚𝑢 ≡ 𝑚𝑟 = 𝑓(0) (mod 4𝑚), 
𝑓(11) = 56𝑚𝑟 + 85𝑚𝑠 + 100𝑚𝑡 + 108𝑚𝑢 ≡ 𝑚𝑠 = 𝑓(1) (mod 4𝑚), 
𝑓(12) = 108𝑚𝑟 + 164𝑚𝑠 + 193𝑚𝑡 + 208𝑚𝑢 ≡ 𝑚𝑡 = 𝑓(2) (mod 4𝑚), 
𝑓(13) = 208𝑚𝑟 + 316𝑚𝑠 + 372𝑚𝑡 + 401𝑚𝑢 ≡ 𝑚𝑢 = 𝑓(3) (mod 4𝑚). 

Hence, 10 is a period of 𝑓 modulo 4𝑚. It follows by Theorem 6 and Lemma 2 that 𝑙𝑓(4𝑚) = 2,5, or 10. If 𝑙𝑓(4𝑚) = 2, then  

𝑎 ≡ 𝑐 ≡ 𝑎 + 𝑏 + 𝑐 + 𝑑 (mod 4𝑚), 
𝑏 ≡ 𝑑 ≡ 𝑎 + 2𝑏 + 2𝑐 + 2𝑑 (mod 4𝑚). 

Thus, 

𝑎 ≡ 2𝑎 + 2𝑏 (mod 4𝑚), 
𝑏 ≡ 3𝑎 + 4𝑏 ≡ 𝑎 (mod 4𝑚). 
These mean that 𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 (mod 4𝑚). Since 𝑎, 𝑏, 𝑐, or 𝑑 is not divisible by 4𝑚, all 𝑎, 𝑏, 𝑐, and 𝑑 are not divisible 

by 4𝑚. Now, we also have that 

𝑎 + 𝑏 + 𝑐 + 𝑑 ≡ 2𝑎 + 3𝑏 + 4𝑐 + 4𝑑 (mod 4𝑚). 
Consequently, 9𝑎 ≡ 0 (mod 4𝑚) which is a contradiction. Therefore, it is impossible that 𝑙𝑓(4𝑚) = 2. We note that 

𝑙𝑓(4𝑚) = 5 if and only if 

𝑎 + 2𝑏 + 2𝑐 + 2𝑑 = 𝑓(5) ≡ 𝑓(0) = 𝑎 (mod 4𝑚), 
2𝑎 + 3𝑏 + 4𝑐 + 4𝑑 = 𝑓(6) ≡ 𝑓(1) = 𝑏 (mod 4𝑚), 
4𝑎 + 6𝑏 + 7𝑐 + 8𝑑 = 𝑓(7) ≡ 𝑓(2) = 𝑐 (mod 4𝑚), 
8𝑎 + 12𝑏 + 14𝑐 + 15𝑑 = 𝑓(8) ≡ 𝑓(3) = 𝑑 (mod 4𝑚) 

if and only if 𝑏 + 𝑐 + 𝑑, 𝑎 + 𝑏 + 2𝑐 + 2𝑑, 2𝑎 + 3𝑏 + 3𝑐 + 4𝑑, and 4𝑎 + 6𝑏 + 7𝑐 + 7𝑑 are divisible by 2𝑚.  

2. Assume that 𝑙𝑓(4𝑚) = 10. The result immediately follows from the fact that 

29𝑎 + 44𝑏 + 52𝑐 + 56𝑑 = 𝑓(10) ≡ 𝑓(0) = 𝑎 (mod 4𝑚), 
56𝑎 + 85𝑏 + 100𝑐 + 108𝑑 = 𝑓(11) ≡ 𝑓(1) = 𝑏 (mod 4𝑚), 
108𝑎 + 164𝑏 + 193𝑐 + 208𝑑 = 𝑓(12) ≡ 𝑓(2) = 𝑐 (mod 4𝑚), 
208𝑎 + 316𝑏 + 372𝑐 + 401𝑑 = 𝑓(13) ≡ 𝑓(3) = 𝑑 (mod 4𝑚). 

 

Example 7. Let 𝑓:ℤ → ℤ be a 4-step Fibonacci function with the starting values 𝑓(0) = −4, 𝑓(1) = 0, 𝑓(2) = 0 and 𝑓(3) = 4. 

Observe that all 𝑓(𝑖) are not divisible by 8 for 𝑖 = 0,1,2,3. We also note that 2|𝑓(0), 2|𝑓(1), 2|𝑓(2) and 2|𝑓(3). 
Furthermore, we see that 4 divides 𝑓(1) + 𝑓(2) + 𝑓(3), 𝑓(0) + 𝑓(1) + 2𝑓(2) + 2𝑓(3), 2𝑓(0) + 3𝑓(1) + 3𝑓(2) +
4𝑓(3), and 4𝑓(0) + 6𝑓(1) + 7𝑓(2) + 7𝑓(3). Consider  

𝑓(0) = −4 ≡ 4 (mod 8), 
𝑓(1) = 0 ≡ 0 (mod 8), 
𝑓(2) = 0 ≡ 0 (mod 8), 
𝑓(3) = 4 ≡ 4 (mod 8), 
𝑓(4) = 0 ≡ 0 (mod 8), 
𝑓(5) = 4 ≡ 4 (mod 8), 
𝑓(6) = 8 ≡ 0 (mod 8), 
𝑓(7) = 16 ≡ 0 (mod 8), 
𝑓(8) = 28 ≡ 4 (mod 8), 

⋮ 
We see that 𝑙𝑓(8) = 5.  

 

Example 8. Let 𝑓:ℤ → ℤ be a 4-step Fibonacci function with the starting values 𝑓(0) = 0, 𝑓(1) = 10, 𝑓(2) = 5 and 𝑓(3) = 0. 

Observe that 𝑓(1) and 𝑓(2) are not divisible by 20. We also note that 5|𝑓(0), 5|𝑓(1), 5|𝑓(2), and 5|𝑓(3). Furthermore, we see 

that 10 does not divide 𝑓(1) + 𝑓(2) + 𝑓(3). Consider  

𝑓(0) = 0 ≡ 0 (mod 20), 
𝑓(1) = 10 ≡ 10 (mod 20), 
𝑓(2) = 5 ≡ 5 (mod 20), 
𝑓(3) = 0 ≡ 0 (mod 20), 

⋮ 
𝑓(10) = 700 ≡ 0 (mod 20), 
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𝑓(11) = 1350 ≡ 10 (mod 20), 
𝑓(12) = 2605 ≡ 5 (mod 20), 
𝑓(13) = 5020 ≡ 0 (mod 20), 

⋮ 
We see that 𝑙𝑓(20) = 10.  

 

5. Conclusions 
 

In this paper, we present the existence of primitive 

period modulo 𝑚 of a 𝑘-step Fibonacci function which is a 

generalization of a regular Fibonacci function that appeared in 

Thongngam and Chinram (2019). A regular Fibonacci function 

is also a generalization of the Fibonacci and Lucas sequence. 

Furthermore, the primitive period of some certain 𝑘-step 

Fibonacci functions under some additional conditions is  

established.   An  interesting direction for our future work is to

find the explicit primitive period of the other 𝑘-step Fibonacci 

functions and to find the sharp bound of the primitive period of 

any 𝑘-step Fibonacci function. 
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