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Abstract 
 

This paper proposes a hardware accelerator design for motorcycle detection based on deep learning. We designed the 

training parameters by K-means algorithm and created the motorcycle dataset from Thailand's urban scene. Due to the rapid 

evolution of deep learning and the need for high-performance, low-power, and scalable models for application platforms, we 

designed the YOLOv2 accelerator architecture on the PYNQ platforms by using five optimization methods, including loop 

unrolling/pipeline, loop tiling, data quantization, memory ping-pong, and multi-channel data transmission. The proposed training 

parameters can increase the accuracy from the original 76.8% to 89.45%. The hardware experimental results obtained 14.10 

GOP/s (100MHz) and 25.98 GOP/s (150MHz) on the PYNQ (ZYNQ 7020). The performance of the acceleration platform that 

we designed is 6.32 times faster than that of the CPU (i7), and the energy consumption is 1/26 of the CPU. In addition, the 

hardware accelerated deep learning applications have in recent years improved a lot in accuracy and calculation speed. 
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1. Introduction 
 

In developing countries, motorcycles have become 

the primary means of transportation. Because of their ability 

to reach a high speed and few protective measures, they have 

always been the vehicle type with the highest mortality rate in 

traffic accidents. According to the traffic environment 

characteristics, in different urban areas the drivers of cars will 

pay extra attention to various objects. In the complex traffic 

environment of developing countries, autonomous driving 

should pay more attention to high-speed motorcycles. These 

reasons raise the requirements to demonstrate high-efficiency 

detection of motorcycles on a low-power-consumption 

platform. It is urgent to develop accurate and fast detection 

platforms to achieve efficient detection results for motorcycles 

(Lee, Pino, Lin, & Peters, 2013; Siebert & Lin, 2020). 

 
There are many detection algorithms based on deep 

neural networks (Lecun, Bengio, & Hinton, 2015). While two-

stage approaches such as fast RCNN (Girshick, 2015), achieve 

higher accuracy than single-stage approaches, they are very 

time-consuming. In contrast, single-stage approaches 

simultaneously conduct object location and identification. The 

single-stage approaches like YOLO (Redmon, Divvala,  

Girshick, & Farhadi, 2016) and RetinaNet ( Lin, Goyal, 

Girshick, He, & Dollar, 2020) are much faster than the two-

stage approaches. YOLOv2 was introduced to detect objects 

more quickly and accurately (Redmon & Farhadi, 2017). 

Based on the characteristics of the application and the 

complexity of CNN, it is difficult for the CPU to provide 

sufficient computing power. The relatively powerful GPU has 

a larger power consumption and is not suitable for removable 

devices (Gschwend, 2016). To improve computing 

performance and save energy consumption, FPGA-based 

acceleration has become one of the most attractive alternatives 

(Guo, Zeng, Yu, Wang, & Yang, 2017). FPGA is the next 

possible solution to surpass GPU in speed and energy 

efficiency (Blaiech, Khalifa, Valderrama, Fernandes, & 

Bedoui, 2019). It is a programmable device that can be 
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configured as a custom circuit to perform a specific task. In 

(Zhao et al., 2019), the characteristics of low power 

consumption, strong computing capability, and high 

flexibility, were used to design an underwater object detection 

platform, because when designed for normal circumstances, 

the high-power platforms cannot support underwater 

operations. The paper (Ye, Hong, Chen, Hsiao, & Fu, 2020) 

proposed a two-stage YOLOv2-based network to tackle 

distorted road marking detection as well as to balance 

precision and recall. But the model worked on GTX1070, 

making it challenging to deploy in Autonomous Driving 

Systems (ADS). Although the efficiency of reconfigurable 

logic platforms is lower than of custom circuits (ASICs) 

(Fang, Mulder, Hidders, Lee, & Hofstee, 2020), their design 

cycle is shorter than of ASICs. 

Compared to deploying deep neural networks on 

CPUs and GPUs, the FPGA deployment methods focuses on 

the allocation and invocation of underlying hardware 

resources. Therefore, it is much more challenging to 

implement a neural network on FPGA than on CPU or GPU ( 

Shawahna, Sait, & El-Maleh, 2019). The paper (Hao et al., 

2019) proposed the method of hardware and software co-

design, which helps analyze the development of designs and 

explore the design space. In the paper (Zhang et al., 2015), an 

SIMD convolutional neural network accelerator architecture 

expands the two-dimensional input and output features to 

achieve high performance. The actual transmission delay is 

not considered during the modeling process, resulting in a 

performance difference of almost 47% to the actual measured 

result. In (Ding et al., 2019), an efficient acceleration 

architecture placed depthwise separable convolution on FPGA 

to realize a customized acceleration architecture. Due to the 

small size of depthwise separable networks and the low 

flexibility of hardware architecture, the same approach cannot 

be applied to large networks. As shown in (Ma, Cao, 

Vrudhula, & Seo, 2017), a full expansion operation was 

proposed during the optimization process, and all feature 

maps and weights were cached in on-chip memory, which 

makes it challenging to achieve the performance on a low-cost 

FPGA. The paper (Li et al., 2016) improves the bandwidth 

utilization rate by increasing the burst transmission length. It 

implements parameter reuse and multi-batch processing, 

which improve the computing unit's utilization rate with fully 

connected layer. (Shan, Zhang, Deng, & Gong, 2016) 

proposed a dynamic multi-precision fixed-point data 

quantization strategy for CNN. The floating-point data on 

CNN after training was quantized into a fixed-point type. 

Compared with the previous static quantization strategy, 

dynamic quantization will reduce the loss in the process.  

This paper combines the above mentioned practical 

acceleration methods for deep learning by analyzing the target 

platform and proposing the accelerated architecture. The 

target hardware architectures (Li et al., 2016; Shan et al., 

2016) are briefly described and implemented through a high-

level synthesis tool. At the same time, considering the low 

power consumption of the removable platform, we propose to 

implement the neural network on the PYNQ and use the high-

level programming language (Python) to control the work of 

the platform. The YOLOv2 model achieved 25.98 GOP/s 

performance on the PYNQ platform and 89.45% detection 

accuracy. 

 

2. Related Work and Background Theories 
 

State-of-the-art CNNs for large visual recognition 

tasks usually contain billions of neurons and their trend is to 

grow deeper and larger. These networks contain millions of 

neurons and hundreds of millions of parameters, including 

weights and intermediate feature maps. We need to store these 

parameters in DRAM and implement large-scale data 

interaction. The regression model is used to adjust the 

boundary. The various models data are not shared, so the 

computational complexity of R-CNN is enormous. YOLO 

regards the recognition problem as a regression problem. It 

takes the entire picture as input and can better recognize the 

background. It has the following three characteristics: 

1. Fast speed: YOLO solves object detection as a 

regression problem and uses a single network to complete the 

whole detection process. 

2. Low recall rate: Low recall rate is reflected in the 

low background error detection rate. 

3. Strong generalization ability: For other kinds of 

things, the recognition effect after training is also excellent 

(Ioffe & Szegedy, 2015). 

 

3. Training YOLOv2 Using Motorcycle Dataset 
 

This section describes how to perform training of 

YOLOv2 using a motorcycle dataset. The motorcycle dataset 

has been prepared in VOC style.  

VOC data are often used for object detection. Since 

2005, it has held a competition every year. In the beginning, 

there were only four categories. By 2007, this had expanded to 

20 categories. There are two commonly used versions: 2007 

and 2012. In the experiment, the required categories are 

extracted from the VOC dataset and other datasets, combined 

with the pictures taken in the application scene and made into 

a VOC format dataset. This dataset contains 16,000 training 

pictures and 3,200 validation pictures. During the labelling 

process, the wheels, engines, fuel tanks, and handlebars of 

motorcycles are specially marked. Then, K-means clustering 

algorithm has been applied to optimize the accuracy of 

training. Finally, this experiment can reach the mAP of 

89.45%. More details are given as follows. 

Through the analysis of the literature (Redmon & 

Farhadi, 2017) and the source code of YOLOv2, the target 

detection steps are as follows: 

 (1) Image pre-processing: input RGB images of any 

resolution, convert to [0,1] interval, adjust to 416×416 

according to the original image aspect ratio, and fill in 0’s if 

necessary for target size. 

 (2) Network detection: input the 416×416×3 image 

array obtained by pre-processing, and after the YOLOv2 

network detection, output a 13×13×30 size array containing 

the detection target information.  

(3) Image post-processing: process the output 

13×13×30 array to obtain the detection frame center, length 

and width, frame reliability, and object prediction probability 

based on the image aspect ratio to recover the scale of the 

original image. 

In the anchor-based object detection algorithm, the 

anchor is generally designed manually. In SSD and Faster-

RCNN (Girshick, 2015), nine anchors with different sizes and 



F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021  1833 

 

aspect ratios are designed. However, the artificially designed 

anchors have a drawback. They cannot be guaranteed to match 

the dataset well. If the anchor's size is different from the 

object size, it will affect the accuracy of the model. K-means 

clustering has been used (Zhong, Wang, Peng, & Zhang, 

2020) instead of manual design, by clustering the bounding 

boxes in the dataset to generate a set of anchors that are more 

suitable. This experiment generated better anchor values based 

on the K-mean algorithm. During the training phase, YOLOv2 

generates the bounding box more accurately. 

The software experiment part, as shown in Table 1, 

performs quantitative analysis on the number of data sets 

(training and validation), learning rate, training times (Max-

batches), training methods (Random), and anchors. Figure 1 

shows the final loss and IOU (Intersection over union) in 

training of iteration 7.  

 
Table 1. Training based on motorcycle dataset 

 

 

 

Figure 1. The loss and IOU of final training (Loss is taken every 100 
cycles.) 

After training, this paper uses the mean average 

precision (mAP) (1) and recall (2) as the main evaluation 

criteria. 

 

 

(1) 

 

 

(2) 

 
Training result as Figure 2, this experiment adjusted 

the YOLOv2 network parameters for the specificity of single 

object detection. The mAP reached 89.45%. 

 

4. Hardware Accelerator Design 
 

After the software training, this paper implements 

YOLOv2 on the hardware platform, which can achieve an 

efficient performance. Combined with the application 

requirements, a comprehensive analysis of the hardware and 

software collaborative design theory (Hao et al., 2019), this 

study proposed the hardware platform architecture shown in 

Figure 3. The system's core is to generate IP cores on the HLS 

tool based on the software model. The CNN accelerator IP 

design on FPGA consists of four main parts: processing 

elements (PEs), on-chip buffers, external memory (DDR3), 

and on-chip storages (built from Block RAMs, LUT, and 

FIFO). Due to the limitation of on-chip resources, all data will 

Iteration Train+val Learning-rate Max-batches Random Anchors 

      

1 800+160 0.0005 20000 1 (1.3221, 1.73145) (3.19275, 4.00944) 

(5.05587, 8.09892) (9.47112, 4.84053) (11.2364, 10.0071) 

2 1600+320 0.0005 10000 1 (1.3221, 1.73145) (3.19275, 4.00944) 

(5.05587, 8.09892) (9.47112, 4.84053) (11.2364, 10.0071) 

3 800+160 0.0005 10000 1 (1.565, 2.3456) (2.4562, 4.4568) 
(6.6525, 8.8898) (11.6848, 6.7475) 

(13.5656, 11.2523) 
4 800+160 0.0001 15000 1 (1.565, 2.3456) (2.4562, 4.4568) 

(6.6525, 8.8898) (11.6848, 6.7475) 

(13.5656, 11.2523) 
5 1600+320 0.0001 15000 0 (1.565, 2.3456) (2.4562, 4.4568) 

(6.6525, 8.8898) (11.6848, 6.7475) 

(13.5656, 11.2523) 
6 800+160 0.0001 15000 0 (1.08,1.19) (3.42,4.41) (6.63,11.38) 

(9.42,5.11) (16.62,10.52) 

7 1600+320 0.0001 15000 1 (1.08,1.19) (3.42,4.41) (6.63,11.38) 
(9.42,5.11) (16.62,10.52) 

8 800+160 0.0001 10000 0 (1.08,1.19) (3.42,4.41) (6.63,11.38) 

(9.42,5.11) (16.62,10.52) 
9 800+160 0.0001 10000 1 (1.08,1.19) (3.42,4.41) (6.63,11.38) 

(9.42,5.11) (16.62,10.52) 
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Figure 2. mAP with different training parameters 

 

 
 

Figure 3. Overview of the YOLOv2 accelerator architecture based on the PYNQ 

 

be stored in the external memory. Before sent to the PEs, the 

data will be cached in the on-chip buffers (input buffers and 

weights & bias buffers). Double buffers are used to cover data 

calculation time and transfer time. After analyzing the central 

part of the neural network calculation, the convolutional 

operations will occupy more than 90% calculation amount 

(Qiu et al., 2016), and the fully connected layer occupies more 

than 90% of the parameter amount (Ding et al., 2019). Since 

the fully connected layer can be regarded as a particular 

convolutional layer, the optimization of calculation is mainly 

for convolution operations.  

In this design, the HLS tool can be used to 

implement the YOLOv2 network by C++ and automatically 

generate VHDL code. This conversion method will simplify 

the difficulty of developing on FPGA and maintain the 

accuracy of the original neural network. As shown in Figure 3, 

the PS part uses the advantages of the OpenCV library to pre-

process the original image, obtaining a fixed-size grayscale 

image. Then, through the DMA data transfer protocol, the 

input feature map and weight parameters are transferred to the 

PL part in the form of blocks (combined with the size of the 

hardware resources, the block parameters can be dynamically 

modified). Figure 4 shows each optimization section. 

 

4.1 Convolutional computation engine design 

 

This section explains the design of a convolutional 

computation engine. Sections 4.1.1 and 4.1.2 mainly describe 

the convolutional optimization methods, and sections 4.1.3 

and 4.1.4 will describe the dynamic fixed-point quantization 

and memory optimization. 

 

4.1.1 Loop unrolling and loop reconstruction 
 

As shown in Figure 5, the inputs of the 

convolutional layer are C-Hin input feature maps, and the 

outputs are C-Hout output feature maps. Each "input-output" 

feature map has a specific convolution kernel for convolution 

calculation. There are CHout×CHin convolution kernels, and 

the size of each convolution kernel is K×K. In the process of 

the convolution calculation, each convolution kernel slides 

through an input feature map. The result of the convolution 

will be accumulated to the corresponding output feature. 

Therefore, the algorithm flow of convolution calculation is: 

 

 
(3) 

 

According to the architecture schematic, the pseudo-

code is written as in Figure 5. CHin multipliers are used to 

process convolution operations in parallel, which will generate 

a single PE (processing element). The architecture is 

composed of multiple PEs, forming the structure in Figure 5. 
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Figure 4. The optimization methods on the PL part 

 
 

Figure 5. Pseudo code for convolution operations on FPGA 

 

It is necessary to call this acceleration module 

multiple times to complete the six nested loop calculations of 

convolution. By partially expanding the number of output 

feature maps and input feature maps, a CHin×CHout parallel 

multiplication calculation unit and Chin [log2CHout] depth 

addition trees are formed as shown in Figure 5. 

Loop reconstruction: Since the accelerator is 

parallelized in the input channel and output channel, the input 

channel loop and the output channel loop need to be placed in 

the innermost loop. The polyhedron-based optimization 

framework (Ma et al., 2017) can be used to perform automatic 

loop conversion, which can avoid loop dependence.  

 

4.1.2 Loop tiling 
 

PYNQ's on-chip storage resources (generally less 

than 10 MB) are extremely insufficient compared to the 

storage space required for CNN calculation. Especially on 

low-level development boards, most of the research mainly 

uses convolution calculations' data locality characteristics. 

Corresponding to HLS implementation, it needs to be applied 

to loop tiling. Some data only needs to be read or written a 

few times from off-chip storage. It dramatically reduces the 

number of memory accesses and the amount of data accessed.  

It can allow an acceleration unit that reads CHin 

input feature maps with ((R -1) ×S +K) × ((C -1) ×S +K) 

pixels from the off-chip DRAM each time and corresponding 

weight parameters with the size of CHin ×CHout ×K^2.  

Multiplexing is done on-chip input feature map 

pixel blocks and weight parameters to keep the intermediate 

results in the on-chip buffer. After the final output pixel block 

is obtained, CHout pieces of R×C pixel blocks are written to 

an extra chip. As mentioned before, the on-chip storage 

resources can only accommodate one input data block (In 

array), one output data block (Out array) and one weight data 

block (W array). In HLS, the data port of DRAM is expressed 

in the pointers, which need to interact with the corresponding 

location of the off-chip DRAM when switching a data block. 

 

4.1.3 Timing and memory system design 
 

Each layer of YOLOv2 has different convolution 

sizes. When different convolution layers are mapped to the 

same architecture, the computing unit is often not fully 

utilized, resulting in low dynamic utilization. This paper 

proposes to set up a dynamic reusable architecture, combined 

with pipeline operation, to maximize FPGA resource 

utilization and minimize operating latency. To reduce the 

number of interactions between the accelerator and off-chip 

memory, we design the architecture shown in Figure 6. The 

accelerator and off-chip memory only interact twice, in the 

proposed multi-layer cascaded accelerator. 

This study performs pipeline and data flow 

operations on the entire architecture based on multi-layer 



1836 F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021 

 
 
 

 

Figure 6. Build subgraphs of different sizes to create a multi-layer cascaded accelerator 

 

cascaded architecture and combining the advantages of FPGA 

computing parallelism. The pipeline design realizes the 

concurrency of computing and data interaction at each layer. 

When Layer 0 reads the input feature map from off-chip 

memory to the input buffer (InBuf pong), the convolution 

module of Layer 0 also reads data from the input buffer 

(InBuf ping) for calculation at the same time. When Layer 0 

writes the result of the convolution calculation to the output 

buffer (OutBuf pong), the latency of the entire system can be 

judged according to the degree of parallelism. Figure 7 shows 

an example of the pipeline and dataflow, three-level (Bytyn, 

Ahlsdorf, Leupers, & Ascheid, 2020). 

This helps calculate and compare the latency 

(Venieris & Bouganis, 2017): The T_1-T_3 is the latency of 

Task1,2,3. 

 

 (4) 

 

 (5) 

 
 (6) 

 

4.1.4 Dynamic fixed-point quantization 
 

YOLOv2 has high computing performance, and its 

computing power reaches 29.47 GOP. The network needs to 

be compressed and quantized (Ding et al., 2019). Most of the 

previous work adopted the 16-bit quantization strategy. (Chen 

et al., 2014) showed that using 16-bit numbers instead of 32-

bit ones only caused 0.26% increase in error rate on the 

MNIST dataset. Using short fixed-point numbers instead of 

long floating-point numbers is efficient for implementations 

on the FPGA and can significantly reduce memory footprint 

and bandwidth requirements. As shown in Table 2, this study 

Table 2. Resource consumption for different types of data 

 

 Type DSP LUT 

    

Adder Float-32 2 214 

Mul Float-32 3 135 

Adder Fixed-16 - 47 
Mul Fixed-16 1 101 

    

 

performed multiplication and addition tests at different 

precisions. The resources consumed by the multiplication and 

addition operations of fixed-16 in FPGA are almost half of the 

float-32.  

Based on analyzing the dynamic fixed-point 

quantization method (Qiu et al., 2016; Shan et al., 2016), this 

study used quantized weights, bias, input feature and output 

feature. According to the data size range of each layer, various 

decimal point positions are formulated. 

Fixed point number can be expressed as: 

 

 

(7) 

 

The bw represents the bit width of the fixed-point 

number, and the exp represents the exponent, while Bi ∈ 

{0,1}. The conversion between floating point and fixed point 

is as in (8) and (9): 

 

 (8) 

 

 (9) 
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Figure 7. Pipeline for the loop operation and dataflow for the task-level function 

 

5. Experiment Using Hardware 
 

The hardware architecture is built in Vivado 2020.1. 

The acceleration platform is developed in a Xilinx PYNQ-z2 

board. The main chip is Zynq XC7Z020-1CLG400C, which 

contains a 630 KB block RAM, 220 DSP slices,140 BRAMs, 

an ARM dual-core Cortex-A9 processor, and an external 512 

MB DDR3. On the PS side, use python to call the overlay and 

edit the python instructions to control the PL side. The 

hardware part is not friendly to image pre-processing, so the 

pre-processing part is placed on the PS side. The PL part 

designs a new IP based on the multi-layer cascade 

acceleration architecture. The process consists of copying 

weights and bias files from SD card to DDR3 memory, 

transferring data through AXI-DMA, and performing 

convolution acceleration calculations in PL. 

 

5.1 Results and discussion 
 

This study mainly analyzes hardware resource 

utilization and computing ability per second (GOP/s). Table 3 

is our resource usage on PYNQ-z2. 

Since the performance is directly related to the 

development board's operating frequency, this paper 

conducted independent tests on the performance of 100MHz 

and 150MHz cases. Table 4 shows the acceleration of deep 

learning neural networks on various platforms in recent years. 

Table 4 compares the frameworks and methods for 

accelerating object detection on various FPGA levels in recent 

years. The main comparison metrics are DSP usage, data 

precision, energy consumption, performance, and accuracy. 

(Zhao et al., 2017) uses fixed-32 to reduce data accuracy loss, 

but the amount of calculation is increased. Performance is not 

excellent when using 800 DSPs. (Nakahara, Fujii, Yonekawa, 

& Sato, 2018) quantifies the data to achieve a very high 

calculation speed, but the loss of accuracy is excellent on the 

software level, using technologies such as network 

compression and pruning reduce the network's parameters and 

Table 3. Resource usage on PYNQ-z2 
 

Resource Utilization Available Utilization% 

    

LUT 37230 53200 69.98 

LUTRAM 6082 17400 34.95 
FF 34012 106400 31.97 

BRAM 87.50 140 62.50 

DSP 

(100Mhz) 

151 220 68.64 

DSP 

(150Mhz) 

153 220 69.54 

BUFG 3 32 9.38 

MMCM 1 4 25.00 
    

 

calculations. In the deployment of YOLOv2-Tiny, the 

performance is very high, but due to changes in the original 

network architecture during the pruning process, its accuracy 

is reduced a lot. The performance of the acceleration platform 

we designed is 6.32 times faster than in the CPU (i7), and the 

energy consumption is 1/26 of the CPU. About the FPGA 

platform, under the premise of improving effective accuracy, 

we optimize the architecture of the hardware platform to 

exceed the test performance of ZC106 and Cyclone V. 

 

5.2 Conclusions and Future Work 
 

In building a motorcycle detection platform, we 

propose a motorcycle detection model and acceleration on the 

FPGA. This paper considers the accuracy and timeliness 

involved in the actual application. By adopting fixed-16 

precision, combined with multiple FPGA parallel optimization 

methods, this experiment has achieved a performance of 

25.98GOP/s on a low-level FPGA platform. At the same time, 

this paper used the K-means algorithm to reorganize the 

training parameters and create a YOLOv2-Motorcycle 

version, which increased the accuracy to 89.45%. 

Furthermore, the energy consumption was reduced to 2.32W, 

which solves the problem of insufficient energy for a 
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Table 4. Comparison of recent hardware optimization studies 

 

 - 
Ref (Zhao  

et al., 2017) 

Ref (Wai  

et al., 2018) 

Ref (Nakahara 

et al., 2018) 

Ref (Nguyen  

et al., 2019) 
This 

       

Platform CPU(i7) ZC706 Cyclone V ZCU102 VC707 PYNQ 

Model YOLOv2 YOLOv1 YOLOv2-Tiny YOLOv2 YOLOv2-Tiny YOLOv2 

Precision Float-32 Fixed-32 Fixed-16 Fixed-2 Fixed-16 Fixed-16 Fixed-16 
Frequency 2.1G 200 117 300 200 100 150 

DSP (used/total) - 800/900 122/224 377/2520 272/2804 151/220 153/220 

Power (W) 85 1.17 - - 11.11 2.32 2.32 
Operation (GOP) 29.46 14 5.41 14.18 - 29.46 29.46 

Performance (GOP/s) 4.11 18.82 21.60 347.44 464.7 14.10 25.98 

Accuracy (%) - 83.6 - 69.1 51.38 89.45 89.45 
        

 

 
 

Figure 8. Experimental results 

 

removable platform. In the future, we will be committed to 

porting the network to a higher-level FPGA, which will 

support more optimization methods. 

 

Acknowledgements 
 

This work is supported by the electrical engineering 

of Prince of Songkla University, 6110120028. We also 

appreciate the careful works and the constructive suggestions 

of the anonymous reviewers. 

 

References 
 

Bytyn, A., Ahlsdorf, R., Leupers, R., & Ascheid, G. (2020). 

Dataflow aware mapping of convolutional neural 

networks onto many-core platforms with network-

on-chip interconnect, 1–11. Retreived from http:// 

arxiv.org/abs/2006.12274 

Blaiech, A. G., Khalifa, K. B., Valderrama, C., Fernandes, M. 

A. C., & Bedoui, M. H. (2019). A survey and 

taxonomy of FPGA-based deep learning 

accelerators. Journal of Systems Architecture, 98, 

331–345. doi:10.1016/j.sysarc.2019.01.007 

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & 

Temam, O. (2014). DianNao: A small-footprint 

high-throughput accelerator for ubiquitous machine-

learning. Proceedings of the International 

Conference on Architectural Support for 

Programming Languages and Operating Systems - 

ASPLOS, pp. 269–283. doi:10.1145/2541940.2541 

967 

Ding, W., Huang, Z., Huang, Z., Tian, L., Wang, H., & Feng, 

S. (2019). Designing efficient accelerator of 

depthwise separable convolutional neural network 

on FPGA. Journal of Systems Architecture, 97, 278–

286. doi:10.1016/j.sysarc.2018.12.008 

Fang, J., Mulder, Y. T. B., Hidders, J., Lee, J., & Hofstee, H. 

P. (2020). In-memory database acceleration on 

FPGAs: a survey. The VLDB Journal, 29(1), 33–59.  

doi:10.1007/s00778-019-00581-w 

Gschwend, D. (2016). ZynqNet: An FPGA-accelerated 

embedded convolutional neural network. August 

2016, 1–102. Retreived from https://github.com/ 

dgschwend/zynqnet 

Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE 

International Conference on Computer Vision, 

1440–1448. doi:10.1109/ICCV.2015.169  



F. Peng et al. / Songklanakarin J. Sci. Technol. 43 (6), 1831-1839, 2021  1839 

 

Guo, K., Zeng, S., Yu, J., Wang, Y., & Yang, H. (2017). A 

survey of FPGA-based neural network accelerator, 

9(4), 1–26. Retreived from http://arxiv.org/abs/ 

1712.08934 

Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., 

Hwu, W., & Chen, D. (2019). FPGA/DNN Co-

Design: An efficient design methodology for IoT 

intelligence on the edge. Retreived from https:// 

arxiv.org/abs/1904.04421 

Lee, C., Pino, J., Lin, P., & Peters, E. (2013). Motorcycle type 

matters: Use of helmet, speeding, and drinking in 

motorcycle crashes. Proceeding of the 2013 TRB 

92nd Annual Meeting. 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. 

Nature, 521(7553), 436–444. doi:10.1038/nature 

14539 

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. 

(2020). Focal loss for dense object detection. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, 42(2), 318–327.  doi:10.1109/TPAMI. 

2018.2858826 

Li, H., Fan, X., Jiao, L., Cao, W., Zhou, X., & Wang, L. 

(2016). A high performance FPGA-based 

accelerator for large-scale convolutional neural 

networks. FPL 2016 - 26th International 

Conference on Field-Programmable Logic and 

Applications, pp.1–9.  doi:10.1109/FPL.2016.757 

7308 

Ma, Y., Cao, Y., Vrudhula, S., & Seo, J. S. (2017). 

Optimizing loop operation and dataflow in FPGA 

acceleration of deep convolutional neural networks. 

FPGA 2017 - Proceedings of the 2017 ACM/SIGDA 

International Symposium on Field-Programmable 

Gate Arrays, 45–54. doi:10.1145/3020078.3021736 

Nakahara, H., Fujii, T., Yonekawa, H., & Sato, S. (2018). A 

lightweight YOLOv2: A binarized CNN with a 

parallel support vector regression for an FPGA. 

FPGA 2018 - Proceedings of the 2018 ACM/SIGDA 

International Symposium on Field-Programmable 

Gate Arrays, 31–40.  doi:10.1145/3174243.3174266 

Nguyen, D. T., Nguyen, T. N., Kim, H., & Lee, H. J. (2019). 

A high-throughput and power-efficient FPGA 

implementation of YOLO CNN for object detection. 

IEEE Transactions on Very Large Scale Integration 

(VLSI) Systems, 27(8), 1861–1873.  doi:10.1109/ 

TVLSI.2019.2905242 

Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., . . . Yang, 

H. (2016). Going deeper with embedded FPGA 

platform for convolutional neural network. FPGA 

'16: Proceedings of the 2016 ACM/SIGDA 

International Symposium on Field-Programmable 

Gate Arrays, 26-35.  doi:10.1145/2847263.2847265 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016) 

You only look once: unified, real-time object 

detection. Proceedings of 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 

779-788. doi:10.1109/CVPR.2016.91 

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, 

stronger. Proceedings of the 30th IEEE Conference 

on Computer Vision and Pattern Recognition 

(CVPR), 6517–6525. doi:10.1109/CVPR.2017.690 

Siebert, F. W., & Lin, H. (2020). Detecting motorcycle helmet 

use with deep learning. Accident Analysis and 

Prevention, 134 (January 2020), 105319.  doi:10. 

1016/j.aap.2019.105319 

Shawahna, A., Sait, S. M., & El-Maleh, A. (2019). FPGA-

Based accelerators of deep learning networks for 

learning and classification: A review. IEEE Access, 

7, 7823–7859.  doi:10.1109/ACCESS.2018.2890150 

Shan, L., Zhang, M., Deng, L., & Gong, G. (2016). A 

dynamic multi-precision fixed-point data 

quantization strategy for convolutional neural 

network. Communications in Computer and 

Information Science, 666 CCIS(20124307110016), 

102–111.  doi:10.1007/978-981-10-3159-5_10 

Venieris, S. I., & Bouganis, C. S. (2017). Latency-driven 

design for FPGA-based convolutional neural 

networks. Proceeding of the 27th International 

Conference on Field Programmable Logic and 

Applications (FPL) 2017, 1-8. doi:10.23919/FPL. 

2017.8056828 

Wai, Y. J., Yussof, Z. bin M., bin Salim, S. I., & Chuan, L. K. 

(2018). Fixed point implementation of Tiny-YOLO-

v2 using OpenCL on FPGA. International Journal 

of Advanced Computer Science and Applications, 

9(10), 506–512. doi:10.14569/IJACSA.2018.0910 

62 

Ye, X. Y., Hong, D. S., Chen, H. H., Hsiao, P. Y., & Fu, L. C. 

(2020). A two-stage real-time YOLOv2-based road 

marking detector with lightweight spatial 

transformation-invariant classification. Image and 

Vision Computing, 102, 103978. doi:10.1016/j. 

imavis.2020.103978 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: 

Accelerating deep network training by reducing 

internal covariate shift. Proceedings of the 32nd 

International Conference on Machine Learning 

(ICML), pp. 448-456.  

Zhao, M., Hu, C., Wei, F., Wang, K., Wang, C., & Jiang, Y. 

(2019). Real-time underwater image recognition 

with FPGA embedded system for convolutional 

neural network. Sensors (Switzerland), 19(2), 350. 

doi:10.3390/s19020350 

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. 

(2015). Optimizing FPGA-based accelerator design 

for deep convolutional neural networks. FPGA 2015 

- 2015 ACM/SIGDA International Symposium on 

Field-Programmable Gate Arrays, 161–170. doi:10. 

1145/2684746.2689060 


