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The purpose of this research is to improve the positioning accuracy of a stand 

along global positioning system (GPS) receiver through two techniques, namely, pos 

error prediction approaches, and time-domain system to estimate positioning error 

by integrating the positioning data from the GPS data and prior information. The 

prior information is the position of several control points in the field which may be 

obtained from proximity sensors. Proximity sensors may be a RF device that 

periodically broadcasts its location through the cheap short-range RF system, or the 

landmark in the field to let an operator of a vehicle enter the location information 

into the system. When a vehicle travels near a proximity sensor, its position will be 

calibration from the broadcasted information.  

 

In the error prediction approaches, we propose four methods, the last error 

value, average error value, last error value with memory parameter, and average 

error value with memory parameter. From our experiment, the last error value yields 

the maximum improvement whereas the last error value with memory performs 

poorest. However, the last error value with memory can improve the accuracy when 

the majority of error is caused by the positioning noise. The time-domain system to 

estimate positioning error yield slightly lower positioning error reduction when 

comparing with the last error value. However, it yields the minimum standard 

deviation which implies the robustness of the time-domain tracking.   
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FUSION OF GPS AND PROXIMITY DATA FOR VEHICLE 

TRACKING: APPLICATIONS FOR FARMING APPLICATORS  

 

INTRODUCTION 

 

 Agriculture Fertilizers are very important to the plant development. There are 

three fundamental elements; nitrogen, phosphorus and potassium. Each plant in a field 

needs different combination of these fertilizers depending upon their stage of growth, 

the composition of soil and the other environmental factors. The plant experts can 

take these factors into consideration and come up with the optimum combination. The 

result is a fertilizer map from which the quantities of each nutrient are given for 

specific location in the farm. Hence, there is a need for some technology that can 

apply the specified amount of fertilizers at each plant location. This technology is 

named as the variable rate fertilization (VRF) which is one of the most important 

technologies for the future precision agriculture. The VRF has the benefit of 

increasing fertilizer utilization ratio and yield, reducing pollution caused by 

unnecessary fertilization, and improving agriculture product quality. The applicator 

makes the use of spatial information technologies, such as global positioning systems 

(GPSs), geographically information systems (GISs) and remote sensing (RS) to 

pinpoint the location of the applicator and determine proper amount of the fertilizer to 

be applied. 

 

 A guidance system is very important to the VRF technique because each plant 

for each position in a fertilizer map need difference amount of fertilizer due to the 

high variability of the soil composition on the ground (Zhang , 2002). If we has a low 

precision guidance system then the VRF cannot apply the appropriate amount of 

fertilizers to the plants, the result is the low grow rate of plant and the increase in the 

pollution. As result, a guidance system can position a moving vehicle within 30 cm or 

less using a high precision RTK-GPS. The RTK-GPS is a very suitable sensor to 

achieve automated guidance with such high precision, i.e., several control laws have 

been designed for vehicles equipped. However the cost of a RTK-GPS higher than 
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regular GPS and the transmitting frequency range of RTK-GPSs is not in public 

frequencies. As a result, the specific permission from the national telecommunications 

commission (NTC) in Thailand must be granted before employing the equipment. For 

this reason, the use of a standalone GPS receiver is more appropriate for the precision 

farming in Thailand. Even though a standalone GPS receiver has a lower cost, it has a 

very limited accuracy ranging from 3 to 100 meters. As a result, we introduce the use 

of proximity sensors placed on known positions as the auxiliary information to 

increase the accuracy of the positioning system. Proximity sensors can be a RF device 

that periodically broadcasts its location through the cheap short-range RF system, or 

the landmark in the field to let an operator of a vehicle enter the location information 

into the system. When a vehicle travels near a proximity sensor, its position will be 

calibration from the broadcasted information. Furthermore, the measurement errors 

from the GPS are also computed. These measurement errors are used to adjust the 

GPS data when the vehicle moves away from the proximity sensors. 
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OBJECTIVES 

 

1. To investigate the utilization of simple positioning error prediction methods 

for improving the positioning accuracy.  

 

2. To investigate the utilization of a tracking models for both the movement of 

a GPS receiver and the positioning error for the improving the positioning accuracy. 
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LITERATURE REVIEW 

 

 Nowadays, the variable rate fertilization (VRF) is one of the most important 

technologies for the future of precision agriculture, but the VRF requires the high 

precision positioning devices such as the real time kinematic (RTK) together with the 

geographical information system (GIS) of the soil maps in the field of interest All 

these devices and systems are needed for a site specific management of nutrient and 

other production inputs.  A high accuracy device such as the RTK-GPS (Zhang, 2002) 

can position a moving vehicle within 30 cm or less using. The RTK-GPS is a very 

suitable device sensor for the automated high accuracy guidance system, i.e., several 

control laws have been designed for vehicles equipped (Eaton et al., 2008). However 

the cost of a RTK-GPS higher than regular GPS and transmit frequency range of 

RTK-GPS is not in public frequency. As a result, the national telecommunications 

commission (NTC) of Thailand must issue a specific permission for the 

implementation of a RTK-GPS. The use of a standalone GPS receiver is more 

appropriate for the precision farming in Thailand. Nevertheless, a standalone GPS 

receiver has a very limited accuracy ranging from 3 to 100 meters (Kong, 2007).  

 

 Many researchers have attempted to improve accuracy of a standalone GPS 

through a sophisticated digital signal processing algorithms.  Leandro (Leandro et al., 

2005) uses an empirical stochastic approach to create covariance matrices for the GPS 

data that can improve the quality control of estimated coordinates of the GPS 

measurements. Kong (Kong, 2007) examines the frequency domain modeling 

approach for GPS error, and further use of the GPS de-correlation filters to reduce the 

positioning accuracy. The errors of GPS positioning system are measured by the 

employment of the inertial navigation systems (INS) which adds extra cost into the 

system. These techniques require tremendous computational processor, is hard to 

implement, use high performance processor, and may be too costly to be practically 

deployed in low cost system such as the marketable precision farming systems in 

develop country such as in Thailand.  
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As a result, we have investigated two possible solutions for improve 

accuracy of a standalone GPS by employing simple error prediction approaches, and 

the time-domain system for estimate positioning errors, and tracking the location of a 

standalone GPS receiver. For the positioning prediction model, we assume that if the 

positioning errors can be correctly determined, the real position of a GPS receiver can 

be obtained by subtracting the GPS values with the predicted errors. The positioning 

error can be predicted if the values of previous errors are known. In this research, the 

position errors at some location can be determined by the use of proximity sensor. 

When a vehicle travels near proximity the true position is known. Hence, the 

positioning errors can be obtained.  In the first method, we examine three approaches, 

namely last error value, average error value and last error value with memory 

parameter.     

 

In the second solution, the time-domain model for the movement of a GPS 

receiver and positioning errors are employed. To make the algorithm implementable 

in the real situation, we need the tracking algorithm to be simple. As a result, the 

particle filter is employed here due to its simplicity. The particle filter is based on the 

Bayesian filter theory. The main objective of the particle filter is to approximate the 

posteriori probability of the system state given the observed data. In general, the 

particle filters are implemented in tracking problems (Gustafsson et al., 2002) where 

it uses process model to predict the prior distribution, and then updates that 

distribution by incorporating new observations to get posterior distribution. At the 

end, the list of the posteriori distributions of the system states is obtained over time. 

Let    
000

YXPXP   be an initial prior probability of system states where 
0Y the initial 

observation is. Furthermore, since the system is dynamic, the system states are 

changed according to some transition probability,  
1kk

XXP , i.e., hence, the system 

states are modeled as the Markov chain. Here, the notation k denotes the time that the 

system being observed. The posteriori probability of a system state at time k given all 

the previous observation can be written as 

                 
11:1111:1   kkkkkkk

dXYXPXXPYXP .                          (1) 
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The subscript 1:1 k  implies that the set of data from the time 1 to k-1. Next, the k-th 

observation can incorporated into the posteriori probability by using the Bayes’ rule 

as 

     
   

 
1:1

1:1

:1






kk

kkkk

kk
YYP

YXPXYP
YXP     (2) 

Since the conditional probability  
1:1 kk

YYP  is independent of a choice of Xk, it can be 

viewed as a normalizing constant. Hence, the equation (2) can be rewritten as 

         
1:1:1 


kkkkkk

YXPXYaPYXP     (3) 

Where a is the normalizing constant that makes the sum of probability equal to one. 

Furthermore, the conditional probability  
kk

XYP  is obtained from the observation 

model of the problem of interest.  

 

 The particle filter tries to approximate the posteriori probability given in (3) 

by representing N possible system states by a position of N particles. In our problem, 

the position of a particle can be considered as one image transformation. Here, each 

particle is assigned a weight function according to its posteriori probability. Let i
kw  

denote a weight function of the i-th particle at a time k. The integral in (1) can be 

approximated as 

       





N

i

i

k

i

k

i

kk

i

k
wXXPYXP

1

111:1     (4) 

Where i

k
X  denote the position (system state) of the i-th particle. Next, the weight at 

the next time can be obtained from (3). The particle filter recursively solve equation 

(3) and (4). The approximation can be accurate if a large number of particles are 

deployed. The obvious drawback of this approach is the computation burden of the 

algorithm. To reduce the computational complexity, the particle filter introduces 

resampling technique to re-locate some of the particles in the area of higher weight. 

Here, a new set of N particles is selected from the set of current particle with 

replacement. The probability that a particle is chosen is proportion to its weight. Next, 

a new set of particle are move according to the given system model.  
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 To increase the accuracy of the GPS movement tracking model, we need to 

accurate model of the positioning errors of a standalone GPS. Kong (Kong, 2000) 

derives the GPS correlated error in the pseudo range is modeled using power spectral 

density (PSD). It was shown that all the satellites have the same correlated noise 

statistics. The power spectral density ( )i s of the correlated noise of each satellite has 

the form of a fourth order system 

    

2

2 2

( )
( )

2
i

r s
s

s ks




 

 
    

    (5) 

The transfer function (5) can be converted to state space form so that the correlated 

noise can be estimated along with the original filter states. For a single satellite, the 

correlated noise in the pseudo range at time t is estimated as 

    
2

2( ) ( )1
( )

( ) ( )0
r

s s

ke t e t r
t

e t e t r






      
       

      




  (6) 

where ( )e t  is the state of interest, ( )se t  is  the augmented state, ( )r t  is a white noise 

series,  , k , r  and   are the model parameters in (5). 

 

Let us note here again that for both techniques to work, the real position of a 

standalone GPS receiver must be partially known to perform some parameter 

estimation. The true positions may be obtained cheaply by incorporating the 

proximity sensors placed on known positions as the auxiliary information to increase 

the accuracy of the positioning system. Proximity sensors can be a RF device that 

periodically broadcasts its location through the cheap short-range RF system, or the 

landmark in the field to let an operator of a vehicle enter the location information into 

the system. When a vehicle travels near a proximity sensor, its position will be 

calibration from the broadcasted information. Furthermore, the measurement errors 

from the GPS are also computed. These measurement errors are used to adjust the 

GPS data when the vehicle moves away from the proximity sensors. In this research, 

we use last error value what can best estimate error position for improve accuracy of a 

standalone GPS are by employing simple linear estimators of positioning errors. we 

employ the particle filter to track both GPS location and the positioning accuracy in 
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both X and Y direction for improve accuracy of a standalone GPS are by the use of a 

time-domain system to estimate positioning errors. 
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MATERIALS AND METHODS 
 

Materials 
 

1. Computer 

2. MATLAB Simulation software 

3. Microsoft Excel software 

4. Microsoft Visual C++ 2008 Express Edition software 

5. NCS-NAVI Bluetooth GPS receiver 

6. QuickBird image stored in the GeoTiFF Format  

 

Methods 

 

1.  Studied area and experimental setup  

  

 The NCS-NAVI Bluetooth GPS receiver is employed to collect data for this 

experiment. Here, we have 20 reference positions which are chosen from a part of 

QuickBird image of Kasetsart University, (shown in Figure 1.) The location of each 

pixel to the real world position is embedded in the GeoTiFF Format. The image is 

provided by the Geo-Informatic and Space Technology Development Agency 

(GISTDA), and was acquired on September 04, 2006. Since the coordinates of each 

pixel are embedded into the GeoTiFF file, we can use this information as the ground 

truth for our experiment and we can assume 20 reference positions as proximity 

sensors. 
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Figure 1  QUICKBIRD image. 

 

 Data are collected through the serial port communication of notebook. Figure 

2 displays the moving path and the reference location of this experiment. The red dots 

are the known position whereas the green and blue dots the start and end locations, 

respectively. For each reference location, we wait for five second to collect GPS data 

then move to the next reference location. After the data collection, we transform the 

latitude and longitude coordinate is into universal transverse mercator (UTM) 

coordinate (John, 1987). 



 

 

11 

 

 

 

 
 

Figure  2  The moving path and the reference location. 

 

2.   Error prediction approaches 

 

 In this sub-section, we examine three different approaches to estimate the 

positioning error of the GPS receivers. All approaches are performs on the same 

dataset. Let  GPSX n  denote the vectors of position information in 2-dimensional 

space produced by the GPS receiver mentioned in Section‘s Studied area and 

experimental setup where n = M,,2,1   is the acquisition number. Furthermore, let iY  

denote the vector of the true world coordinate acquired from of the known location in 

Figure 2. We note, here, again that there are a total of 20 points. Let i

M

ii

i
nnn ,,, 21   be 

indices of the GPS data when the GPS receiver stays at the i-th location. As a result, 

for the known location, the position error is given by 

       i i

j GPS j ie n X n Y       (7) 

Where j is between 1 to iM .  
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2.1  Last error value  

 

The simple last error value of the last known location is used to estimate 

the positioning error in the next position. Here, we assume that the positioning error is 

a martingale process; i.e., the mean of positioning error is the positioning error of the 

last known location. The estimate of the current error is given by 

    
1

1ˆ( ) ( )
i

i i

j Me n e n


     (8) 

is estimated GPS receiver positioning error vector at all the received data at the i 

location. Furthermore, the corrected position of the GPS receiver is given by 

    
1

1ˆ( ) ( ) ( )
i

i i i

j GPS j MY n X n e n


      (9) 

 

2.2   Average error values 

 

Since the GPS data are collected for 5 seconds on each reference locations, 

the average locating error should be a better estimate the last known value.  As a 

result, the second approach employed the average positioning error of the last 

reference location as the estimate of positioning error for the next location. Again, the 

odd location number is used as the estimate of the even location. Hence, the estimated 

position error can be written as 

    
1

1

11

1
ˆ( ) ( )

iM
i i

j k

ki

e n e n
M







               (10) 

and the corrected position is given by 

    
1

1

11

1ˆ( ) ( ) ( )
iM

i i i

j GPS j k

ki

Y n X n e n
M







                (11) 

 

2.3  Last error value with memory parameters 

 

Similar to last error value, the third approach uses the last error vector to 

estimate the error in the next location. However, the estimate of position error is set to 

be a scaled version of the last error vector, i.e. the estimate error for this approach can 

be written as  

    
1

1ˆ( ) ( )
i

i i

j Mn n


e e               (12) 
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λ is the scale factor ranging from 0 to 1. Approach 1 is the special case of this 

approach when λ = 1. In this approach, the scale factor is fixed for all points. The 

corrected position is given by 

 

    
1

1ˆ( ) ( ) ( )
i

i i i

j GPS j MY n X n e n


                (13) 

 

2.4  Average error value with memory parameters 

 

Similar to average error value, the third approach uses the average error 

vector to estimate the error in the next location. However, the estimate of position 

error is set to be a scaled version of the average error vector, i.e. the estimate error for 

this approach can be written as (12) λ is the scale factor ranging from 0 to 1. 

Approach 2 is the special case of this approach when λ = 1. In this approach, the scale 

factor is fixed for all points. The corrected position is given by 

 

   
1

1

11

ˆ( ) ( ) ( )
iM

i i i

j GPS j k

ki

Y n X n e n
M

 





               (14) 

3.  Proposed Technique of the use of a time-domain system to estimate 

positioning errors technique. 

 

 From the work by Kong (Kong, 2000), the GPS correlated positioning error is 

modeled as a color noise whose he power spectral density ( )i s  is given by (5). This 

implies that the positioning error of each satellite has the form of the second order 

system. The transfer function (5) can be converted to state space form so that the 

correlated noise can be estimated along with the original filter sates. The state space 

of the positioning error at the time t can be written as (6). 

The above differential equation can be approximated by the different equation as 

    ( ) ( 1) ( )se n e n e n r                   (15) 

    ( ) ( 1) ( 1)s se n e n e n r                    (16) 

Where 1 2 k    and 2    
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Next, a GPS receiver is assumed to move by the unknown and changing 

force. Hence, the state system of a GPS receiver can be written as 

       21
( 1)

2
x n x n v n a t                  (17) 

    ( ) ( 1)v n v n a t                   (18) 

Where  x n  and ( )v n  are the true location and velocity vector of the GPS receive at 

the n data point. In this work, we use the particle filter to estimate both positioning 

error and the location of the GPS receiver. Hence, in the next section, we provide 

some detail of it. 

 

 In this subsection, the tracking algorithm is divided into two stages: 1) error 

estimation and 2) tracking. In the error estimation stage the true location of the GPS 

receiver is assumed to known, and therefore, the actual value of the positioning error 

can be determined by subtracting the GPS location with the actual value. To estimate 

error, we need to determine the values of, ,  r, and β. Here, we initially generate N 

particle where each particle represent different values of the model parameters given 

above. Here, all particles are assigned to random values of the parameter between the 

maximum and the minimum value. As long as, the GPS receiver stays in the known 

location, the particle filter tries track the position error by adjusting these model 

parameters. Here, for each movement of a particle, the parameter is adjusted by the 

random amount, i.e., 

        11 unn s                 (19) 

        21 unn s                 (20) 

        31 urnrnr s                (21) 

And 

        41 unn s                 (22) 

Where s , s , sr , and s  are the maximum allowable movement of the parameter. 

Here, iu  is the independent uniform random number between -1 and 1. 

 

 After leaving the proximity sensor, the GPS receiver no longer knows the true 

position and, hence, the positioning error is unknown and enters the tracking stage. 
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The goal in this stage is to track the location of a GPS receiver and the position error 

at the same time. Here, the estimations of all model parameters are hauled. To gain 

highest accuracy, the minimum mean square error (MSE) estimates of these model 

parameters are employed and they are given by 

     



N

m

mimmse wM
1

                (23) 

     



N

m

mimmse wM
1

                (24) 

     



N

m

mimmse wMrr
1

               (25) 

And 

     



N

m

mimmse wM
1

                (26) 

We denote, here, again that Mi is the maximum index of the GPS data coming from 

the i-th proximity sensor. The particle in this stage uses the movement model in (17) 

and (18) and error model in (15) and (16) to estimate both position since the 

summation of the estimated location and the error should be closed to the estimated 

location obtained from the GPS receiver.  
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RESULTS AND DISCUSSION 

 

Results 

 

1.  Results from the error prediction approach 

 

 Tables 1 and 2 display the averages of the positioning error reduction for x and 

y direction, which is the transformation of the latitude and longitude coordinate is into 

universal transverse mercator (UTM) coordinate (John, 1987), for each error 

prediction approaches in percentage and meter, respectively. We observe that the 

averaged error value yields the maximum error reduction in x direction error which is 

about 39.13% or 4.44 meters, but the error in the y direction increase by 13.71% or 

0.66 meters from original error (error from GPS) of 4.81 meters. With last error value, 

we can reduce the error in the x direction nearly average error value but, the error y 

direction is less more than average error approach.      

 

Table 1  Reduction of x direction and y direction estimation error for all approaches  

               in percentage compared to the value of GPS 

 

Solutions  Error reduction in x 

direction in (%) 
Error reduction in y 

direction in (%) 

Last error value. 37.82 -1.87 

Average error value. 39.13 -13.71 

Last error value, λ=0.9 35.89 -0.23 

Last error value, λ =0.8 33.27 1.00 

Last error value, λ =0.7 30.14 1.94 

Last error value, λ =0.6 26.50 2.62 

Last error value, λ =0.5 22.47 3.04 

Last error value, λ =0.4 18.31 3.23 

Last error value, λ =0.3 13.99 3.12 

Last error value, λ =0.2 9.47 2.49 

Last error value, λ =0.1 4.79 1.49 

Average error value, λ=0.9 39.90 -10.33 
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Table 1  Reduction of x direction and y direction estimation error for all approaches  

               in percentage compared to the value of GPS (Continued) 

 

Solutions  Error reduction in x 

direction in (%) 
Error reduction in y 

direction in (%) 

Average error value, λ=0.8 39.28 -7.52 

Average error value, λ=0.7 37.21 -5.00 

Average error value, λ=0.6 33.83 -2.91 

Average error value, λ=0.5 29.37 -1.17 

Average error value, λ=0.4 24.19 0.22 

Average error value, λ=0.3 18.50 1.21 

Average error value, λ=0.2 12.57 1.53 

Average error value, λ=0.1 6.38 1.12 

 

Table 2  Reduction of x direction and y direction estimation error for approaches in  

               meter compared to the value of GPS 

 

Solutions Error reduction in x 

direction in meter 

Error reduction in y 

direction in meter 

Last error value. 4.30 -0.09 

Average error value. 4.44 -0.66 

Last error value, λ =0.9 4.08 -0.01 

Last error value, λ =0.8 3.78 0.05 

Last error value, λ =0.7 3.42 0.09 

Last error value, λ =0.6 3.01 0.13 

Last error value, λ =0.5 2.55 0.15 

Last error value, λ =0.4 2.08 0.16 

Last error value, λ =0.3 1.59 0.15 

Last error value, λ =0.2 1.08 0.12 

Last error value, λ =0.1 0.54 0.07 

Average error value, λ=0.9 4.53 -0.50 

Average error value, λ=0.8 4.46 -0.36 

Average error value, λ=0.7 4.23 -0.24 
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Table 2  Reduction of x direction and y direction estimation error for approaches in  

               meter compared to the value of GPS (Continued) 

 

Solutions Error reduction in x 

direction in meter 

Error reduction in y 

direction in meter 

Average error value, λ=0.6 3.84 -0.14 

Average error value, λ=0.5 3.34 -0.06 

Average error value, λ=0.4 2.75 0.01 

Average error value, λ=0.3 2.10 0.06 

Average error value, λ=0.2 1.43 0.07 

Average error value, λ=0.1 0.73 0.05 

 

 Tables 3 display the overall reduction of the positioning errors in percentage 

and meters, respectively. Here, the last error value method yields the maximum 

reduction of 28.32 % or 3.72 meters from original error 13.15 meters.  

 

Table 3  The improvement in term of the displacement errors from all approaches in  

               percentage and unit meter compared to the value of GPS 

 

Solutions Displacement (%) Displacement (meter) 

Last error value. 28.32 3.72 

Average error value. 26.64 3.50 

Last error value, λ =0.9 27.17 3.57 

Last error value, λ =0.8 25.53 3.36 

Last error value, λ =0.7 23.50 3.09 

Last error value, λ =0.6 21.12 2.78 

Last error value, λ =0.5 18.37 2.42 

Last error value, λ =0.4 15.28 2.01 

Last error value, λ =0.3 11.88 1.56 

Last error value, λ =0.2 8.20 1.08 

Last error value, λ =0.1 4.25 0.56 

Average error value, λ=0.9 27.67 3.64 

Average error value, λ=0.8 27.64 3.63 
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Table 3  The improvement in term of the displacement errors from all approaches in  

                percentage and unit meter compared to the value of GPS (Continued) 

 

solutions Displacement (%) Displacement (meter) 

Average error value, λ=0.7 26.57 3.49 

Average error value, λ=0.6 24.62 3.24 

Average error value, λ=0.5 21.94 2.89 

Average error value, λ=0.4 18.62 2.45 

Average error value, λ=0.3 14.71 1.94 

Average error value, λ=0.2 10.26 1.35 

Average error value, λ=0.1 5.35 0.70 

 

 Table 4 display standard deviation of x direction and y direction of GPS alone 

and error prediction method, respectively. With the error prediction method, we have 

standard deviation of x and y direction error better than GPS. 

 

Table 4  Standard deviation of error of x direction and y direction 

 

Standard deviation Error reduction in x 

direction in meter 

Error reduction in y 

direction in meter 

GPS alone 7.32 4.33 

Last error value. 6.66 3.58 

Average error value. 6.95 4.17 

Last error value, λ =0.9 6.50 3.58 

Last error value, λ =0.8 6.37 3.59 

Last error value, λ =0.7 6.29 3.62 

Last error value, λ =0.6 6.25 3.68 

Last error value, λ =0.5 6.26 3.75 

Last error value, λ =0.4 6.35 3.85 

Last error value, λ =0.3 6.51 3.96 

Last error value, λ =0.2 6.73 4.08 
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Table 4  Standard deviation of error of x direction and y direction (Continued) 

 

Standard deviation 

 

Error reduction in x 

direction in meter 

Error reduction in y 

direction in meter 

Last error value, λ =0.1 7.00 4.20 

Average error value, λ=0.9 6.80 4.10 

Average error value, λ=0.8 6.69 4.03 

Average error value, λ=0.7 6.60 3.99 

Average error value, λ=0.6 6.53 3.97 

Average error value, λ=0.5 6.49 3.98 

Average error value, λ=0.4 6.50 4.01 

Average error value, λ=0.3 6.58 4.08 

Average error value, λ=0.2 6.75 4.15 

Average error value, λ=0.1 7.00 4.24 

 

 Figure 3 and 4 show estimated position by the use of average error value. 

Here, the green line show the estimated GPS position, blue line is reference position 

and red line is position from GPS receiver. Here, we fill in the position of the GPS 

receiver between two known locations with a straight line which implies that we 

assume that the GPS receiver is moved with a constant speed between any adjacent 

know locations. This assumption may not be valid, but the illustrations in Figures 3 

and 4 can provide some idea about the positioning accuracy at the unknown location.  
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Figure 3  Comparison of positioning data in x direction from GPS, our average error 

     value, and the ground truth. 

 

 

 

Figure 4  Comparison of positioning data in y direction from GPS, our average error        

                 value, and the ground truth. 
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 Figure 5 and 6 show estimated position x direction and y direction by last error 

value. Figures 7, 9, 11, 13, 15, 17, 19, 21, and 23 show estimated position x direction 

by last error value with memory parameter λ = 0.9, 0.8, …, 0.1 and figure 8, 10, 12, 

14, 16, 18, 20, 22, and 24 show estimated position y direction by last error value with 

memory parameter λ = 0.9, 0.8, …, 0.1.  Figures 25,27,29,31,33,35,37,39, and 41  

show estimated position x direction by average error value with memory parameter  

λ = 0.9, 0.8, …, 0.1 and figure 26, 28, 30, 32, 34, 36, 38, 40, and 42 show estimated 

position y direction by average error value with memory parameter λ = 0.9, 0.8, …, 

0.1. 

 

 

 

Figure 5  Comparison of positioning data in x direction from GPS, our last error  

      value, and the ground truth. 
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Figure 6 Comparison of positioning data in y direction from GPS, our last error value,  

    and the ground truth. 

 

 

 

Figure 7  Comparison of positioning data in x direction from GPS, our last error value  

     with λ = 0.9, and the ground truth. 
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Figure 8  Comparison of positioning data in y direction from GPS, our last error value  

     with λ = 0.9, and the ground truth. 

  

 

 

Figure 9  Comparison of positioning data in x direction from GPS, our last error  

      value with λ = 0.8, and the ground truth. 
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Figure 10  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.8, and the ground truth. 

 

 

 

Figure 11  Comparison of positioning data in x direction from GPS, our last error  

        value with λ = 0.7, and the ground truth. 
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Figure 12  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.7, and the ground truth. 

 

 

 

Figure 13  Comparison of positioning data in x direction from GPS, our last error  

        value with λ = 0.6, and the ground truth. 
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Figure 14  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.6, and the ground truth. 

 

 

 

Figure 15  Comparison of positioning data in x direction from GPS, our last error  

        value with λ = 0.5, and the ground truth. 
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Figure 16  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.5, and the ground truth. 

 

 

 

Figure 17  Comparison of positioning data in x direction from GPS, our last error  

           value with λ = 0.4, and the ground truth. 
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Figure 18  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.4, and the ground truth. 

 

 

 

Figure 19  Comparison of positioning data in x direction from GPS, our last error  

        value with λ = 0.3, and the ground truth. 
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Figure 20  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.3, and the ground truth. 

 

 

Figure 21  Comparison of positioning data in x direction from GPS, our last error  

        value with λ = 0.2, and the ground truth. 
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Figure 22  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.2, and the ground truth. 

 

 
 

Figure 23  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.1, and the ground truth. 
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Figure 24  Comparison of positioning data in y direction from GPS, our last error  

        value with λ = 0.1, and the ground truth.  

 

 

Figure 25  Comparison of positioning data in x direction from GPS, our average error  

        value with λ = 0.9, and ground truth 
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Figure 26  Comparison of positioning data in y direction from GPS, our average error  

       value with λ = 0.9, and ground truth 
 

 
 

Figure 27  Comparison of positioning data in x direction from GPS, our average error  

       value with λ = 0.8, and ground truth 
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Figure 28  Comparison of positioning data in y direction from GPS, our average error  

        value with λ = 0.8, and ground truth 

 

 

 

Figure 29  Comparison of positioning data in x direction from GPS, our average error  

       value with λ = 0.7, and ground truth 
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Figure 30  Comparison of positioning data in y direction from GPS, our average error  

       value with λ = 0.7, and ground truth 

 

 

 

Figure 31  Comparison of positioning data in x direction from GPS, our average error  

       value with λ = 0.6, and ground truth 
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Figure 32  Comparison of positioning data in y direction from GPS, our average error  

       value with λ = 0.6, and ground truth 

 

 

 

Figure 33  Comparison of positioning data in x direction from GPS, our average error  

       value with λ = 0.5, and ground truth 
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Figure 34  Comparison of positioning data in y direction from GPS, our average error  

       value with λ = 0.5, and ground truth 

 

 

 

Figure 35  Comparison of positioning data in x direction from GPS, our average error  

       value with λ = 0.4, and ground truth 
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Figure 36  Comparison of positioning data in y direction from GPS, our average error  

       value with λ = 0.4, and ground truth 

 

 

 

Figure 37  Comparison of positioning data in x direction from GPS, our average error  

                value with λ = 0.3, and ground truth 
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Figure 38  Comparison of positioning data in y direction from GPS, our average error  

                  value with λ = 0.3, and ground truth 

 

 

 

Figure 39  Comparison of positioning data in x direction from GPS, our average error     

                  value with λ = 0.2, and ground truth 
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Figure 40  Comparison of positioning data in y direction from GPS, our average error 

       value with λ = 0.2, and ground truth 

 

 

 

Figure 41  Comparison of positioning data in x direction from GPS, our average error 

        value with λ = 0.1, and ground truth 
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Figure 42  Comparison of positioning data in y direction from GPS, our average error 

       value with λ = 0.1, and ground truth 

 

2.  Improve accuracy by a tracking model. 

 

 Table 5 displays the averages error of a standalone GPS and the tracking 

model in x direction and y direction in unit meter, respectively. With the tracking 

model, we can reduce x direction error by 3.87 meter or 34.08% and the error in the y 

direction by 1.4 meter or 29.05%.  

   

Table 5  Average error of x direction and y direction in unit meter 

 

Average error x direction (meter) y direction (meter) 

GPS alone 11.35 4.82 

Tracking model 7.49 3.42 

 

 Table 6 displays the overall displacement errors in unit meter error of GPS 

alone and tracking model. With the tracking model, we can reduce overall 

displacement error by 3.20 meter or 24.35%.    
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Table 6  The overall displacement errors in unit meter 

 

Average error Displacement (meter) 

GPS alone 13.15 

Tracking model 9.95 

 

.  Tables 7 and 8 display the maximum error and minimum error of GPS alone 

and tracking model as x direction and y direction in unit meter, respectively. With the 

tracking model, we have x direction error and y direction error less than GPS alone.   

 

Table 7  Maximum error of x direction and y direction in unit meter 

 

Maximum error x direction (meter) y direction (meter) 

GPS alone 38.88 21.34 

Tracking model 35.98 20.31 

 

Table 8  Minimum error of x direction and y direction in unit meter 

 

Minimum error x direction (meter) y direction (meter) 

GPS alone 0.032 0.025 

Tracking model 0.012 0.001 

 

 Table 9 displays standard deviation of x direction and y direction error of GPS 

alone and tracking model, respectively. With the tracking model, we have standard 

deviation of x and y direction error better than GPS alone. As result, we conclude 

these tracking model can reduce direction error of GPS alone error.     

 

Table 9 Standard deviation of error of x direction and y direction 

 

Standard deviation x direction (meter) y direction (meter) 

GPS alone 7.32 4.33 

Tracking model 6.15 4.21 
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 Figure 43 and 44 show estimated position by tracking model . Overall, green 

line or algorithm tracking model can track nearly with reference line or blue line.  

 

 
 

Figure 43  Comparison of positioning data in x direction from GPS, our tracking  

        model, and the ground truth.  

 

 

 

Figure 44  Comparison of positioning data in y direction from GPS, our tracking  

        model, and the ground truth. 
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 Furthermore, we investigate the correlation of the positioning errors and find 

that the correlations between X and Y of the GPS alone and our method are equal to 

0.062 and 0.228. 

 

Table 10  Average error of x and y direction of tracking model for each time by 

determine parameter in 5 minute 

 

Average error x direction of 

GPS alone 

(meter) 

x direction of 

tracking model 

(meter) 

y direction 

of GPS 

alone 

(meter) 

y direction 

of tracking 

model 

(meter) 

5 minute 3.82 1.67 6.91 5.37 

10 minute 3.00 1.54 8.29 7.55 

15 minute 3.09 5.17 8.74 8.35 

20 minute 2.96 6.98 8.33 8.03 

25 minute 2.90 7.99 7.56 7.35 

30 minute 3.19 9.06 6.36 6.15 

 

Table 11  Overall displacement error in unit meter by determine parameter 5 minute 

 

Average error GPS alone (meter) Tracking model (meter) 

5 minute 8.90 5.95 

10 minute 9.42 7.95 

15 minute 9.67 10.62 

20 minute 9.14 11.54 

25 minute 8.40 11.84 

30 minute 7.77 12.26 
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Table 12  Average error of x and y direction of tracking model for each time by    

                 determine parameter in 10 minute 

 

Average error x direction of 

GPS alone 

(meter) 

x direction of 

tracking model 

(meter) 

y direction 

of GPS 

alone 

(meter) 

y direction 

of tracking 

model 

(meter) 

5 minute 2.17 1.71 9.68 0.37 

10 minute 2.73 2.29 9.65 0.60 

15 minute 2.67 2.31 8.80 1.35 

20 minute 2.67 2.36 7.72 2.45 

25 minute 3.06 2.72 6.25 3.95 

30 minute 3.77 3.77 5.77 5.50 

 

Table 13  Overall displacement error in unit meter by determine parameter 10 minute 

 

Average error GPS alone (meter) Tracking model (meter) 

5 minute 9.93 1.80 

10 minute 10.05 2.41 

15 minute 9.23 2.85 

20 minute 8.28 3.76 

25 minute 7.55 5.16 

30 minute 7.66 6.81 

 

Table 14  Average error of x and y direction of tracking model for each time by 

determine parameter in 15 minute 

 

Average error x direction of 

GPS alone 

(meter) 

x direction of 

tracking model 

(meter) 

y direction 

of GPS 

alone 

(meter) 

y direction 

of tracking 

model 

(meter) 

5 minute 3.28 2.20 9.62 0.90 

10 minute 2.92 2.44 8.37 1.86 

15 minute 2.84 2.43 7.07 3.17 

20 minute 3.29 2.89 5.40 4.87 

25 minute 4.09 3.74 4.98 6.56 

30 minute 4.91 4.62 4.82 7.79 
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Table 15  Overall displacement error in unit meter by determine parameter 15 minute 

 

Average error GPS alone (meter) Tracking model (meter) 

5 minute 10.16 2.40 

10 minute 8.86 3.16 

15 minute 7.72 4.26 

20 minute 6.95 5.91 

25 minute 7.21 7.79 

30 minute 7.67 9.28 

 

Table 16  Average error of x and y direction of tracking model for each time by 

determine parameter in 20 minute 

 

Average error x direction of 

GPS alone 

(meter) 

x direction of 

tracking model 

(meter) 

y direction 

of GPS 

alone 

(meter) 

y direction 

of tracking 

model 

(meter) 

5 minute 2.56 1.71 7.12 2.83 

10 minute 2.62 2.44 5.79 4.33 

15 minute 3.29 3.04 3.99 6.22 

20 minute 4.29 5.10 3.82 7.99 

25 minute 5.23 7.86 3.86 9.20 

30 minute 7.04 10.86 3.92 8.67 

 

Table 17  Overall displacement error in unit meter by determine parameter 20 minute 

 

Average error GPS alone (meter) Tracking model (meter) 

5 minute 7.57 3.33 

10 minute 6.50 5.14 

15 minute 5.88 7.05 

20 minute 6.47 9.79 

25 minute 7.17 12.55 

30 minute 8.78 14.92 
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Table 18  Average error of x and y direction of tracking model for each use of 

previous position predict next position 

 

Average error x direction of 

GPS alone 

(meter) 

x direction of 

tracking model 

(meter) 

y direction 

of GPS 

alone 

(meter) 

y direction 

of tracking 

model 

(meter) 

Position 2 5.61 4.80 3.04 4.05 

Position 3 5.79 10.17 1.46 3.71 

Position 4 7.67 2.77 2.23 4.23 

Position 5 11.65 19.52 13.38 8.88 

Position 6 7.29 17.18 2.63 5.75 

Position 7 5.59 2.00 3.38 3.65 

Position 8 6.75 5.13 6.78 5.63 

Position 9 7.97 7.55 3.82 3.97 

Position 10 6.21 4.26 7.37 6.69 

Position 11 12.39 4.78 6.41 3.77 

Position 12 16.87 9.72 1.55 2.2 

Position 13 18.16 8.20 2.26 2.33 

Position 14 32.02 21.81 5.38 5.51 

Position 15 20.79 10.81 4.1 7.31 

Position 16 13.33 6.27 5.75 5.84 

Position 17 6.27 4.63 4.93 6.75 

Position 18 13.72 5.71 1.32 1.37 

Position 19 6.19 3.65 3.21 4.25 

Position 20 11.18 4.91 6.48 5.04 

Mean 11.34 8.10 4.49 4.78 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

48 

 

 

 

Table 19  Overall displacement error in unit meter for each use of previous position     

                  predict next position from 100 results data 

 

Average error GPS alone (meter) Tracking model (meter) 

Position 2 6.63 7.06 

Position 3 6.03 11.22 

Position 4 8.13 5.62 

Position 5 18.26 21.72 

Position 6 7.92 18.3 

Position 7 6.78 4.38 

Position 8 9.81 7.99 

Position 9 9.13 9.18 

Position 10 10.26 8.28 

Position 11 14.57 7.12 

Position 12 16.98 10.11 

Position 13 18.35 8.68 

Position 14 32.92 22.89 

Position 15 21.28 13.7 

Position 16 15.23 9.87 

Position 17 8.84 8.62 

Position 18 13.84 6.3 

Position 19 7.5 6.33 

Position 20 13.06 7.33 

Mean 12.92 10.24 
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Table 20  Standard deviation error of x and y direction of tracking model for each use 

of previous position predict next position from 100 results data 

 

Average error x direction of 

GPS alone 

(meter) 

x direction of 

tracking model 

(meter) 

y direction 

of GPS 

alone 

(meter) 

y direction 

of tracking 

model 

(meter) 

Position 2 3.72 3.51 2.65 2.52 

Position 3 2.44 5.66 1.16 2.07 

Position 4 2.52 2.59 1.24 1.54 

Position 5 6.58 8.55 4.06 4.42 

Position 6 2.18 2.61 2.2 3.07 

Position 7 1.89 1.8 1.76 1.63 

Position 8 3.33 3.32 3.15 3.6 

Position 9 3.98 5.96 1.77 2.92 

Position 10 3.53 2.99 1.81 1.65 

Position 11 4.69 4.08 4.34 2.99 

Position 12 3.52 4.5 1.25 1.68 

Position 13 2.08 2.17 1.22 1.34 

Position 14 8.33 8.6 4.42 3.63 

Position 15 3.81 3.9 2.63 5.18 

Position 16 5.79 3.12 4.4 4.59 

Position 17 3.89 4.13 2.66 5.27 

Position 18 5.95 4.47 0.7 1.32 

Position 19 2.5 2.35 1.93 2.59 

Position 20 3.65 3.96 3.77 3.41 

Mean 3.91 4.11 2.48 2.91 
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Discussion 

 

 The average error value performs the best in the x direction in term error 

reduction, but poorly in the y direction .On other hand, the last error value can reduce 

the positioning error in the x direction, but less than those of the average error value. 

However, the error increment in the y direction is less than the average error value 

approach. Since, in this experiment, the movement occurs in x directions rather than 

in y direction, the error in the y-direction largely depends on the position noise of a 

GPS receiver whereas the errors in the x direction may result from positioning noise 

and misregistration from the embedded coordinate of the GeoTiff file. Because the 

misregistration in the remotely sensed image is highly correlated from one pixel to the 

neighboring pixels, the last and average error value methods can respond to this type 

of error very well. However, both techniques perform poorly when the major source 

of error is the positioning noise. 

 

 The last error value with memory parameter responds to both type of 

positioning errors. For example, when the parameter is set at 0.4, the error in y 

direction is minimized where the error in the x direction can still be reduced. This 

implies that there is the optimum parameter that minimizes the effect of the 

positioning noise and the misregistration. In practice, it is still a difficult task to find 

the optimum memory value that yield the minimum error in all cases. 

 

 The use of time domain systems to estimate positioning error can also reduce 

the positioning error but mostly in the x direction which implies that this technique 

responds to the misregistration error rather than the positioning noise. Regarding the 

optimum distance between proximity sensors, we have found in the last example that 

the positioning errors are temporally related in about ten minutes. As a result, the 

distance between adjacent proximity sensors should be reachable within 10 minutes. 

From the data, it appears that the standard deviation of our technique is more than 

GPS alone because the number of particles in the particle filters may not be sufficient.  
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CONCLUSION AND RECOMMENDATION 

 Conclusion 

  

 In this research, we introduce several techniques for improving the positioning 

accuracy by integrating the positioning data from a standalone GPS receiver with the 

prior information. This information is carried out in the form of the control points in 

the study area. In practice, the location of control point may be extracted by the use of 

a proximity sensor.  

 

 We proposed two different approaches for this problem, namely, error 

prediction approaches and time-domain system to estimate positioning error. In the 

error prediction approaches, we studied three different methods which are the last 

error value, average error values and last error value with the memory parameter. 

From our experiment, the last error value method yields the maximum reduction of 

the position error whereas the last error value with parameter performs poorest. 

Furthermore, we also observe that the last error value and the average error value 

methods respond to the misreistration error rather than the position noise from a GPS 

receiver. With the memory parameter, the positioning noise error can also be reduced.  

 

 In the time-domain system to estimate positioning error, the overall 

improvement is less than those of the last error value method and the robustness 

(standard deviation) worst than GPS alone when testing 100 times in same initial 

range random parameters. However, it can be adjustable to high accuracy parameter 

in long time. As a result, the time-domain system to estimate positioning error may be 

more suitable for real applications.  
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 Recommendation 

 

 Since this experiment is based on the world coordinate embedded with the 

Geotiff image, the further study where the true coordinates from the ground survey 

are used is essential for the testing of our proposed techniques. Furthermore, we also 

recommend the field test of our approaches to validate the robustness and real-time 

implementation.  
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