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Abstract 
 

Numerous applications in virtual reality and computer animation need tools including efficient algorithms, for 

modeling and simulation of water overland flow. This paper proposes an algorithm and a model for simulation and visualization 

of rainwater overland flow. We use the finite difference method associated with a dynamic domain to solve the diffusion 

equations in order to reduce the computation time. The simulation results show the water propagation in rugged terrains. 

Moreover, the results indicate that our algorithm is highly efficient because it reduces the computation time. The diffusion model 

and a numerical method were applied in this work for the simulation of water flooding caused by continuous heavy rain in 

Nakhon Si Thammarat province, southern Thailand. Results show that the flood plain obtained by the diffusion model is similar 

to the actual flooding area from the real satellite image. This indicates that the diffusion model has high potential, and can be 

adopted for predictive use in flood risk assessments, water resources management, and disaster prevention from water flooding. 
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1. Introduction 
 

Modelling, simulation and visualization of water 

overland flow are important tools for numerous applications in 

virtual reality and computer animation, such as flood risk 

assessments, water resources management, and disaster 

prevention from water flooding. Most water overland flow 

simulations have involved numerical methods for solving the 

shallow water equations (Fiedler & Ramirez, 2000). However, 

several water overland flow models (Alsdorf, Dunne, Melack, 

Smith & Hess, 2005; Benes & Forsbach, 2001; Dottori 

&Todini, 2011; Santillana, 2008; Wang, 2011) have been 

developed and successfully applied using simpler equations 

with reduced complexity. The motivation of the flood models 

is that solving the simpler equations should reduce the 

computational burden and the simulation run times (Dottori & 

Todini, 2011). Diffusion and wave equations have been used 

 
for description of water and wave propagation (Alsdorf et al., 

2005; Benes, 2007; Chuai-Aree & Kanbua, 2007; Santillan, 

2008). However, both equations were not used to describe the 

water and wave propagation in rugged terrains. 

Nowadays, the developed geographic information 

systems (GIS) are useful for flood related modeling. A 

weather radar image is one form of GIS that can show rainfall 

by area and intensity, and can be used as input data of rainfall 

rate for modeling water flooding caused by continuous heavy 

rains.   

This paper proposes a novel method for modeling, 

simulation, and visualization of water overland flow based on 

the diffusion equations, which require reduced computation 

time. The method integrates the segmentation of weather radar 

with the model to simulate the water flooding caused by 

continuous heavy rain. 
 

2. Model Equations 
 

The initial value problem for the diffusion equation 

for modeling water overland flow caused by
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continuous heavy rain is defined as follows: 

 
2 2

2 2

H H H
C

t x y

   
  

   

, ,x y   (1) 

where   is the areal domain of the simulation.  H(x,y,t) is the 

water level (the sum of the topographic elevation and the 

depth of water); x and y are grid indices in the longitudinal 

and latitudinal directions, respectively; C is water propagation 

speed; and t is time. 

In order to allow the model to simulate the water 

flood caused by continuous heavy rain, we added a term for 

the rainfall rate to obtain the model of rainwater overland 

flow, as follows: 
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C q
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where q is the rainfall rate (in m/s). For the water flooding 

simulation, the initial conditions of the model can be given by  

 
*( , ,0) ( , ) ( , )H x y B x y W x y  , ,x y  (3) 

when W* is initial water over regions, while the boundary 

conditions can be defined as  

 

( , , ) ( , , )
0, 0, ,

H x y t H x y t
x y

x y

 
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 
 (4) 

where    is the boundary of the area domain. 

 

3. Numerical Method 
 

The numerical method for modeling of the rainwater 

overland flow has two major components. The first component 

is finding the depth of flow, which depth can be transferred to 

neighbors on the natural topography, and the second 

component is applying the depth of flow to the simulation of 

the water overland flow using difference approximations to the 

diffusion model in Equation (2).  

 

3.1 The depth of flow 
 

For each location of height field, water depth which 

exceeds the height of its neighbors can be detected and 

transferred to the neighbors. The depth of flow of the model is 

shown in Figure 1(a). 

In Figure 1(a), the water in cell L that is transferred to 

cell C can be calculated by deduction of the water level on cell 

L with the maximum value of the heights of topography on 

cells L and C. Therefore, the depth of flow from cell L to cell 

C is given by: 

 

lL−>C = HL − max(BL,BC)     (5) 

 

where lL−>C is the depth of flow from cell L to cell C, BL and BC 

are the heights of topography in cell L and cell C, respectively, 

HL = WL +BL is the water level in cell L, and WL is the water 

depth in cell L. 

The term lL−>C in Equation (5) may be negative when 

the water level is lower than the height of topography in the 

               (a)  

                 (b)  
 

Figure 1. Schematic representation for (a) the water that can be 

transferred to the neighboring cells, and (b) the water that 
cannot be transferred to the neighboring cells. 

 

neighboring cell as shown in Figure 1(b). In this situation, the 

depth of flow from cell L to cell C should be zero because the 

water at cell L cannot be transferred to cell C. Therefore, 

Equation (5) is modified following Audusse, Bouchut, 

Bristeau, Klein and Perthame (2004) in the context of 

hydrostatic reconstruction: 
 

lL−>C = max(0,HL − max(BL,BC)).   (6) 
 

In this paper, the simulation of the rainwater overland 

flow uses the data grid as shown in Figure 2. 

 

 
 

Figure 2. Two dimensional data grid 

 
where i and j are the data grid indices in the x and y directions, 

respectively, and C, L, R, U and D represent the data cells (i, 

j), (i − 1, j), (i + 1, j),(i, j − 1) and (i, j + 1), respectively. 

The transfer of water from cell C to its neighboring 

cells consists of outflows from cell C to its neighbors and 

inflows from cell C's neighbors to cell C. These can be defined 

by applying Equation (6) as follows: 

 

1, 1, ,max(0, max( , ))t

L C i j i j i jl H B B     (7) 

 

, 1, ,max(0, max( , ))t

C L i j i j i jl H B B    (8) 

 

1, 1, ,max(0, max( , ))t

R C i j i j i jl H B B     (9) 
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, 1, ,max(0, max( , ))t

C R i j i j i jl H B B    (10) 

 

, 1 1 ,max(0, max( , ))t

U C i j i i jl H B B   , , 1 ,max(0, max( , ))t

C U i j i j i jl H B B    (11) 

 

, , 1 ,max(0, max( , ))t

C U i j i j i jl H B B    (12) 

 

, 1 , 1 ,max(0, max( , ))t

D C i j i j i jl H B B     (13) 

 

, , 1 ,max(0, max( , ))t

C D i j i j i jl H B B    (14) 

 

3.2 Difference discrete scheme of the diffusion  

      equation 
 

The diffusion model in Equation (2) can be solved by 

the following difference discretization scheme: 
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     (15) 

where ∆x and ∆y are the data grid step sizes for index 

increment in the longitudinal and latitudinal directions, 

respectively, and ∆t is the size of the time step. The superscript 

t denotes the index for time. 

In order to allow the model to simulate water 

propagation in rugged terrain, we substituted the water level in 

Equation (15) with the depth of flow using Equations (7) to 

(14) as follows: 
 

, , 2

,2

t t t L C C L R C C R
i j i j

tU C C U D C C D
i j

l l l l
H H t C

x
l l l l

t q
x

    

   

  
    


   
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   (16) 

And in order to have a stable scheme, the time step is limited 

by the following condition:  
 

2 2min( , )
0.25

x y
t

C

  
   

 

.  (17) 

 

3.3 Faster computing and visualization techniques 
 

In order to improve the computational efficiency, the 

dynamic domain defining method or dynamic DDM 

(Busaman, Mekchay, Siripant & Chuai-Aree, 2015) is adapted 

in this work. The grid nodes are inspected to identify whether 

or not the cell is inside the computational domain. The cell is 

excluded from the computational domain if it and all its 

neighboring cells are dry. Only cells within the computational 

domain are adapted and computed in order to minimize the 

total number of computational cells.  Thus, dynamic DDM 

keeps the same accuracy as other methods using all cells. 

For visualization, the call list technique in OpenGL is 

adapted. The technique creates a list of topography images and 

only updates the water area from the computational domain. 

This technique is applied because when the cell and its 

neighbor are all dry with no rainfall yielding zero cell result, 

the computation and visualization is unnecessary for the cell. 

3.4 Simulation algorithm 
 

In this section, the simulation algorithm is presented. 

The algorithm overview of the models is shown in Algorithm 

1.  The inputs include the 2D grid array of size w × h and of 

resolution ∆x, ∆y, the values of the diffusion coefficient C, the 

elevation function B, the water over regions function W∗ , the 

rainfall area R, and the rainfall rate q.  The elevation function 

for each grid point is defined using a linear interpolation. 

 

Algorithm 1 Simulation and visualization algorithm 

1: Inputs: 

2: 2D grid array size w × h and resolution ∆x, ∆y. 

3: Values of Diffusion coefficient C. 

4: Elevation function B  

5: Water over regions function W∗. 

6: Rainfall area R, and Rainfall rate q(t). 

7: Simulation: 

8: Initialization(); 

9: Draw Etopo and create a list E; 

10: while the simulation is not finished do 

11:        Set Boundaries(); 

12:  Calculate Water(); 

13:  Tracking(); 

14:  Call the list E and draw water results; 

15:  t ← t + ∆t;  
   

The algorithm consists of steps in such a way that 

each cell can be computed within a step in the algorithm. The 

first step is the initialization. After that, a list for the elevation 

images is created by the call list technique. The while loop 

consists of the steps for the model computation, which 

includes setting of the boundaries, computation of water 

results, and illustration of the results. The loop is repeated until 

the simulation is finished according to t that is increased at 

each iteration. In detail, there are four subsection algorithms 

consisting of initialization, setting boundary conditions, water 

calculation algorithm, and tracking. 
 

3.4.1 Initialization and system setup 
 

For the initialization step, the parameters are set to be 

zero.  The water depth for each grid node is defined by the 

water over regions function W∗ , whereas the array values 
,

t

i jq  

are set to 0 if cell (i, j) is not in the rainfall area R. In this step, 

each grid node is checked to identify whether the node is dry, 

wet, or experiencing rainfall.  Only the nodes that are wet or 

experiencing rainfall are sent to the tracking procedure in order 

to define the initial domain for computing. 

 

3.4.2 Boundary conditions 
 

The open boundary conditions are used for the 

simulation in this study.  The boundary nodes can be defined 

by the water depth value with the value of its neighbors.  

 

3.4.3 Water results calculation 
 

In this step, the model formulas in Sections 2 are 

used for calculating the water results.  The algorithm starts by 

calculating ∆t in Equation (17). In the first loop, only the water 

results are computed with Equations (7) - (14) and (16). After 
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obtaining the solution, the wet nodes are checked and sent to 

the tracking procedure in order to define the new domain.  

 

3.4.4 Tracking procedure 
 

The tracking procedure is an important part for 

dynamic DDM. When a node is sent to this procedure, it and 

its neighbors which are not the boundary nodes must be 

checked to determine whether or not they are in the 

computation domain. 

 

4. Model test 
 

In this section, the models from the previous sections 

are tested for simulating and visualizing the water overland 

flow. The models can be applied to develop a computer 

program for simulating and visualizing water overland flow 

for any region in terms of 2D and 3D images. The earth 

topology (ETOPO) data by Shuttle Radar Topography data 

source, with a grid size of resolution 90 meters, can be used 

for the water overland flow simulation. The results from 

simulation can show the water propagation from the water 

sources to the risk regions. Figure 3 shows the simulation for 

the case of continuous heavy rain using the model based on the 

diffusion equation.  

To show the performance of our algorithm of the 

simulation in each case, we compare the computational and 

visualization times of the simulation with our techniques and 

without the techniques (calculating all cells and not using the 

call list technique in OpenGL). Since the computation and 

visualization costs are mostly determined by the grid size, the 

simulation is done on different grid sizes. Table 1 shows the 

performance of the simulation for the case of rainfall. The 

simulation obtained by our algorithm takes less computational 

and visualization times than a simulation without our 

algorithm, as shown in Table 1. 

 

5. Application  
 

In this section, we applied the diffusion model with a 

numerical scheme to simulate the water flooding in 2011 in 

Nakhon Si Thammarat province of southern Thailand, which 

covers an area of approximately 3474 km2. The latitude is 

from 8.02416666665457 N to 8.7666666666516 N, and the 

longitude is from 99.7799999999809 E to 100.184999999979 

E. 

The simulation was performed on the domain of 

digital terrain data 43,470 m × 79,920 m, generated from a 

resolution of 90 m using the Shuttle Radar Topography data 

source. The data grid size is 483×888 cells. For each cell, the 

rainfall rate qi,j is obtained from weather radar images. In this 

work, we used 165 weather radar images from a station in 

Surat Thani, a neighboring province, recorded during March 

22 - 29, 2011. Figure 4 shows an example of a weather radar 

image and its components. All images were segmented by 

radar reflectivity values (dBZ) for each cell using the 

following algorithm. 

 

 
t=56.88 s 

 
t=2,275.28 s 

 
t=3128.51 s 

 
t=9613.06 s 

 
Figure 3. The simulation of water flooding from continuous heavy 

rain for each time step using q = 0.0001m/s, C = 35.6m/s, 

and ∆x = ∆y = 90m. 

 
 

Table 1. Simulation times for computation (Tc) and visualization (Tv) using various grid sizes 

 

Grid sizes 
With our technique Without our technique 

Tc(s) Tv(s) Total time (s) Tc(s) Tv(s) Total time (s) 

       

200×200 19.371 168.664 188.035 118.166 501.531 619.697 
400×400 51.568 537.098 588.666 358.136 1767.933 2126.069 

800×800 132.243 1826.586 1958.829 1493.914 7513.377 9007.291 
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Figure 4. An example of an input radar image and its components 

 

Algorithm 2 Rainfall rate segmentation algorithm 

1: Load data of the color value (CdBZk), and the dBZ standard 

value (dBZk); 

2: For each cell of the image (Ci, j) Do 

3: For each color of dBZ standard Do 

4:  Compute 
kjik CdBZCnorm 

,
:    

5: Find 
mink , the index of the minimum value of 

k
norm  

6: If 
minknorm   then 

min, :i j kdBZ dBZ  

7:       Else 
, : 9999i jdBZ    

 

By the algorithm, each cell (i, j) is checked with the 

dBZ standard bar. The dBZ value of each cell is defined by a 

dBZ standard value that has its color closest to the cell color. 

Thus 
min, :i j kdBZ dBZ , where  min ,min i j k

k
k arc C CdBZ  . 

However, the cell cannot represent a rainfall area if the closest 

color has a difference more than a constant, 

thus
, mini j kC CdBZ   . In this simulation, we used 20  . 

We set 
, : 9999i jdBZ   for a non-rainfall area. In the 

simulation, the rainfall rate for each cell can be calculated 

from the dBZ values using the equation in Seliga (1997) as 

follows:  

 

,

1

3

10
,

,

1 10
10 , 9999

3600

0 ,

t
i jdBZ b

t
t i j
i j

dBZ
q a




   
            
 otherwise

  (18) 

where a and b are arbitrary parameters, taken based on Seliga 

(1997) to be 0.3 and 1.6, respectively. 

The numerical experiment was simulated for 164 

hours of flooding from March 22 to March 29, 2011 with the 

parameters C = 135m/s, ∆x = ∆y = 90m, and ∆t = 15s.  

The simulation for the numerical model took about 2 

hours 12 minutes to complete. Figure 5 shows the flood 

simulation results at various times. The diffusion model 

illustrates the propagation from the water sources to the 

regions at high risk of flooding.  

To determine the accuracy, the simulation results are 

compared with an actual satellite image as shown in Figure 6. 

It is seen that the flood plain obtained by the diffusion model 

is similar to the flooding area from the actual satellite image. 

The accuracy, A, can be calculated using the following 

equation: 

 

0 01 1
1

100
N N

M RM R

i i

i i

A P P
N

 
   

 
    (19) 

 

Here, the values of 1 1M R

iP  and 0 0M R

iP  are checked at 

each cell i, where 1 1M R

iP  is 1 when the model result and the real 

satellite images give the same wet area, while 0 0M R

iP  is 1 when 

the model result and real satellite images show the same dry 

area; otherwise, the values of 1 1M R

iP  and 0 0M R

iP  are 0. The term 

N is the total number of cells. By using the formula (19), the 

percentage of accuracy of the model result was 76.34%. 

 

   
23 March 2011 at 

06.30 PM  

24 March 2011 at 

06.30 AM  

29 March 2011 at 

10.30 AM 
 

Figure 5. Simulation of water flooding at Nakhon Si Thammarat 

province at various times using C = 135m/s, ∆x = ∆y = 
90m. 

 

  
 

Figure 6. Comparison of flood simulation results (left) and real 

flooding (right) at Nakhon Si Thammarat province on 29 
March 2011 at 10.30 AM. 
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6. Conclusions 
 

There are numerous applications in virtual reality 

and computer animation that make use of the simulation and 

visualization of water overland flow. For water simulations, 

faster algorithms are preferred as long as their accuracy is not 

compromised. This paper provided a method for the modeling, 

simulation and visualization of water overland flow caused by 

continuous heavy rain. The results show that the model can 

describe the water propagation in rugged terrain. Moreover, 

the algorithm is efficient because it reduces the computational 

and visualization times for the simulations. The diffusion 

model and numerical method can be integrated with the 

algorithm for segmentation of weather radar to simulate the 

water flooding caused by continuous heavy rain in Nakhon Si 

Thammarat province, Thailand. The flood plain obtained by 

the diffusion model was similar to the flooding area shown by 

the satellite image. The investigated methods can be applied in 

virtual reality and computer animation such as flood risk 

assessments, water resources management, and disaster 

prevention from water flooding. However this method is not 

appropriate for the rogue waves that will be subject in further 

investigations.   

 

Acknowledgements 
 

This research is supported by the Centre of 

Excellence in Mathematics, the Commission on Higher 

Education, Thailand. 
 

References 
 

Alsdorf, D., Dunne, T., Melack, J., Smith, L., & Hess, L. 

(2005). Diffusion modeling of recessional flow 

oncentral Amazonian floodplains. Geophysical 

Research Letters, 32. 

Audusse, E., Bouchut, F., Bristeau, M. O., Klein, R., & 

Perthame, B. (2004). A fast and stable well-

balanced scheme with hydrostatic reconstruction for 

shallow water flows. SIAM Journal on Scientific 

Computing, 25(6), 2050–2065. 

Benes, B. (2007). Real-time erosion using shallow water 

simulation. Proceeding of the 4th Workshop in 

Virtual Reality Interactions and Physical 

Simulation. The Netherlands: The Eurographics 

Association. 

Benes, B., & Forsbach, R. (2001). Visual simulation of 

hydraulic erosion. The Journal of WSCG, 1, 79–86. 

Busaman, A., Mekchay, K., Siripant, S., & Chuai-Aree, S. 

(2015). Dynamically adaptive tree grids modeling 

for simulation and visualization of rain-water 

overland flow. International Journal for Numerical 

Methods in Fluids, 79(11), 559–579. 

Chuai-Aree, S., & Kanbua, W. (2007). Fast and real-time 

simulation of tsunami propagation. Asia Modeling 

Symposium International Conference, 490-495. doi: 

10.1109/AMS.2007.95. 

Dottori, F., & Todini, E. (2011). Developments of a flood 

inundation model based on the cellular automata 

approach: Testing different method to improve 

model performanceh. Physics and Chemistry of the 

Earth, 36, 266–280. 

Fiedler, F. R., & Ramirez, J. A. (2000). A numerical method 

for simulating discontinuous shallow flow over an 

infiltrating surface. International Journal for 

Numerical Methods in Fluids, 32, 219–240. 

Santillana, M. (2008). Analysis and numerical simulation of 

the diffusive wave approximation of the shallow 

water equations (Doctoral thesis, University of 

Texas at Austin, Austin, TX). Retrieved from 

https://pdfs.semanticscholar.org/da44/b64b7a09f1ff

90e30a0116eac2ab59d63a13.pdf. 

Seliga, T. A. (2011). The NEXRAD radar system as a tool in 

highway traffic management (Final Technical 

Report WA-RD 416.1). Olympia, WA: Washington 

State Department of Transportation. 

Wang, Y. (2011). Numerical improvements for large-scale 

flood simulation (Doctoral thesis, Agriculture and 

Engineering Newcastle University, Newcastle, 

England). Retrieved from https://core.ac.uk/ 

download/pdf/40013498.pdf. 


