TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
INTRODUCTION	
Objective	3
Scope of Thesis	3
LITERATURE REVIEW	4
Experimental Investigations	4
Computational Investigations	6
MATERIALS AND METHODS	9
Theoretical Background	9
Polymer Crystallization	9
Modeling of Morphology Evolution and Crystallization	
Kinetics	14
Algorithm for studying effect of number of predetermined nuclei	
and growth rate	19
Algorithm for studying effect of crystallization temperature	24
Assumptions of the algorithm	28
RESULTS AND DISCUSSION	30
Effect of Number of Predetermined Nuclei and Growth Rate	30
Crystallization Kinetics	30
Morphological Development	34
Effect of Nucleation	34
Effect of Growth Rate	38
Effect of Crystallization Temperature	42
Crystallization Kinetics	44
Morphological Development	50

TABLE OF CONTENTS (Cont'd)

CONCLUSION	
Effect of Number of Predetermined and Growth Rate	57
Effect of Crystallization Temperature	57
LITERATURE CITED	
APPENDIX	
Appendix A	62
Appendix B	66

LIST OF TABLES

Table

Table		Page
1	Interpretation of Avrami Coefficients.	15
2	Values of parameters for study the effect of number	
	of predetermined nuclei and growth rate	23
3	Values of parameters for study the effect of crystallization	
	temperature	28
4	Comparison results between simulation and experiment.	49

LIST OF FIGURES

Figure

1	Comparison between the final morphology obtained from
	(a) polarized light microscope (PLM) and (b) simulation.
2	Polymer chain arrangement in spherulite form:
	(a) 2-dimensions and (b) 3-dimensions.
3	Number of nuclei versus time during the crystallization of
	poly (trimethylene terephthalate) at several crystallization
	temperatures
4	The spherulites size as a function of time during crystallization
	of poly (trimethylene terephthalate) at several crystallization
	temperatures
5	Spherulite growth rate at various crystallization temperatures
	for poly (trimethylene terephthalate). Dots are experimental
	results and line is Laurizen-Hoffman model.
5	Simplified algorithm for our stochastic simulation
	(Effect of number of predetermined nuclei and growth rate)
7	Examples of polymer morphology obtained from the stochastic
	simulation ($N = 10$ and $G = 3$ unit cell/sec) at different
	crystallization times: (a) $t = 0$ sec, (b) $t = 20$ sec, (c) $t = 40$ sec,
	and (d) final morphology.
8	Simplified algorithm for our stochastic simulation
	(Effect of crystallization temperature).
9	Calculation of growth rate (G) and number of predetermined
	nuclei (N) by using experimental results for s-PP
10	Examples of polymer morphology obtained from the
	stochastic simulation ($T_c = 85^{\circ}C$) at different crystallization
	times: (a) $t = 0$ sec, (b) $t = 20$ sec, (c) $t = 40$ sec, and
	(d) final morphology.

LIST OF FIGURES (Cont'd)

Figure

11	Crystallization kinetics for various numbers of nuclei	
	(a) simulated kinetics of area occupied by spherulites and	
	(b) simulated kinetics in logarithm scale.	
	Symbols: simulation results; Lines: theoretical results	
	from the Avrami equation.	
12	Crystallization kinetics at various growth rates.	
	(a) simulated kinetics of area occupied by spherulites and	
	(b) simulated kinetics in logarithm scale. Symbols: simulation	
	results; Lines: theoretical results from the Avrami equation.	
13	Relative crystallinity as a function of time. Dark symbols:	
	results from simulation in this work, open symbols are results from	
	the literature and line are results from Avrami equation (Eq. (4))	
14	Avrami parameters estimated from simulation results obtained	
	at various numbers of nuclei. Lines are to aid eye only	
15	Avrami parameters estimated from simulation results obtained	
	at various growth rate. Lines are to aid eye only.	
16	Time evolution of distributions of spherulite size for three	
	different numbers of nuclei: (a) 50 nuclei, (b) 100 nuclei, and	
	(c) 500 nuclei	
17	Frequency distributions of spherulite size for three different	
	numbers of nuclei at (a) $t = 60$ sec and (b) final morphology.	
18	The average spherulite size as a function of time for various	
	numbers of nuclei	
19	Time evolution of distributions of spherulite size for three	
	different growth rates: (a) 1 pixel/s, (b) 3 pixels/s, and	
	(c) 5 pixels/s.	
20	Frequency distributions of spherulite size for three different	
	growth rates at (a) $t = 14$ sec and (b) final morphology.	

LIST OF FIGURES (Cont'd)

Figure

21	The average spherulite size as a function of time for various
	growth rates.
22	The effect of crystallization temperature on growth
	rate of spherulite, G , Avrami rate constant, k_A , and
	nucleation density, <i>N</i>
23	Crystallization kinetics at various crystallization temperatures
	in the range of $65^{\circ}C \le T_c \le 85^{\circ}C$. (a) simulated kinetics of
	area occupied by spherulites and (b) simulated kinetics in
	logarithm scale. Symbols: simulation results; Lines: theoretical
	results from the Avrami equation.
4	Crystallization kinetics at various crystallization temperatures
	in the range of $40^{\circ}C \le T_c \le 60^{\circ}C$. (a) simulated kinetics of area
	occupied by spherulites and (b) simulated kinetics in logarithm
	scale. Symbols: simulation results; Lines: theoretical results from
	the Avrami equation
5	Avrami parameters (a) Avrami rate constant (k_A) and
	(b) Avrami exponential (n_A) estimated from simulation results
	obtained at various crystallization temperatures. Lines are to
	aid eye only
6	Method for validation of algorithm developed in this work
	with reported experimental data.
7	Comparison of Avrami rate constant between simulation
	results and experimental results.
28	Comparison between crystallization half-time obtained
	from simulation and crystallization half-time reported earlier from
	experiment of Supphol.

LIST OF FIGURES (Cont'd)

29	Time evolution of distributions of spherulite size for different	
	crystallization temperatures: (a) $T_c=40^{\circ}C$, (b) $T_c=50^{\circ}C$,	
	(c) $T_c=60^{\circ}C$, (d) $T_c=70^{\circ}C$, (e) $T_c=80^{\circ}C$ and (f) $T_c=90^{\circ}C$.	52
30	Final distributions of spherulite size at various crystallization	
	temperatures	55
31	Evolution of spherulite size at various crystallization temperatures.	56
32	Effect of crystallization temperature on final average spherulites size.	56
-		-

Appendix Figure

Figure

A1	Relative crystallinity as a function of time obtained from	
	different numbers of run.	63
A2	Frequency of spherulites size at time 36 and various numbers	
	of runs	64
A3	Frequency of spherulites size at time 36 and various mesh sizes.	65
B1	The main window of Polymer Crystallization Program for study	
	effect of number of predetermined nuclei and growth rate.	68
B2	Outputs of the program in spreadsheet format.	69
B3	Outputs of the program in graphical format.	70
B4	The main window of Polymer Crystallization Program for study	
	effect of crystallization temperature.	71
B5	Outputs of the program in spreadsheet format.	72
B6	Outputs of the program in graphical format.	73

vii