

Peer-reviewed paper selected from The 9th International

 Conference on Engineering and Technology (ICET-2021)

*Corresponding author

 Email address: nattha.s@psu.ac.th

Songklanakarin J. Sci. Technol.

43 (6), 1831-1839, Nov. - Dec. 2021

Original Article

Motorcycle detection based on deep learning implemented on FPGA

Feng Peng1, Kittikhun Thongpull1, Masami Ikura2, and Nattha Jindapetch1*

1 Department of Electrical Engineering, Faculty of Engineering,

Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand

2 Toyota Tsusho Nexty Electronics (Thailand) Co., Ltd, Pathum Wan, Bangkok, 10330 Thailand

Received: 25 December 2020; Revised: 12 December 2021; Accepted: 15 December 2021

Abstract

This paper proposes a hardware accelerator design for motorcycle detection based on deep learning. We designed the

training parameters by K-means algorithm and created the motorcycle dataset from Thailand's urban scene. Due to the rapid

evolution of deep learning and the need for high-performance, low-power, and scalable models for application platforms, we

designed the YOLOv2 accelerator architecture on the PYNQ platforms by using five optimization methods, including loop

unrolling/pipeline, loop tiling, data quantization, memory ping-pong, and multi-channel data transmission. The proposed training

parameters can increase the accuracy from the original 76.8% to 89.45%. The hardware experimental results obtained 14.10

GOP/s (100MHz) and 25.98 GOP/s (150MHz) on the PYNQ (ZYNQ 7020). The performance of the acceleration platform that

we designed is 6.32 times faster than that of the CPU (i7), and the energy consumption is 1/26 of the CPU. In addition, the

hardware accelerated deep learning applications have in recent years improved a lot in accuracy and calculation speed.

Keywords: motorcycle detection, deep learning, YOLOv2, FPGA, high-level synthesis

1. Introduction

In developing countries, motorcycles have become

the primary means of transportation. Because of their ability

to reach a high speed and few protective measures, they have

always been the vehicle type with the highest mortality rate in

traffic accidents. According to the traffic environment

characteristics, in different urban areas the drivers of cars will

pay extra attention to various objects. In the complex traffic

environment of developing countries, autonomous driving

should pay more attention to high-speed motorcycles. These

reasons raise the requirements to demonstrate high-efficiency

detection of motorcycles on a low-power-consumption

platform. It is urgent to develop accurate and fast detection

platforms to achieve efficient detection results for motorcycles

(Lee, Pino, Lin, & Peters, 2013; Siebert & Lin, 2020).

There are many detection algorithms based on deep

neural networks (Lecun, Bengio, & Hinton, 2015). While two-

stage approaches such as fast RCNN (Girshick, 2015), achieve

higher accuracy than single-stage approaches, they are very

time-consuming. In contrast, single-stage approaches

simultaneously conduct object location and identification. The

single-stage approaches like YOLO (Redmon, Divvala,

Girshick, & Farhadi, 2016) and RetinaNet (Lin, Goyal,

Girshick, He, & Dollar, 2020) are much faster than the two-

stage approaches. YOLOv2 was introduced to detect objects

more quickly and accurately (Redmon & Farhadi, 2017).

Based on the characteristics of the application and the

complexity of CNN, it is difficult for the CPU to provide

sufficient computing power. The relatively powerful GPU has

a larger power consumption and is not suitable for removable

devices (Gschwend, 2016). To improve computing

performance and save energy consumption, FPGA-based

acceleration has become one of the most attractive alternatives

(Guo, Zeng, Yu, Wang, & Yang, 2017). FPGA is the next

possible solution to surpass GPU in speed and energy

efficiency (Blaiech, Khalifa, Valderrama, Fernandes, &

Bedoui, 2019). It is a programmable device that can be

1832 F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021

configured as a custom circuit to perform a specific task. In

(Zhao et al., 2019), the characteristics of low power

consumption, strong computing capability, and high

flexibility, were used to design an underwater object detection

platform, because when designed for normal circumstances,

the high-power platforms cannot support underwater

operations. The paper (Ye, Hong, Chen, Hsiao, & Fu, 2020)

proposed a two-stage YOLOv2-based network to tackle

distorted road marking detection as well as to balance

precision and recall. But the model worked on GTX1070,

making it challenging to deploy in Autonomous Driving

Systems (ADS). Although the efficiency of reconfigurable

logic platforms is lower than of custom circuits (ASICs)

(Fang, Mulder, Hidders, Lee, & Hofstee, 2020), their design

cycle is shorter than of ASICs.

Compared to deploying deep neural networks on

CPUs and GPUs, the FPGA deployment methods focuses on

the allocation and invocation of underlying hardware

resources. Therefore, it is much more challenging to

implement a neural network on FPGA than on CPU or GPU (

Shawahna, Sait, & El-Maleh, 2019). The paper (Hao et al.,

2019) proposed the method of hardware and software co-

design, which helps analyze the development of designs and

explore the design space. In the paper (Zhang et al., 2015), an

SIMD convolutional neural network accelerator architecture

expands the two-dimensional input and output features to

achieve high performance. The actual transmission delay is

not considered during the modeling process, resulting in a

performance difference of almost 47% to the actual measured

result. In (Ding et al., 2019), an efficient acceleration

architecture placed depthwise separable convolution on FPGA

to realize a customized acceleration architecture. Due to the

small size of depthwise separable networks and the low

flexibility of hardware architecture, the same approach cannot

be applied to large networks. As shown in (Ma, Cao,

Vrudhula, & Seo, 2017), a full expansion operation was

proposed during the optimization process, and all feature

maps and weights were cached in on-chip memory, which

makes it challenging to achieve the performance on a low-cost

FPGA. The paper (Li et al., 2016) improves the bandwidth

utilization rate by increasing the burst transmission length. It

implements parameter reuse and multi-batch processing,

which improve the computing unit's utilization rate with fully

connected layer. (Shan, Zhang, Deng, & Gong, 2016)

proposed a dynamic multi-precision fixed-point data

quantization strategy for CNN. The floating-point data on

CNN after training was quantized into a fixed-point type.

Compared with the previous static quantization strategy,

dynamic quantization will reduce the loss in the process.

This paper combines the above mentioned practical

acceleration methods for deep learning by analyzing the target

platform and proposing the accelerated architecture. The

target hardware architectures (Li et al., 2016; Shan et al.,

2016) are briefly described and implemented through a high-

level synthesis tool. At the same time, considering the low

power consumption of the removable platform, we propose to

implement the neural network on the PYNQ and use the high-

level programming language (Python) to control the work of

the platform. The YOLOv2 model achieved 25.98 GOP/s

performance on the PYNQ platform and 89.45% detection

accuracy.

2. Related Work and Background Theories

State-of-the-art CNNs for large visual recognition

tasks usually contain billions of neurons and their trend is to

grow deeper and larger. These networks contain millions of

neurons and hundreds of millions of parameters, including

weights and intermediate feature maps. We need to store these

parameters in DRAM and implement large-scale data

interaction. The regression model is used to adjust the

boundary. The various models data are not shared, so the

computational complexity of R-CNN is enormous. YOLO

regards the recognition problem as a regression problem. It

takes the entire picture as input and can better recognize the

background. It has the following three characteristics:

1. Fast speed: YOLO solves object detection as a

regression problem and uses a single network to complete the

whole detection process.

2. Low recall rate: Low recall rate is reflected in the

low background error detection rate.

3. Strong generalization ability: For other kinds of

things, the recognition effect after training is also excellent

(Ioffe & Szegedy, 2015).

3. Training YOLOv2 Using Motorcycle Dataset

This section describes how to perform training of

YOLOv2 using a motorcycle dataset. The motorcycle dataset

has been prepared in VOC style.

VOC data are often used for object detection. Since

2005, it has held a competition every year. In the beginning,

there were only four categories. By 2007, this had expanded to

20 categories. There are two commonly used versions: 2007

and 2012. In the experiment, the required categories are

extracted from the VOC dataset and other datasets, combined

with the pictures taken in the application scene and made into

a VOC format dataset. This dataset contains 16,000 training

pictures and 3,200 validation pictures. During the labelling

process, the wheels, engines, fuel tanks, and handlebars of

motorcycles are specially marked. Then, K-means clustering

algorithm has been applied to optimize the accuracy of

training. Finally, this experiment can reach the mAP of

89.45%. More details are given as follows.

Through the analysis of the literature (Redmon &

Farhadi, 2017) and the source code of YOLOv2, the target

detection steps are as follows:

 (1) Image pre-processing: input RGB images of any

resolution, convert to [0,1] interval, adjust to 416×416

according to the original image aspect ratio, and fill in 0’s if

necessary for target size.

 (2) Network detection: input the 416×416×3 image

array obtained by pre-processing, and after the YOLOv2

network detection, output a 13×13×30 size array containing

the detection target information.

(3) Image post-processing: process the output

13×13×30 array to obtain the detection frame center, length

and width, frame reliability, and object prediction probability

based on the image aspect ratio to recover the scale of the

original image.

In the anchor-based object detection algorithm, the

anchor is generally designed manually. In SSD and Faster-

RCNN (Girshick, 2015), nine anchors with different sizes and

F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021 1833

aspect ratios are designed. However, the artificially designed

anchors have a drawback. They cannot be guaranteed to match

the dataset well. If the anchor's size is different from the

object size, it will affect the accuracy of the model. K-means

clustering has been used (Zhong, Wang, Peng, & Zhang,

2020) instead of manual design, by clustering the bounding

boxes in the dataset to generate a set of anchors that are more

suitable. This experiment generated better anchor values based

on the K-mean algorithm. During the training phase, YOLOv2

generates the bounding box more accurately.

The software experiment part, as shown in Table 1,

performs quantitative analysis on the number of data sets

(training and validation), learning rate, training times (Max-

batches), training methods (Random), and anchors. Figure 1

shows the final loss and IOU (Intersection over union) in

training of iteration 7.

Table 1. Training based on motorcycle dataset

Figure 1. The loss and IOU of final training (Loss is taken every 100
cycles.)

After training, this paper uses the mean average

precision (mAP) (1) and recall (2) as the main evaluation

criteria.

(1)

(2)

Training result as Figure 2, this experiment adjusted

the YOLOv2 network parameters for the specificity of single

object detection. The mAP reached 89.45%.

4. Hardware Accelerator Design

After the software training, this paper implements

YOLOv2 on the hardware platform, which can achieve an

efficient performance. Combined with the application

requirements, a comprehensive analysis of the hardware and

software collaborative design theory (Hao et al., 2019), this

study proposed the hardware platform architecture shown in

Figure 3. The system's core is to generate IP cores on the HLS

tool based on the software model. The CNN accelerator IP

design on FPGA consists of four main parts: processing

elements (PEs), on-chip buffers, external memory (DDR3),

and on-chip storages (built from Block RAMs, LUT, and

FIFO). Due to the limitation of on-chip resources, all data will

Iteration Train+val Learning-rate Max-batches Random Anchors

1 800+160 0.0005 20000 1 (1.3221, 1.73145) (3.19275, 4.00944)

(5.05587, 8.09892) (9.47112, 4.84053) (11.2364, 10.0071)

2 1600+320 0.0005 10000 1 (1.3221, 1.73145) (3.19275, 4.00944)

(5.05587, 8.09892) (9.47112, 4.84053) (11.2364, 10.0071)

3 800+160 0.0005 10000 1 (1.565, 2.3456) (2.4562, 4.4568)
(6.6525, 8.8898) (11.6848, 6.7475)

(13.5656, 11.2523)
4 800+160 0.0001 15000 1 (1.565, 2.3456) (2.4562, 4.4568)

(6.6525, 8.8898) (11.6848, 6.7475)

(13.5656, 11.2523)
5 1600+320 0.0001 15000 0 (1.565, 2.3456) (2.4562, 4.4568)

(6.6525, 8.8898) (11.6848, 6.7475)

(13.5656, 11.2523)
6 800+160 0.0001 15000 0 (1.08,1.19) (3.42,4.41) (6.63,11.38)

(9.42,5.11) (16.62,10.52)

7 1600+320 0.0001 15000 1 (1.08,1.19) (3.42,4.41) (6.63,11.38)
(9.42,5.11) (16.62,10.52)

8 800+160 0.0001 10000 0 (1.08,1.19) (3.42,4.41) (6.63,11.38)

(9.42,5.11) (16.62,10.52)
9 800+160 0.0001 10000 1 (1.08,1.19) (3.42,4.41) (6.63,11.38)

(9.42,5.11) (16.62,10.52)

1834 F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021

Figure 2. mAP with different training parameters

Figure 3. Overview of the YOLOv2 accelerator architecture based on the PYNQ

be stored in the external memory. Before sent to the PEs, the

data will be cached in the on-chip buffers (input buffers and

weights & bias buffers). Double buffers are used to cover data

calculation time and transfer time. After analyzing the central

part of the neural network calculation, the convolutional

operations will occupy more than 90% calculation amount

(Qiu et al., 2016), and the fully connected layer occupies more

than 90% of the parameter amount (Ding et al., 2019). Since

the fully connected layer can be regarded as a particular

convolutional layer, the optimization of calculation is mainly

for convolution operations.

In this design, the HLS tool can be used to

implement the YOLOv2 network by C++ and automatically

generate VHDL code. This conversion method will simplify

the difficulty of developing on FPGA and maintain the

accuracy of the original neural network. As shown in Figure 3,

the PS part uses the advantages of the OpenCV library to pre-

process the original image, obtaining a fixed-size grayscale

image. Then, through the DMA data transfer protocol, the

input feature map and weight parameters are transferred to the

PL part in the form of blocks (combined with the size of the

hardware resources, the block parameters can be dynamically

modified). Figure 4 shows each optimization section.

4.1 Convolutional computation engine design

This section explains the design of a convolutional

computation engine. Sections 4.1.1 and 4.1.2 mainly describe

the convolutional optimization methods, and sections 4.1.3

and 4.1.4 will describe the dynamic fixed-point quantization

and memory optimization.

4.1.1 Loop unrolling and loop reconstruction

As shown in Figure 5, the inputs of the

convolutional layer are C-Hin input feature maps, and the

outputs are C-Hout output feature maps. Each "input-output"

feature map has a specific convolution kernel for convolution

calculation. There are CHout×CHin convolution kernels, and

the size of each convolution kernel is K×K. In the process of

the convolution calculation, each convolution kernel slides

through an input feature map. The result of the convolution

will be accumulated to the corresponding output feature.

Therefore, the algorithm flow of convolution calculation is:

(3)

According to the architecture schematic, the pseudo-

code is written as in Figure 5. CHin multipliers are used to

process convolution operations in parallel, which will generate

a single PE (processing element). The architecture is

composed of multiple PEs, forming the structure in Figure 5.

F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021 1835

Figure 4. The optimization methods on the PL part

Figure 5. Pseudo code for convolution operations on FPGA

It is necessary to call this acceleration module

multiple times to complete the six nested loop calculations of

convolution. By partially expanding the number of output

feature maps and input feature maps, a CHin×CHout parallel

multiplication calculation unit and Chin [log2CHout] depth

addition trees are formed as shown in Figure 5.

Loop reconstruction: Since the accelerator is

parallelized in the input channel and output channel, the input

channel loop and the output channel loop need to be placed in

the innermost loop. The polyhedron-based optimization

framework (Ma et al., 2017) can be used to perform automatic

loop conversion, which can avoid loop dependence.

4.1.2 Loop tiling

PYNQ's on-chip storage resources (generally less

than 10 MB) are extremely insufficient compared to the

storage space required for CNN calculation. Especially on

low-level development boards, most of the research mainly

uses convolution calculations' data locality characteristics.

Corresponding to HLS implementation, it needs to be applied

to loop tiling. Some data only needs to be read or written a

few times from off-chip storage. It dramatically reduces the

number of memory accesses and the amount of data accessed.

It can allow an acceleration unit that reads CHin

input feature maps with ((R -1) ×S +K) × ((C -1) ×S +K)

pixels from the off-chip DRAM each time and corresponding

weight parameters with the size of CHin ×CHout ×K^2.

Multiplexing is done on-chip input feature map

pixel blocks and weight parameters to keep the intermediate

results in the on-chip buffer. After the final output pixel block

is obtained, CHout pieces of R×C pixel blocks are written to

an extra chip. As mentioned before, the on-chip storage

resources can only accommodate one input data block (In

array), one output data block (Out array) and one weight data

block (W array). In HLS, the data port of DRAM is expressed

in the pointers, which need to interact with the corresponding

location of the off-chip DRAM when switching a data block.

4.1.3 Timing and memory system design

Each layer of YOLOv2 has different convolution

sizes. When different convolution layers are mapped to the

same architecture, the computing unit is often not fully

utilized, resulting in low dynamic utilization. This paper

proposes to set up a dynamic reusable architecture, combined

with pipeline operation, to maximize FPGA resource

utilization and minimize operating latency. To reduce the

number of interactions between the accelerator and off-chip

memory, we design the architecture shown in Figure 6. The

accelerator and off-chip memory only interact twice, in the

proposed multi-layer cascaded accelerator.

This study performs pipeline and data flow

operations on the entire architecture based on multi-layer

1836 F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021

Figure 6. Build subgraphs of different sizes to create a multi-layer cascaded accelerator

cascaded architecture and combining the advantages of FPGA

computing parallelism. The pipeline design realizes the

concurrency of computing and data interaction at each layer.

When Layer 0 reads the input feature map from off-chip

memory to the input buffer (InBuf pong), the convolution

module of Layer 0 also reads data from the input buffer

(InBuf ping) for calculation at the same time. When Layer 0

writes the result of the convolution calculation to the output

buffer (OutBuf pong), the latency of the entire system can be

judged according to the degree of parallelism. Figure 7 shows

an example of the pipeline and dataflow, three-level (Bytyn,

Ahlsdorf, Leupers, & Ascheid, 2020).

This helps calculate and compare the latency

(Venieris & Bouganis, 2017): The T_1-T_3 is the latency of

Task1,2,3.

 (4)

 (5)

 (6)

4.1.4 Dynamic fixed-point quantization

YOLOv2 has high computing performance, and its

computing power reaches 29.47 GOP. The network needs to

be compressed and quantized (Ding et al., 2019). Most of the

previous work adopted the 16-bit quantization strategy. (Chen

et al., 2014) showed that using 16-bit numbers instead of 32-

bit ones only caused 0.26% increase in error rate on the

MNIST dataset. Using short fixed-point numbers instead of

long floating-point numbers is efficient for implementations

on the FPGA and can significantly reduce memory footprint

and bandwidth requirements. As shown in Table 2, this study

Table 2. Resource consumption for different types of data

 Type DSP LUT

Adder Float-32 2 214

Mul Float-32 3 135

Adder Fixed-16 - 47
Mul Fixed-16 1 101

performed multiplication and addition tests at different

precisions. The resources consumed by the multiplication and

addition operations of fixed-16 in FPGA are almost half of the

float-32.

Based on analyzing the dynamic fixed-point

quantization method (Qiu et al., 2016; Shan et al., 2016), this

study used quantized weights, bias, input feature and output

feature. According to the data size range of each layer, various

decimal point positions are formulated.

Fixed point number can be expressed as:

(7)

The bw represents the bit width of the fixed-point

number, and the exp represents the exponent, while Bi ∈

{0,1}. The conversion between floating point and fixed point

is as in (8) and (9):

 (8)

 (9)

F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021 1837

Figure 7. Pipeline for the loop operation and dataflow for the task-level function

5. Experiment Using Hardware

The hardware architecture is built in Vivado 2020.1.

The acceleration platform is developed in a Xilinx PYNQ-z2

board. The main chip is Zynq XC7Z020-1CLG400C, which

contains a 630 KB block RAM, 220 DSP slices,140 BRAMs,

an ARM dual-core Cortex-A9 processor, and an external 512

MB DDR3. On the PS side, use python to call the overlay and

edit the python instructions to control the PL side. The

hardware part is not friendly to image pre-processing, so the

pre-processing part is placed on the PS side. The PL part

designs a new IP based on the multi-layer cascade

acceleration architecture. The process consists of copying

weights and bias files from SD card to DDR3 memory,

transferring data through AXI-DMA, and performing

convolution acceleration calculations in PL.

5.1 Results and discussion

This study mainly analyzes hardware resource

utilization and computing ability per second (GOP/s). Table 3

is our resource usage on PYNQ-z2.

Since the performance is directly related to the

development board's operating frequency, this paper

conducted independent tests on the performance of 100MHz

and 150MHz cases. Table 4 shows the acceleration of deep

learning neural networks on various platforms in recent years.

Table 4 compares the frameworks and methods for

accelerating object detection on various FPGA levels in recent

years. The main comparison metrics are DSP usage, data

precision, energy consumption, performance, and accuracy.

(Zhao et al., 2017) uses fixed-32 to reduce data accuracy loss,

but the amount of calculation is increased. Performance is not

excellent when using 800 DSPs. (Nakahara, Fujii, Yonekawa,

& Sato, 2018) quantifies the data to achieve a very high

calculation speed, but the loss of accuracy is excellent on the

software level, using technologies such as network

compression and pruning reduce the network's parameters and

Table 3. Resource usage on PYNQ-z2

Resource Utilization Available Utilization%

LUT 37230 53200 69.98

LUTRAM 6082 17400 34.95
FF 34012 106400 31.97

BRAM 87.50 140 62.50

DSP

(100Mhz)

151 220 68.64

DSP

(150Mhz)

153 220 69.54

BUFG 3 32 9.38

MMCM 1 4 25.00

calculations. In the deployment of YOLOv2-Tiny, the

performance is very high, but due to changes in the original

network architecture during the pruning process, its accuracy

is reduced a lot. The performance of the acceleration platform

we designed is 6.32 times faster than in the CPU (i7), and the

energy consumption is 1/26 of the CPU. About the FPGA

platform, under the premise of improving effective accuracy,

we optimize the architecture of the hardware platform to

exceed the test performance of ZC106 and Cyclone V.

5.2 Conclusions and Future Work

In building a motorcycle detection platform, we

propose a motorcycle detection model and acceleration on the

FPGA. This paper considers the accuracy and timeliness

involved in the actual application. By adopting fixed-16

precision, combined with multiple FPGA parallel optimization

methods, this experiment has achieved a performance of

25.98GOP/s on a low-level FPGA platform. At the same time,

this paper used the K-means algorithm to reorganize the

training parameters and create a YOLOv2-Motorcycle

version, which increased the accuracy to 89.45%.

Furthermore, the energy consumption was reduced to 2.32W,

which solves the problem of insufficient energy for a

1838 F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021

Table 4. Comparison of recent hardware optimization studies

 -
Ref (Zhao

et al., 2017)

Ref (Wai

et al., 2018)

Ref (Nakahara

et al., 2018)

Ref (Nguyen

et al., 2019)
This

Platform CPU(i7) ZC706 Cyclone V ZCU102 VC707 PYNQ

Model YOLOv2 YOLOv1 YOLOv2-Tiny YOLOv2 YOLOv2-Tiny YOLOv2

Precision Float-32 Fixed-32 Fixed-16 Fixed-2 Fixed-16 Fixed-16 Fixed-16
Frequency 2.1G 200 117 300 200 100 150

DSP (used/total) - 800/900 122/224 377/2520 272/2804 151/220 153/220

Power (W) 85 1.17 - - 11.11 2.32 2.32
Operation (GOP) 29.46 14 5.41 14.18 - 29.46 29.46

Performance (GOP/s) 4.11 18.82 21.60 347.44 464.7 14.10 25.98

Accuracy (%) - 83.6 - 69.1 51.38 89.45 89.45

Figure 8. Experimental results

removable platform. In the future, we will be committed to

porting the network to a higher-level FPGA, which will

support more optimization methods.

Acknowledgements

This work is supported by the electrical engineering

of Prince of Songkla University, 6110120028. We also

appreciate the careful works and the constructive suggestions

of the anonymous reviewers.

References

Bytyn, A., Ahlsdorf, R., Leupers, R., & Ascheid, G. (2020).

Dataflow aware mapping of convolutional neural

networks onto many-core platforms with network-

on-chip interconnect, 1–11. Retreived from http://

arxiv.org/abs/2006.12274

Blaiech, A. G., Khalifa, K. B., Valderrama, C., Fernandes, M.

A. C., & Bedoui, M. H. (2019). A survey and

taxonomy of FPGA-based deep learning

accelerators. Journal of Systems Architecture, 98,

331–345. doi:10.1016/j.sysarc.2019.01.007

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., &

Temam, O. (2014). DianNao: A small-footprint

high-throughput accelerator for ubiquitous machine-

learning. Proceedings of the International

Conference on Architectural Support for

Programming Languages and Operating Systems -

ASPLOS, pp. 269–283. doi:10.1145/2541940.2541

967

Ding, W., Huang, Z., Huang, Z., Tian, L., Wang, H., & Feng,

S. (2019). Designing efficient accelerator of

depthwise separable convolutional neural network

on FPGA. Journal of Systems Architecture, 97, 278–

286. doi:10.1016/j.sysarc.2018.12.008

Fang, J., Mulder, Y. T. B., Hidders, J., Lee, J., & Hofstee, H.

P. (2020). In-memory database acceleration on

FPGAs: a survey. The VLDB Journal, 29(1), 33–59.

doi:10.1007/s00778-019-00581-w

Gschwend, D. (2016). ZynqNet: An FPGA-accelerated

embedded convolutional neural network. August

2016, 1–102. Retreived from https://github.com/

dgschwend/zynqnet

Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE

International Conference on Computer Vision,

1440–1448. doi:10.1109/ICCV.2015.169

F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021 1839

Guo, K., Zeng, S., Yu, J., Wang, Y., & Yang, H. (2017). A

survey of FPGA-based neural network accelerator,

9(4), 1–26. Retreived from http://arxiv.org/abs/

1712.08934

Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K.,

Hwu, W., & Chen, D. (2019). FPGA/DNN Co-

Design: An efficient design methodology for IoT

intelligence on the edge. Retreived from https://

arxiv.org/abs/1904.04421

Lee, C., Pino, J., Lin, P., & Peters, E. (2013). Motorcycle type

matters: Use of helmet, speeding, and drinking in

motorcycle crashes. Proceeding of the 2013 TRB

92nd Annual Meeting.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.

Nature, 521(7553), 436–444. doi:10.1038/nature

14539

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P.

(2020). Focal loss for dense object detection. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 42(2), 318–327. doi:10.1109/TPAMI.

2018.2858826

Li, H., Fan, X., Jiao, L., Cao, W., Zhou, X., & Wang, L.

(2016). A high performance FPGA-based

accelerator for large-scale convolutional neural

networks. FPL 2016 - 26th International

Conference on Field-Programmable Logic and

Applications, pp.1–9. doi:10.1109/FPL.2016.757

7308

Ma, Y., Cao, Y., Vrudhula, S., & Seo, J. S. (2017).

Optimizing loop operation and dataflow in FPGA

acceleration of deep convolutional neural networks.

FPGA 2017 - Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable

Gate Arrays, 45–54. doi:10.1145/3020078.3021736

Nakahara, H., Fujii, T., Yonekawa, H., & Sato, S. (2018). A

lightweight YOLOv2: A binarized CNN with a

parallel support vector regression for an FPGA.

FPGA 2018 - Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable

Gate Arrays, 31–40. doi:10.1145/3174243.3174266

Nguyen, D. T., Nguyen, T. N., Kim, H., & Lee, H. J. (2019).

A high-throughput and power-efficient FPGA

implementation of YOLO CNN for object detection.

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 27(8), 1861–1873. doi:10.1109/

TVLSI.2019.2905242

Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., . . . Yang,

H. (2016). Going deeper with embedded FPGA

platform for convolutional neural network. FPGA

'16: Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable

Gate Arrays, 26-35. doi:10.1145/2847263.2847265

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016)

You only look once: unified, real-time object

detection. Proceedings of 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

779-788. doi:10.1109/CVPR.2016.91

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster,

stronger. Proceedings of the 30th IEEE Conference

on Computer Vision and Pattern Recognition

(CVPR), 6517–6525. doi:10.1109/CVPR.2017.690

Siebert, F. W., & Lin, H. (2020). Detecting motorcycle helmet

use with deep learning. Accident Analysis and

Prevention, 134 (January 2020), 105319. doi:10.

1016/j.aap.2019.105319

Shawahna, A., Sait, S. M., & El-Maleh, A. (2019). FPGA-

Based accelerators of deep learning networks for

learning and classification: A review. IEEE Access,

7, 7823–7859. doi:10.1109/ACCESS.2018.2890150

Shan, L., Zhang, M., Deng, L., & Gong, G. (2016). A

dynamic multi-precision fixed-point data

quantization strategy for convolutional neural

network. Communications in Computer and

Information Science, 666 CCIS(20124307110016),

102–111. doi:10.1007/978-981-10-3159-5_10

Venieris, S. I., & Bouganis, C. S. (2017). Latency-driven

design for FPGA-based convolutional neural

networks. Proceeding of the 27th International

Conference on Field Programmable Logic and

Applications (FPL) 2017, 1-8. doi:10.23919/FPL.

2017.8056828

Wai, Y. J., Yussof, Z. bin M., bin Salim, S. I., & Chuan, L. K.

(2018). Fixed point implementation of Tiny-YOLO-

v2 using OpenCL on FPGA. International Journal

of Advanced Computer Science and Applications,

9(10), 506–512. doi:10.14569/IJACSA.2018.0910

62

Ye, X. Y., Hong, D. S., Chen, H. H., Hsiao, P. Y., & Fu, L. C.

(2020). A two-stage real-time YOLOv2-based road

marking detector with lightweight spatial

transformation-invariant classification. Image and

Vision Computing, 102, 103978. doi:10.1016/j.

imavis.2020.103978

Ioffe, S., & Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing

internal covariate shift. Proceedings of the 32nd

International Conference on Machine Learning

(ICML), pp. 448-456.

Zhao, M., Hu, C., Wei, F., Wang, K., Wang, C., & Jiang, Y.

(2019). Real-time underwater image recognition

with FPGA embedded system for convolutional

neural network. Sensors (Switzerland), 19(2), 350.

doi:10.3390/s19020350

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J.

(2015). Optimizing FPGA-based accelerator design

for deep convolutional neural networks. FPGA 2015

- 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 161–170. doi:10.

1145/2684746.2689060

