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Abstract 
 

The dynamical Mertens' Theorem gives asymptotics for weighted averages of numbers of closed orbits in S-integer 

dynamical systems, which are constructed from arithmetic data, namely , , and S a subset of rational primes. The 

way of finding such asymptotic expressions is an analogue of Mertens’ Theorem in analytic number theory. In this article, we 

focus on the dynamical Mertens' Theorem of some certain growths in case S and its complement are infinite subsets of all 

rational primes. More precisely, our aim is to find out a leading coefficient which comes from the main term in the asymptotic 

expression of our interested setting. Moreover, the real interval covering such a coefficient will be provided in some certain 

examples.  
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1. Introduction 
 

In 1874, the Polish-Austrian mathematician, 

Franciszek Mertens (Mark, 2021) studied the sum of the 

reciprocals of the prime numbers which presents the weighted 

averages of numbers of prime numbers. He published the 

famous theorem on the sum as follows. 

 

Theorem 1.1.  Let  be any real number. Then 

 

 (1) 
 

where   is the Euler's constant,  is the Mobius function,  is 

the Riemann zeta function,  is the largest integer less than 

or equal to  and 

 

 
 

 
Alternatively, an asymptotic expression of (1) may be 

illustrated like 

 

 
 

or more simply presented as 

 

 
 

where   runs over all primes with  and  

 

 
called the Mertens' constant. Such expressions are called the 

Mertens’ Theorem in analytic number theory (or it may be 

called as the classical Mertens' Theorem), which is actually an 

asymptotic expression for weighted averages of the number of 

prime numbers. 

 Now, let us give the meaning of the symbols 

and  , which have just appeared previously and the first 

notation called the Big Oh will be mainly used from now on.  

For any functions  and  on  , we set the meaning of such 

symbols as follows: 
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1.  means that there exists  such that  for all ; that is, the ratio    stays bounded as  

. 

2.   means that   that is, the function   and  are very closed together when  . 

 Let  be a continuous map from a compact metric space  onto itself. A closed orbit  of length |  for 

such a map is a set of the form 

 

 
 

where  is the smallest non-nagative integer such that  when  is arbitrarily chosen in . We write  for the 

number of closed orbits of length . The dynamical Mertens' Theorem, which is an analogue of the classical one giving 

asymptotics for weighted averages of the number of closed orbits concerns the expression like 

 

       (2) 

 

where  denotes the topological entropy of the map and its more detail may be seen in Bowen (1973); Sawian (2010). This is 

indeed an analogue of the classical one. Note that this analogy has been arisen because of a prime number and a closed orbit. 

Another applicable form of the dynamical Mertens' Theorem is written as 

 

       (3) 

which comes from the meaning of  

  In 1991, results about the asymptotic behaviour of (3) were studied by  Richard (1991) and others (William, 1983; 

William & Mark, 1983) in case  is a hyperbolic diffeomorphism. They showed that 

 

       (4) 

for some constant . The main term in (4) will be significantly changed if we do not consider in the case of hyperbolicity. The 

simplest non-hyperbolic systems in group automorphisms are those constructed using arithmetic data, namely ,   

and rings of -integers (denoted as ), where  is a subset of all rational primes. For more detail see Graham, Richard, Shaun 

and Tom (2007), (2010); Sawian (2010); Vijay, Everest and Ward (1997). It roughly says that, if  is the character group of  

 

 
then we obtain that  is the homomorphism dual to the map  on . Such a map is called an -

integer dynamical map, which is the simplest one-dimensional case. If  is empty, we get the simplest specific map in this line 

called the circle doubling map. We naturally classify an  -integer dynamical map into 3 types depending on the cardinality of :  

i) 
 

 is finite, ii) 
 

 is infinite, but its complement is finite and iii)  and its complement are infinite. From now on,  always 

means an -integer dynamical map corresponding to a subset of all rational primes  and its entropy  is equal to . 

 In Graham et al. (2007), they considered in the case  is finite and illustrated that there exist an explicit rational 

leading coefficient  and a constant   for which 

 

 
More refinement can be illustrated in the following theorem. 

 

Theorem 1.2. Let  be an - integer map, where   is connected and S is finite. Then there are constants ,  

and   for which 

 

+ . 

 

 If  is a co-finite set of primes (  is infinite, but its complement is finite), then  is polynomial bounded implying 

that its orbit growth is very slow. This makes (2) or (3) not interesting. However, in 2010, the author has found another suitable 
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form in order to get an asymptotic expression of such a form (Sawian, 2011).  In this paper, we study some certain examples of 

the intermediate growth meaning that the set S and also its complement are considered as being infinite. It additionally, says that 

the number of such a set is huge. It turns out that not only can we provide a leading coefficient arising from the constructed 

system, but also we are able to restrict such a coefficient to some real interval. The main approach how to obtain this bound is to 

apply the recipe given the author in Theorem 5.9 (Sawian, 2011). So, the next section will be again given about this approach in 

order to complete Section 3. later. 

 

2. Background  
  

Regarding (3), the non-negative integer sequence  will play a major role in our setting. To find out its formula, 

we first denote   and  to be the set of all natural numbers including 0 and the identity map on  respectively.  For any 

dynamical system define  

 

 
 

 and 

 

 
 

to be the set of points of least period 𝑛 under 𝛼, the set of points of period 𝑛 under 𝛼, and the set of orbits of length 𝑛 under 𝛼, 

respectively. We next write  

 

,    and  

as the number of points of least period 𝑛 under 𝛼, the number of points of period 𝑛 under 𝛼 and the number of orbits of length 𝑛 

under 𝛼 , respectively. Since  is a disjoint union of for every natural number  dividing we immediately obtain 

that .  It’ s not hard to see that  for any natural number  Then the relation between 

  and  are subsequently derived in general as 

 

       (5) 

by applying the Mobius inversion formula together with the two equations earlier. 

In our setting, the equation (5) is consequently illustrated as 

 

      (6) 

since we have particularly known that  for any natural number 𝑛. For more detail, see in Theorem 

5.2 (Sawian, 2010).  Here let us clarify the notation appearing in (6) as follows: for each natural number t , we set 

, where  where m  is the highest power of p dividing t. Plugging the formula (6) into (3), we 

roughly yield the expression of the dynamical Mertens' Theorem in our certain way written as 

 

      (7) 

where the error term   for some constant  depending on S and will be again written in terms 

of   whose coefficient is viewed as the leading coefficient, and some more error terms. The exploration about this can be 

studied more in Graham et al. (2007), (2010); Sawian, (2010); Vijay et al. (1997). This leads us to focus only the term   in 

order to get its coefficient. 

 The tool is to find out the leading coefficient in case S is finite can be seen in Proposition 5.3 appearing in Graham 

et al. (2007) when   particularly. That is, expanding and calculating the following formula 
 

      (8) 
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where  is the multiplication order 2 modulo  and  for any   lead us to eventually obtain such 

a coefficient.  However, the calculation will become much more complicated and will spend long time when S is getting large. 

Here, we are going to propose the faster formula in order to obtain such a coefficient in case S is finite based on the recipe in the 

original formula in (8).  More precisely, we write  in terms of  , where  is a set of  distinct primes for any 

natural number  by rearranging the term  in (8) as illustrated in the following theorem. 

 

Theorem 2.1.  Let  be a set of  distinct primes,   and Write =   where 

 and for any  set . Then 

 

, where  is written as 

 

 and 

 

 
 

Let   denote the leading coefficient of    in the sum     for any finite set of primes S. Then we have  

 under the same situation appearing in  Theorem 2.1.  The proofs of this fact and also Theorem 2.1 can be seen in 

page 102-105 (Sawian, 2010).  

 In order to clarify why this theorem has arisen, we need to provide some explicit examples. Before doing this, the 

following facts that will play a crucial role in our work are introduced, and their proofs can be found in (Tom, 1976; Sawian, 

2016). 

 

Lemma 2.2. For  we have 

 

 
 

Lemma 2.3. For any finite subset T of rational primes, we have 

 

 
where   and    

In fact, the proofs of the following examples are given in (Sawian, 2010), but for the sake of completeness for 

understanding more about our doing here, we need to show them again. 

 

Example 2.4. Let  be the S-integer dynamical systems dual to   with X connected and . Then 

 and moreover, we have 

 

 
for some constant C2 depending on S. 

 

Proof. We note that  and  ={ }. By Theorem 2.1, we obtain that 

 

 

              

              
by applying Lemma 2.2 and Lemma 2.3, respectively. 
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Example 2.5. Let  be the S-integer dynamical systems dual to   with  X Connected and  . Then 

 and moreover, we have 

. 
for some constant C2  depending on S. 

  

Proof. We note that  and  ={ }. By applying Theorem 2.1 with   and  we obtain 

that 

 
 

               

             
by using the previous example and applying Lemma 2.3. 

 

3. The Certain Intermediate Example 
 

Recall that we are focusing on the S-integer dynamical systems, says  constructed via the data, namely , , 

and  S  is a subset of all rational primes. Indeed, many certain intermediate examples arising from such a map have been studied 

in Steven, Sawian, Shaun and Tom (2013). Let  be an integer sequence. For each positive integer n,  a primitive prime divisor 

of  is the prime number p that divides , but for every natural number m<n, can not be divided by p.  The well known 

fact named Zsigmondy’s theorem appearing in (Karl, 1892) states that the Mersenne sequence  always has a primitive 

prime divisor except .  It is a consequence that the primitive prime divisor of the sequence  always exists for any 

natural number n. This leads us to define  as the greatest primitive prime divisor of the sequence  . Setting 

, 

which here is one set of such a certain intermediate example. Note that  for any natural number n. Fixed a natural 

number  N, let 

 

 

 
            . 

 

Thus, |  |   Consequently, we write   

For each  we generally set  

 
Importantly, for each we have  , where  . Then the following lemma 

is immediately derived.  

 

Lemma 3.1 Given a natural number N, we have   

 
   

for all  

 

Lemma 3.2 Given a natural number N, we have  . 

 

Proof. Let N and n be natural numbers such that   and  .  We intend to show that  

.  By Lemma 3.22 (Sawian, 2010), we have 
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                                       (9) 

for every prime p. It follows that 

 

 
which implies that   or  . By the fact in (9), we get    

Consequently, we can conclude that  

 

 
which finally leads to the completion of our intention. Hence, the proof of this lemma is finished. 

 To be conveniently from here on, we shall again give some notations as follows: for each natural number i, let 

 

and  is the highest power of   dividing    Additionally set  and notice that  and  . 

To be shortly, we moreover set  and  , and fix a natural number  ,  setting 

 

 
 

 
and 

 

 
 

Lemma 3.3 For each natural number , we have  ,  and . 

 

Proof.  Since  the series    and    converge, there exist constants   and   for which  

 

 
and  

 
Thus,     which leads us to reach   as  . 

 

Lemma 3.4 The series 

 

         (10) 

and  

         (11) 

are convergent, says that they are equal to some real number   and  respectively. Moreover, we get  
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Proof. We are able to set the series in (10) and (11) as real numbers   and  respectively as they are bounded by the 

convergent series  . Let us consider 

 

 
       

This implies that  

Now, we are ready to show the main result. 

 

Theorem 3.5 For each natural number  we have  

 

, 

where . Moreover, we get  

 

Proof. Fix   and notice that   by referring Lemma 3.2. Applying the recipe appearing in Theorem 

2.1   times to the finite sets together with the fact in Lemma 3.1, we 

eventually reach the rearranged formula as  

 

 

For each  we can obtain due to Lemma 2.3 that 

 

-(i+1)  

and  

-(i+1) . 

 

Consequently,  

 
 

                     
 

                       

 

By plugging such information above into the main formula  and applying Lemma 2.2 to the term ,  we eventually 

obtain that 
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It follows by Lemma 3.3 and Lemma 3.4 that 

 

+| |+| | 

             

     
for some constant  Hence, the refined asymptotic expression in the theorem is proven. Furthermore, the real number  

belonging to the interval   can be shown directly by using Lemma 3.4. 

 

4. Discussion 
  

In the same setting, for each natural number l and n, let be the greatest primitive prime divisor of the sequence  

 , and let  

 

, 

which implies that   for any natural number l and n. This is of course a generalization of our set  and also 

we are able to obtain   for which 

 

where  is the highest power of  dividing   such that  

 

 and  

together with    and  , the index i is running over all natural numbers. The approach to get the real number    is 

to follow the same step directly as we have just done in the case , and we note that the real interval covering the 

corresponding number  can be computed easily for every natural number  .  Now, we would like to conclude by 

referring (7) that 

  

            (12) 

for any natural number , and note that    is  the -integer dynamical systems in our setting. In 2013, the partial sum 

 presented as Merten’s Theorem has roughly illustrated as  

 

 
which may be found on pages 189-191 in Steven et al. (2013).  In this paper, its greater refinement has been expressed as shown 

in (12) by using a not strongly different approach.  Being motivated by such the result mentioned above, we moreover conjecture 

that  is a transcendental number for every natural number  
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