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Abstract 
 

In this paper, we propose a new statistic for testing a one-sided hypothesis of mean vectors from two multivariate 

normal populations when the covariance matrices are unknown and unequal for high-dimensional data. As we know that the 

sample covariance matrix is singular for high-dimensional data, the proposed test is based on the idea of keeping as much 

information as possible from the sample covariance matrices. The performance of the proposed test is assessed in a simulation 

study with varied situations. The simulation results show that the proposed test was satisfactory in attaining nominal significance 

values close to set levels and the attained test power was excellent in every situation considered. Finally, the efficacy of the 

proposed test is illustrated with an analysis of DNA microarray data. 
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1. Introduction 
 

High-dimensional data are increasingly encountered 

in statistical applications in many areas, mostly in biology and 

finance, where the dimension is a lot larger than the sample 

size. When this happens, classical multivariate statistical 

procedures cannot be applied because they involve the inverse 

of sample covariance matrix, which does not exist in such 

high-dimensional case. In a one-sample case, Chongcharoen 

(2012) studied one-sided multivariate tests for high-

dimensional data with unknown covariance matrix by 

combining Dempster’s high-dimensional tests (1958, 1960) 

and the one-sample versions of Bai and Saranadasa (1996) 

and Srivastata and Du (2008) based on Follmann’s test (1996). 

These tests do not need the inverse of the sample covariance 

matrix, but there are still some limitations in the sense that 

they are based on the assumption that the data dimension (p) 

increases at the same rate as the sample size (n), i.e. 

/ (0, )p n c   . However, in practice, there are many 

 
datasets that have a dimension much larger than the sample 

size (p > n) (Park & Ayyala, 2013). In this study, we have 

extended Chongcharoen’s tests (2012) to cases with two 

independent samples and propose one-sided multivariate tests 

of two independent samples with unknown and unequal 

covariance matrices for high-dimensional data based on the 

idea of keeping as much information as possible from the two 

sample covariance matrices, by using a submatrix of the 

covariance matrix instead of using the diagonal of the 

covariance matrix. The real-life situation in which the one-

sided alternative makes sense occurs when one uses a 

matched-pair design to compare the multivariate responses of 

two treatments, and one tests for difference of these two mean 

responses to compared treatments. The one-sided alternative 

may be of interest if one believes that for each coordinate, the 

mean response to treatment one is at least as large as that to 

treatment two. 

 

2. Materials and Methods 
 

Throughout this paper, we suppose that 

1 2, ,...,
ii i inX X X ; 1,2i   are independent random samples 

from p-dimensional multivariate normal distributions with 
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unknown mean vectors 
i  and unknown unequal positive 

definite covariance matrices 
iΣ , ( , )ij p i iX N   . We 

consider the comparison tests for two independent 

multivariate means of two high-dimensional data sets on 

sample populations with an alternative one-sided test. That is 

to say, we want to test the hypothesis 
0 1 2:H    against 

1 1 2:H    when both 
1Σ  and 

2Σ  are unknown and 

1 2  . The data at hand have larger dimensionality than the 

number of observations. That is, 
1 2,p n n . 

Originally, the unrestricted test for testing 

0 1 2:H    against 
1 1 2:H    when two independent 

random samples 
1 2, ,...,

ii i inX X X ; 1,2i   are drawn from 

two independent p-dimensional multivariate normal 

distributions with unknown mean vectors 
i  and unknown 

unequal positive definite covariance matrices (called the 

Behrens–Fisher problem) with 
1 2 2p n n    is 

 

   
1

2 1 2
1 2 1 2

1 2

T
n n



     
 

S S
X X X X ,                        (1) 

 

where the sample mean vectors  iX  and the sample 

covariance matrices  iS  are respectively defined as 

 

1

1 in

i i j

ji

X
n 

 X and   
1

1

1

in

i i j i j

ji

X X
n 

  

 i iS X X ; 

1,2i  .                                                                       (2) 

 

The exact distribution of T2 under the null 

hypothesis is obtained from Nel, van der Merwe and Moser 

(1990). However, the exact distribution is very complicated 

and computationally intractable and thus is of limited value 

for practical applications. However, an approximation of this 

test statistic is used when both sample sizes n1 and n2 

approach infinity, and the distribution of T 2 converges to Chi-

squared with p degrees of freedom. This approximation is 

very simple and easy to compute but suffers if either sample 

size n1 or n2 is small, while being more accurate when 

 1 2min , ,n n   (Srivastava, 2002; Yanagihara & Yuan, 

2005). Unfortunately, in practice the sample size is often not 

very large, so this approximation is not recommended for 

practical applications. 

There is a vast amount of literature devoted to the 

solution of this problem, and many researchers have tried to 

approximate the distribution of T2 by a constant times F–

distribution with numerator degrees of freedom p and an 

approximated denominator degrees of freedom depending on 

sample size, mean, and covariance matrix: the approximate 

solutions based on T2 in James (1954), Yao (1965), Johansen 

(1980) and Yanagihara and Yuan (2005) are invariant whereas 

the solution by Nel and Van Der Merwe (1986) is not. Later, 

Krishnamoorthy and Yu (2004) modified the solution in Nel 

and Van Der Merwe (1986) by providing an invariant test 

statistic, and Kawasaki and Seo (2016) improved the solution 

in Yanagihara and Yuan (2005) by asymptotic expansions. 

From the literary review, we found that the solution in 

Yanagihara and Yuan (2005) was satisfactorily close to 

attaining the nominal significance level. Krishnamoorthy and 

Xia (2006), among others, showed via intensive simulation 

studies that this test performed the best among the 

approximate solutions to the multivariate Behrens–Fisher 

problem. 

An approximation to the distribution of T2 by an F–

distribution is given by Krishnamoorthy and Yu (2004) as 

follows: 

 

2

, 1~
1

p v p

vp
T F

v p
 

  ,                  (3) 
 

where 
, 1p v pF  

 denotes an F–distributed random variable 

with p and v – p + 1 degrees of freedom; the v degrees of 

freedom are estimated from the sample covariance matrices 

using the relationship 

 
2

22
1 1

2
1 2 1 2

1 1 2 1 2

1
tr tr

1

i i

i i i i

p p
v

n n n n n n n

 






                                       


S SS S S S

                                                                       (4) 

 
where  1 2 1 2min 1, 1 2.n nvn n      This approximation 

reduces to the usual Welch's approximate degrees of freedom 

for the Behrens–Fisher problem in the univariate (p = 1) case 

(Richard & Dean, 2014). 

In high-dimensional data where a single population 

has the number of variables exceeding the sample size 

,ip n  the sample covariance matrix S  loses its full rank 

and is singular, which ensures that 
iS  does not have an 

inverse (Chongcharoen, 2011). Furthermore, for two 

populations where the number of variables is larger than the 

sum of the two sample sizes minus 2, 
1 2 2,p n n    the 

sample covariance matrix S  is defined by 

 

S = 1 2

1 2n n


S S                   (5) 

 
and does not have an inverse. So, the test statistic T2 in 

Equation (1) cannot be applied to high-dimensional data. 

To overcome the problem, namely needing the 

inverse of the sample covariance matrix that is singular for 

high-dimensional data, many recent efforts have been devoted 

to construct new tests for the multivariate Behrens–Fisher 

problem in high-dimensional data. The majority have tried to 

avoid the use of 1
S  by, for instance, replacing 

iS  with a 

diagonal matrix (Bai & Saranadasa, 1996), sidestepping the 

covariance matrix estimation (Chen and Qin, 2010), or using 

the diagonal matrix of the sample covariance matrix S  and 

the trace of the sample correlation matrix (Srivastava, 

Katayama, and Kano, 2013) as examples among many others 

in the literature. 

Based on the idea of keeping as much information 

of 
iS  as possible, Sukcharoen and Chongcharoen (2019) 



144 S. Chongcharoen et al. / Songklanakarin J. Sci. Technol. 44 (1), 142-148, 2022 

 

proposed a testing statistic to test 
0 1 2:H    against 

1 1 2:H    under the aforementioned conditions for high-dimensional 

data as 

 

 

   

 1

2

2
1

1
0,1

2 1

1 3

m
k k

n

k k k

m
k k k

k k k k k

v q
T

v q
T N

q v v

v q v q






 

 


   





 

where    1

1 2 1 2n blockT   X X S X X ; 
iX 1,2i  , as defined in Equation (1), and 

 

1

block


S 

1

11

1

22

1

mm p p









 
 
 
 
 
  

S 0 0

0 S 0

0 0 S

, 

in which 
kkS  1,2, , ,k m  ,m p  are 

k kq q  submatrices on the diagonal of S  with 
1 2 2kq n n   ; 

1

m

k

k

q p


 ; and 
kv  

is the approximate number of degrees of freedom in the k -th block, which can be obtained by 

 

kv = 
2

22
1 1

2
1 2 1 2

1 1 2 1 2

1
tr tr

1

k k

ikk kk kk ikk kk kk

i i i i
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 




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This statistic will reject 
0H  at significance level   if observed 

1T z  , where 
1z 

 denotes the upper 1   

quantile. Based on the idea of keeping as much information of 
iS  as possible, Sukcharoen and Chongcharoen (2019) proposed a 

testing statistic to test 
0 1 2:H    against 

1 1 2:H    under the aforementioned conditions for high-dimensional data as a 

standard normal distribution. They also showed that the proposed test statistic T is invariant under location shift and scaling 

transformation, , 1,2;ij ijx Dx c i   1,2, , ij n , where C is a constant vector and D is a nonsingular p x p diagonal 

matrix. They also showed that their test works very well when both sample sizes 
1n  and 

2n  are larger than 8. Based on a 

simulation study and the idea of keeping as much information as possible from the sample covariance matrix S , they also 

suggest that their proposed test can be used although there is no prior information to arrange variables from the sample 

covariance matrix S  to the block diagonal matrix 
blockS . For appropriate block sizes, they suggest to keep maximum block size 

 1 2min , 4 ,kq n n    , 1,2, , ,k k m   for equal sample size cases, and  1 2min 1, 1 5 ,kq n n     
 

, 1,2, , ,k k m  for unequal sample size cases, where a    denotes the floor function (i.e. rounding by deleting the decimal 

part) applied to .a  

Motivated by this kind of data, prior literature, and Follmann’s test, we combined the unrestricted alternative test for 

the high-dimensional multivariate tests mentioned previously with Follmann’s idea, to propose a test statistic for testing the one-

sided multivariate hypothesis 
0 1 2:H    against 

1 1 2:H    for high-dimensional data as 
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2
1

1

2 1

1 3
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m
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i i
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X X
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 , with which 
0H  will be rejected at significance level   if 
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1 2T z   and  1 2
1

0
p

i i
i

X X


  .             (7) 

 

We obtain 1 0   and the significance level is approximated by 

 

       

 

1 2 1 2 1 2 1 21 0 1 0

1
2

2

,

P T z X X P T z P X X 





         

 
  

 



 

please see Theorem 2.1 in Follmann (1996). 

One point of interest here is how large the block sizes in the block diagonal matrix 
blockS  are: If both population 

covariance matrices 
1

  and 
2

  are block diagonal matrices with m blocks and of small sizes 
1 2
, , ,

m
q q q  that are known, then 

we should set 
blockS to be similar to population covariance matrices 

1
  and 

2
 . However, the population covariance matrices in 

a real-life situation may not be block diagonal and we have no prior information. Since, theoretically, the proposed test statistic T 

is based on the solution to approximate the distribution of T2 proposed by Krishnamoorthy and Yu (2004), we only require block 

sizes 6,k kq    1,2, , ,k m  as in the  recommendations of Sukcharoen and Chongcharoen (2019), to attain a significance 

level very close to the nominal, provided that  1 2
min 1, 1 / 5p n n    in unequal sample size cases; this condition is 

somewhat relaxed to / 4p n  in the equal sample size cases 
1 2 .n n n   Hence, based on these suggestions and the idea of 

keeping as much information as possible from the sample covariance matrix S  when there is no prior information to arrange the 

variables to a block diagonal matrix 
blockS , appropriate block sizes can be kept at the maximum 

k
q  by 

 

 1 2 1 2*

1 2

min 1, 1 5 , ,

4 , .

n n when n n
q

n when n n n

     
 

   

 

Of course, ideally in each diagonal block of the matrix 
blockS , we want to have a set of highly correlated variables.  

 

3. Simulation Studies 
 

The performance of the proposed test was evaluated using a simulation study with a variety of parameters settings for 

the mean vectors and the population covariance matrices. The mean vectors 
1  and 

2  were set as 
1 2

0   , 
1 2
    , 

and 
2
   and 

1 2
     with 

1 2 p
u u u

    ,  ~ U 1.5,1.5
i

u   and 
1 2 p

v v v
    ,  ~ U 0.1,0.5

i
v . 

The estimates of type I error rate and test power for the proposed test statistics for 
0 1 2:H    against 

1 1 2:H    were 

evaluated by computing number of rejections
 ,

m
 where m is the number of iterations of the datasets simulated under the null 

hypothesis or the alternative hypothesis. The population covariance matrices 
i

 , for 1,2i  , were set up as one of the following: 

Type A: Both 
1

  and 
2

  were in diagonal matrix form,  11 22
, , ,

mm
diag    , where  1

kk k k
c I c J   , 

 0,1
k

c U , J  is a 
k k

q q  matrix of 1’s, and block size 
k

q  is the maximum 
*q . So 

blockS  is set in diagonal matrix form as 

1
  and 

2
  with the same subblock sizes of 1

  and 
2

 . 

Type B: Both 1
  and 

2
   were also in diagonal matrix form as Type A but the number of blocks m and block sizes 

1 2
, , ,

m
q q q  are random. So 

blockS  is also set in diagonal matrix with different  numbers of blocks and block sizes as in 1
  

and 
2

 . 

Type C: Both 1
  and 

2
  were not in diagonal matrix form as 1/2 1/2

i  
 D D , where  1/2

1 2
, , ,

p
diag


  D , 

   
1

2 1 1 /
j

j
p j p



      and 
ij

r    ,    1
i j i j

ij
r c

 
   , for  0,1c U . Thus 

blockS  is set as block diagonal form 

in different pattern of block sizes. 
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We set the nominal significance level as 0.05   for all of the simulation studies.The simulated data for each 

combination of designed means and designed covariance matrices were generated with dimension  60,100,200,400p  and 

for both equal and unequal sample sizes  1 2,n n  with each 
1 2 2p n n   , then the proposed statistic for testing the equality 

of two population means was computed and the number of rejections counted; each procedure was repeated 10,000m   times. 

The attained significance level and power of the proposed test are reported in Tables 1–3. 

In Tables 1 and 2, both unknown and unequal covariance matrices 
1

  and 
2

  were block diagonal with the same 

known pattern of correlations between the variables. This means we could set the block sizes in the block diagonal matrix 
blockS  

in the same pattern to match both covariance matrices 
1

  and 
2

 . Subsequently, all attained significance levels were close to 

the nominal significance level and all attained test powers were close to 1 in every situation considered. It can be seen that the 

proposed test gave a reasonable result. 

In Table 3, both unknown and unequal covariance matrices 
1

  and 
2

  were not block diagonal (as is likely to occur 

in a real-life situation). The proposed test achieved a significance level close to the nominal significance level and a test power 

close to 1 in every situation considered, so we can say that the proposed test still works very well although neither of the two 

unknown population covariance matrices is block diagonal. 

 
Table 1. The attained significance level and power of the test with Type A covariance matrices 

 

p (n1, n2)  k
q

 

Type I Error Power of the Test 

1 2
0    

1 2
u    

2
u   and 

1 2
v    

      

60 (20,20) 5 0.0486 0.0504 0.8684 

100 (20,20) 5 0.0522 0.0460 0.9617 

 (26,36) 5 0.0519 0.0579 0.9986 

 (40,40) 10 0.0551 0.0493 0.9992 

200 (20,20) 5 0.0521 0.0484 0.9991 

 (26,36) 5 0.0496 0.0532 1.0000 

 (40,40) 10 0.0531 0.0532 1.0000 

 (51,71) 10 0.0510 0.0517 1.0000 

 (80,80) 20 0.0503 0.0521 1.0000 

400 (20,20) 5 0.0474 0.0455 1.0000 

 (26,36) 5 0.0501 0.0527 1.0000 

 (40,40) 10 0.0537 0.0525 1.0000 

 (51,71) 10 0.0539 0.0507 1.0000 

 (80,80) 20 0.0539 0.0559 1.0000 

 (101,141) 20 0.0513 0.0532 1.0000 

 (160,160) 40 0.0583 0.0540 1.0000 
      

 

Table 2. The attained significance level and power of the test with Type B covariance matrices 

 

p (n1, n2)  k
q

 

Type I Error Power of the Test 

1 2
0    

1 2
u    

2
u   and 

1 2
v    

      

60 (20,20) 5 0.0527 0.0512 0.9240 
100 (20,20) 5 0.0509 0.0517 0.9890 

 (26,36) 5 0.0538 0.0508 0.9998 

 (40,40) 10 0.0541 0.0508 0.9998 
200 (20,20) 5 0.0509 0.0513 0.9999 

 (26,36) 5 0.0495 0.0462 1.0000 

 (40,40) 10 0.0521 0.0492 1.0000 
 (51,71) 10 0.0552 0.0511 1.0000 

 (80,80) 20 0.0525 0.0568 1.0000 

400 (20,20) 5 0.0457 0.0483 1.0000 
 (26,36) 5 0.0511 0.0526 1.0000 

 (40,40) 10 0.0535 0.0535 1.0000 

 (51,71) 10 0.0530 0.0466 1.0000 
 (80,80) 20 0.0520 0.0497 1.0000 

 (101,141) 20 0.0497 0.0567 1.0000 

 (160,160) 40 0.0498 0.0514 1.0000 
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Table 3. The attained significance level and power of the test with Type C covariance matrices 
 

p (n1, n2)  k
q

 

Type I Error Power of the Test 

1 2
0    

1 2
u    

2
u   and 

1 2
v    

      

60 (20,20) 5 0.0551 0.0566 0.9007 

100 (20,20) 5 0.0526 0.0551 0.9585 

 (26,36) 5 0.0598 0.0548 0.9959 
 (40,40) 10 0.0551 0.0536 0.9999 

200 (20,20) 5 0.0542 0.0576 0.9936 

 (26,36) 5 0.0582 0.0571 0.9999 
 (40,40) 10 0.0516 0.0566 1.0000 

 (51,71) 10 0.0540 0.0569 1.0000 

 (80,80) 20 0.0543 0.0553 1.0000 
400 (20,20) 5 0.0557 0.0553 1.0000 

 (26,36) 5 0.0589 0.0534 1.0000 

 (40,40) 10 0.0543 0.0498 1.0000 
 (51,71) 10 0.0564 0.0566 1.0000 

 (80,80) 20 0.0487 0.0540 1.0000 

 (101,141) 20 0.0581 0.0565 1.0000 
 (160,160) 40 0.0562 0.0535 1.0000 
      

 

From these results, we recommend using the 

proposed test as a one-sided alternative multivariate test for 

high-dimensional data when two independent high-

dimensional random samples are obtained from a p-

dimensional multivariate normal distribution with an unknown 

mean vector and an unknown unequal positive definite 

covariance matrix. Table 3 indicates that although the 

arrangement of the group of variables is random, the proposed 

test is still sensitive in detecting the difference of the two 

means. In practice and ideally, we should arrange the 

variables so that high correlates are in the same block as much 

as possible, and Jiamwattanapong and Chongcharoen (2017) 

have recommend to arrange the variables in blocks in such a 

way that the correlation coefficient of any two adjacent 

variables in the same block is greater than or equal to 0.5. 

 

4. An Example Using Real-Life Data 
 

We used DNA microarray data from an oncology 

study to demonstrate the efficacy of the proposed test 

(Notterman et al., 2001). A selection of 100 genes (p) was 

used to test the mean vectors of two independent groups: 

tumor tissue and normal tissue. Each group has a sample size 

of 18, i.e. 
1 2

18n n  . For our example, both covariance 

matrices are assumed to be unequal, although the equality of 

covariance matrices can be tested by using the method 

presented in Chaipitak and Chongcharoen (2013). Suppose we 

want to test 
0 1 2:H    against 

1 1 2:H    where 
1 2,   

are the mean vectors of tumor tissue and normal tissue 

respectively. The two test statistics computed using Equation 

(7) are T = 21.6046 and  1 2
1

p

i i
i

 X X = 589.3333 which 

led to the rejection of the null hypothesis (
0.90T Z  and 

 1 2
1

0
p

i i
i

  X X ); i.e. for the same 100 gene expression 

levels, the tumor tissue mean is significantly greater than the 

normal tissue mean at the 0.05 significance level. 

 

5. Conclusions 
 

In this study, we developed and proposed a test 

statistic for hypothesis testing when two sampled high-

dimensional multivariate normal distributions have covariance 

matrices that are unknown and unequal. The main motivation 

of our proposed test is to avoid need to invert the singular 

covariance matrix. Based on the test statistic by Sukcharoen 

and Chongcharoen (2019) for unrestricted alternative test of 

the high-dimensional data, we combined it with Follmann’s 

idea to propose a test statistic for testing a one-sided 

multivariate hypothesis for high-dimensional data. 

The results of a simulation study indicated that our 

proposed test had a good performance with a higher power 

when both of the unknown covariance matrices are block 

diagonal with the same known block pattern. Moreover, in 

general situations when the unknown and unequal covariance 

matrices are not block diagonal, our proposed test still gave a 

good performance under the conditions considered. Therefore, 

we recommend this test for one-sided multivariate testing to 

compare means in high dimensional data, as long as better 

alternative tests are not available. 
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