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Abstract 
 

The curse of dimensionality and over-fitting problems are usually associated with high-dimensional data. Feature 

selection is one method that can overcome these problems. This paper proposes floating search and conditional independence 

testing as a causal feature selection algorithm (FSCI). FSCI uses mutual information with floating search strategy to eliminate 

irrelevant features and removes redundant features using conditional independence testing. The experimental demonstration is 

based on 8 datasets and the results are evaluated by number of selected features, classification accuracy, and complexity of the 

algorithm. The results are compared with the non-causal feature selection algorithms FCBF, ReliefF, and with the causal feature 

selection algorithms MMPC, IAMB, FBED and MMMB. The overall results show that the average number of features selected 

by the proposed FSCI algorithm (12.8) is below those with ReliefF (16.5) and MMMB (13) algorithms. According to the 

classification tests, FSCI algorithm provided the highest average accuracy (87.40%) among the feature selection methods tested. 

Moreover, FSCI can infer causality with less complexity. 
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1. Introduction 
 

Feature selection selects a subset of features from 

the original features for classification, prediction, or data 

understanding (Lee & Jun, 2015). As the dimensionality of 

data increases feature selection becomes more important, 

while such high-dimensional data sets have become 

ubiquitous in various applications. Examples include various 

types of trade transaction data, gene expression data, WEB 

usage data, multimedia data, etc. (Wang, Irani & Pu, 2012). 

High dimensionality not only leads to higher computational 

costs and memory usage, but also reduces classification 

accuracy and easily causes overfitting. 

 

 

Therefore, many feature selection methods have 

been proposed, and they fall into three categorie: filters, 

wrappers, and embedded methods (Kumar & Minz, 2014). 

Filter methods select a subset of features independently of any 

classifier. Wrapper methods use classifiers to evaluate 

selected feature subsets. The embedded methods 

automatically perform feature selection during training of the 

classifier. This research focuses on a filter method because it 

can preserve the original dataset, and is useful for discovering 

causality from the original data. Feature selection consists of 

two elements: a search strategy for feature subset generation, 

and an evaluation criterion for measuring relevance of the 

features. 

The objective of a feature selection algorithm is to 

find a near optimal feature subset of the original features, 

without retaining irrelevant and redundant features (Yu & Liu, 

2004). While many feature selection algorithms can eliminate 

both irrelevant features and redundant features, it is difficult to 

remove redundant features in some approaches, as with a 

causal feature selection algorithm.  
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1.1 Search strategy of feature selection 
 

In the feature selection algorithm, subsets of 

features are generated based on a search strategy. There are 

many ways of searching, such as complete search, heuristic 

search, and random search (Liu & Yu, 2005). In its 

dependence on data dimensionality, the complexity of 

complete search can be exponential, while for heuristic search 

the time complexity might be quadratic. The complexity of 

random search can be linearly related to the number of 

iterations (Liu & Setiono, 1996). 

Complete search strategy finds the globally optimal 

subset of the original feature set, but is useful only when the 

feature dimensionality is low: when the original data has 

10,000 features, the count of possible subsets is 210000, making 

a complete search impossible with such high-dimensional 

data. With dimensionality as indicator of problem size, 

complete search is NP-hard (Davies & Russell, 1994). 

Heuristic search approach is more effective and 

feasible than a complete search. Depending on starting point 

of the search, it can be one of three types: forward search, 

backward search, and bidirectional search. Forward search 

starts from an empty set, and every round adds a feature that is 

optimal according to an evaluation criterion. The disadvantage 

is that features can be only added but not removed. Backward 

search is the opposite and starts from the full set of features, 

so that each time one feature is removed from the feature set, 

until the evaluation function value is optimized. The 

disadvantage is that the candidate feature subset only 

decreases without increasing. In bidirectional search the ideas 

of forward and backward searches are combined (Pudil, 

Novovičová & Kittler, 1994). 

Random search strategy is different from complete 

and heuristic searches. It selects features randomly. A 

common shortcoming of random search is that it relies on 

random factors, and is difficult to reproduce experimentally. 

Commonly used random search approaches are Random 

Generation plus Sequential Selection (RGSS), Simulated 

Annealing (SA), Genetic Algorithms (GA), etc. (Wutzl et al., 

2007). Considering the advantages and disadvantages of the 

search algorithm types, this article focuses on using a heuristic 

search. 

 

1.2 Non-causal feature selection 
 

In the past decades, different feature selection 

methods have been proposed, such as methods based on 

distance (Kira & Rendell, 1992), correlation (Hall, 1999) and 

Chi-squared (Miller & Siegmund, 1982). Usually, Pearson 

correlation coefficient is used to calculate the correlation of a 

feature with a class. For a pair of variables (X, Y), the linear 

correlation coefficient ‘r’ is given by Equation 1:  

 

                 (1) 

 

In 2004, Yu and Liu proposed Fast Correlation-

Based Filter (FCBF) method. FCBF has relevance analysis 

and redundancy analysis. FCBF uses symmetrical uncertainty 

(SU) to remove irrelevant features. The SU equation is as 

follows: 

                                                (2) 

 

SU has a range from 0 to 1. A larger SU means 

higher relevance of a feature to a class. The  

denotes Information Gain of X after observing variable Y. 

H(X) is the entropy of variable X, and  is the 

conditional entropy of X  after observing values of another 

variable Y.  

Then, FCBF removes a redundant feature Fi by the 

condition shown in Equation 3: 

 

                                (3) 

 

Here SUi,c is the correlation between a feature Fi  

and the class C. SUi,j is the correlation between a pair of 

features Fi and Fj (i ≠ j). 

ReliefF algorithm only focuses on removing 

irrelevant features (Robnik Šikonja & Kononenko, 1997). 

ReliefF searches for its nearest neighbors according to the 

degree of discrimination of different class and weight features.  

 

1.3 Causal feature selection 
 

As an emerging filtering method, causal feature 

selection has attracted a lot of attention in recent years. By 

using causality, causal feature selection can naturally provide 

causal explanations about the relationship between features, or 

between features and classes, so as to better understand the 

mechanisms behind the data.  

a) Peter-Clark (PC) algorithm is implemented in two 

stages: the skeleton learning stage and the direction inference 

stage. The PC algorithm starts from the fully connected graph, 

and the independence detection method is used to determine 

whether there is d separation. Then the redundant edges are 

removed one by one, and finally an undirected graph is 

formed. The direction of certain edges can be determined 

through the V structure or other local direction inference 

method (Spirtes & Glymour, 1991). 

b) Max-Min Parents and Children (MMPC) 

algorithm was first described by Brown, Tsamardinos and 

Aliferis, (2004). Parents and Children refer to the fact that the 

algorithm identifies the parents and children of the class, 

assuming a Bayesian Network for all observed data. It will not 

recover the spouses of the children. 

c) Incremental Association Markov Blanket (IAMB) 

was proposed by Tsamardinos and others in 2003. IAMB has 

two stages. In the first growth phase, nodes determined to 

depend on the target node are added to the Markov Blanket 

(MB) through independence testing. In the next shrinking 

phase, any node in the MB determined to be unrelated to the 

target node is deleted from the MB. Tsamardinos et al. proved 

that IAMB satisfies rationality under the assumption of 

faithfulness.  

d) Forward-Backward with Early Dropping (FBED) 

algorithm is a recently proposed algorithm. The key element 

of FBED that makes it scalable to high dimensional data is 

that it removes insignificant features at every step. FBED ’s 

final step includes a backward selection to remove falsely 

selected features. FBED algorithm is able to identify the full 

MB of the class (Borboudakis & Tsamardinos, 2019).  
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e) The Maximum and Minimum Markov Blanket 

(MMMB) algorithm attempts to overcome the data 

inefficiency problem of IAM, but it is still scalable under the 

premise of faithfulness. MMMB is also divided into two 

stages, but it uses a divide-and-conquer method, which is 

different from IAMB in using topology information. In the 

first stage (called MMPC), identify the parent and child nodes 

of a class, and then find the spouse nodes of class in the 

MMMB stage. Although not all nodes are determined to 

depend on the target node in the test, not all nodes can be 

included in the MB (Tsamardinos, Aliferis & Statnikov, 

2003).  

The main objective of proposed FSCI algorithm in 

this paper is to solve the problem of threshold setting and 

reduce the complexity of causal feature selection algorithm. In 

Section 2, proposed FSCI algorithm and redundant features 

definition are given. In Section 3, this paper introduces 

datasets and experimental set-up. Section 4 reports the 

experimental results and discusses their possible reasons. In 

Section 5, this paper concludes by summarizing experimental 

observations. 

 

2. Theory and Proposed FSCI Algorithm 
 

The block diagram of the proposed FSCI algorithm 

is shown in Figure 1. FSCI first uses mutual information (MI) 

as objective function to adopt SFFS search strategy for 

removing irrelevant features from the original dataset. Then, 

FSCI uses CI testing to remove redundant features. Among 

them, SFFS does not need to set a threshold and the algorithm 

complexity is lower than of complete search. 

 

Original 

dataset

Irrelevant

features

Redundant 

features

Selected 

features

Floating 

Search with 

MI

CI test

 
Figure 1. Block diagram of FSCI algorithm 

 

As shown in Figure 2(a) flowchart, FSCI starts from 

an empty set, selects a feature Fi from the not yet selected 

features in each round, and optimizes the objective function 

MI after adding the feature Fi until no more features can be 

added. Next, FSCI removes a feature Fj from the selected 

features, and continues to eliminate from the subset until the 

mutual information is optimized. After that, the FSCI 

algorithm removes redundant features as described below. The 

flowchart of redundancy analysis is shown in Figure 2(b). 

Proposed definition of redundant feature: a feature 

Fi  or Fj  is redundant to the class C, if and only if 

 and  or  

is independent. Here S is the current selected feature subset. 

Definition of CI test: Let Fi, Fj and Z form a set of 

random features. Given Z, do a CI test between Fi  and Fj, 

denoted as  That is, test whether conditional on 

given Z, Fi  and Fj are independent. 

 

3. Experiment Set-Up 
 

3.1 Datasets 
 

The experiment uses 8 binary class datasets 

collected from UCI machine learning repository (Dua, D., & 

Graff, C. ,2017).  

 Lucas )LUng CAncer Simple set( has 2000 

samples, 11 features and 2 classes. The class 

indicates having lung cancer or not. Lucas 

contains toy data generated artificially by 

causal Bayesian networks with binary 

variables.  

 Abalone dataset contains 4177 samples and 8 

features, and is divided into classes depending 

on whether the “number of rings” is greater 

than 10 or not. 

 Spambase dataset is a classic spam email 

dataset from the UCI Machine Learning 

Repository. It has 4601 samples, 57 features 

and 2 classes.  

 Sonar dataset contains 208 samples and 60 

features. The dataset is divided into two 

classes: "R" if the object is rock; and "M" if it 

is mine. 

 Ionosphere dataset needs to predict the 

atmospheric structure according to the radar 

echo of free electrons in the ionosphere. It 

contains 351 samples, 34 features and 2 

classes )g for good, B for bad(.  

 Hepatitis dataset contains 155 samples, 19 

features, with “live” and “die” classes, and 

comes from the UCI Machine Learning 

Repository. 

 Parkinson dataset has 197 samples and 23 

features with two classes )healthy and 

Parkinson’s patient(. 

 Lucap )LUng CAncer set with Probes( is 

LUCAS dataset with probes. LUCAP has 143 

features, 2000 samples, and binary classes. 

Each dataset is divided into 80% for training and 

20% for testing, and the experiment is randomly repeated 5 

times to calculate the average classification performance. The 

results are compared with 2 non-causal feature selection 

algorithms: FCBF and ReliefF; and with 4 causal feature 

selection algorithms: MMPC, IAMB, FBED and MMMB. 

Experiment uses CI test with significance value to provide 

output as Markov Blanket of the classes. 

 

3.2 Evaluation criteria 
 

The objective of this section is to describe 

evaluation of the algorithm. There are 4 evaluation criteria 

used in this paper: causal graph score compared with ground 

truth, number of selected features, classification accuracy, and 

algorithm complexity. 

a) Causal graph score compared with ground truth  

To reveal the causal graph of dataset, the Recall, 

Precision, and F1 score were selected as evaluation criteria. 

The definitions of these evaluation criteria are as follows: 
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(a)  
 

(b)  
 

Figure 2. (a) Flowchart of FSCI algorithm: removing irrelevant features (b) Flowchart of FSCI algorithm: removing redundant features 

 

         (4) 

 

         (5) 

 

                                                        (6) 

 
The real causal node is the causal relationship 

between each node in the real causal network, and the causal 

inference node is to infer the causal relationship between each 

node of the causal network through an algorithm. Recall refers 

to the ratio between the directionally correct edges in the 

inferred causal network and the actual causal network, and 

Precision refers to the ratio between the direction of the 

correct edge in the inferred causal network and the inferred 

network. F1 is a combination of recall rate and accuracy, and 

is a standard evaluation measure.  Generally, there are not 

many datasets that provide the ground truth causal graph. 

From the datasets of this experiment, only Lucas and Abalone 

datasets provide the ground truth causal graph. Therefore, the 

causal graph scores in the experiment are analyzed based on 

only these two datasets.  

b) Number of selected features 

This article summarizes and compares the number 

of features selected after each algorithm. 

c) Classification accuracy 

From the perspective of prediction capability, this 

paper compares the classification performances of the selected 

feature subsets of the different feature selection algorithms. 

Specifically, accuracy measure is examined, which can be 

calculated from a confusion matrix, as shown in Equations 7 

and 8. Three well-known classifiers (k-nearest neighbors 

(kNN), Naive Bayes (NB) and Decision Tree (DT)) are used 

in the experiment. The set parameters for classification are as 

follows; kNN uses k = 5 with Euclidean distance, NB uses 

Gaussian Naïve Bayes algorithm, and DT forms splits by 
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using entropy. All the classifiers are implemented using 

sklearn library for Python language programs. 

 

 Actual / 

predicted 
Positive Negative 

 

Confusion matrix = Positive a b (7) 

 Negative c d  

 

       (8) 

 

d) Algorithm complexity 

Proposed FSCI algorithm uses heuristic search first 

to remove irrelevant features, and the complexity is O(N*n). 

The overall complexity of the algorithm is: O(N*2n
*logN).  

 

4. Results and Discussion 
 

4.1 Results 
 

a) Causal graph score compared with ground truth  
The FSCI algorithm proposed in this paper is 

compared with PC algorithm as regards discovery of the 

causal graph of the dataset. The experimental results are 

shown in Table 1. The No. of node and True causal node in 

the table are observed from dataset ground truth graph.  

From the results in Table 1, it can be seen that 

Recall, Precision and F1 score of the proposed FSCI algorithm 

are higher than those for the PC algorithm, with the Abalone 

dataset. The F1 value of the FSCI algorithm is 0.50, while the 

F1 value of the PC algorithm is only 0.09. However, in the 

Lucas dataset PC performed better than the proposed FSCI 

algorithm. The experimental results show that the FSCI 

algorithm can discover a causal graph from original dataset. In 

Abalone dataset the FSCI algorithm is better than the PC 

algorithm. Due to content limit, we only give an example 

causal graph comparison for the Lucas dataset in Figure 3. 

b( Number of selected features 

Table 2 shows the numbers of selected features as 

ultimately selected by each algorithm. To facilitate analysing 

the results, the averages were calculated. The bold number is 

the minimum number of features selected by each algorithm. 

The experimental results show that the number of features 

selected by FSCI algorithm is below those of ReliefF and 

MMMB algorithms. In causal and non-causal algorithms, 

causal feature selection gave the least features. 

c( Classification accuracy 

Classification accuracy results on 8 datasets are 

shown in Table 3. With kNN classifier the FSCI algorithm 

only achieved 76.16% classification accuracy on the Abalone 

dataset. The result is poorer than the classification accuracy 

using the original dataset. At the same time, other causal and

 
Table 1. Causal graph scores compared with ground truth 
 

Dataset No. of node Ground truth node 
Recall Precision F1 

PC FSCI PC FSCI PC FSCI 

         

Lucas 12 12 0.75 0.33 0.75 0.57 0.75 0.35 

Abalone 9 3 0.33 0.66 0.05 0.4 0.09 0.5 
         

 

 
 

Figure 3. The causal graph comparison for Lucas dataset 
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Table 2. Numbers of selected features 
 

Dataset Original 
Non-causal Causal Proposed 

FCBF ReliefF MMPC IAMB FBED MMMB FSCI 
         

Lucas 11 6 5 5 6 6 8 4 

Abalone 8 4 4 6 5 5 5 5 
Spambase 57 20 34 23 27 30 22 29 

Sonar 60 15 21 14 11 13 15 13 

Ionosphere 34 9 15 6 7 8 7 7 
Hepatitis 19 5 7 6 5 3 7 6 

Parkinson 23 8 12 8 4 4 9 7 

Lucap 143 23 34 27 23 19 31 32 
Average 44.38 11.25 16.50 11.88 11.00 11.00 13.00 12.88 

         

 

Table 3. Classification accuracies (%) for 3 classifiers on 8 datasets 
 

Classifier Algorithm Lucas Abalone Spambase Sonar Ionosphere Hepatitis Parkinson Lucap Average 

            

kNN Original 91.61 77.17 93.25 70.00 85.00 89.08 87.30 79.07 84.06 

 Non-

causal 

FCBF 98.84 88.97 95.60 76.50 87.25 81.27 76.90 80.09 85.68 

  ReliefF 89.01 79.00 97.58 86.65 90.83 78.61 78.54 90.20 86.30 

 Causal MMPC 83.61 76.20 88.92 80.18 87.81 87.69 75.71 86.91 83.38 

  IAMB 96.79 82.73 81.98 89.28 91.53 90.98 74.38 81.41 86.14 
  FBED 91.97 81.11 85.64 92.06 82.91 75.76 87.09 91.53 86.01 

  MMMB 81.13 89.35 80.97 93.52 93.03 83.39 86.00 87.22 86.83 

 Proposed FSCI 97.27 76.16 96.00 83.98 92.35 81.15 87.22 81.68 86.98 

NB Original 91.19 88.94 85.82 89.66 72.12 92.38 82.82 85.85 86.10 

 Non-
causal 

FCBF 98.74 87.11 93.66 88.57 94.50 83.43 86.07 91.06 90.39 

  ReliefF 95.46 86.27 94.73 79.18 91.67 77.20 91.39 88.48 88.05 

 Causal MMPC 91.69 85.12 90.66 82.12 83.22 92.88 85.22 83.91 86.85 
  IAMB 95.25 89.92 92.22 82.11 76.65 80.41 90.06 91.75 87.30 

  FBED 82.15 93.19 92.72 82.65 86.90 85.34 75.71 85.85 85.56 

  MMMB 88.29 89.48 78.71 81.03 94.47 92.58 87.47 83.53 86.95 
 Proposed FSCI 92.76 93.27 92.89 82.66 89.18 75.21 86.85 93.08 88.24 

DT Original 92.15 84.71 87.75 82.84 79.21 82.72 82.28 81.99 84.21 

 Non-
causal 

FCBF 98.69 82.05 83.64 70.80 80.97 82.12 86.34 79.28 82.99 

  ReliefF 96.08 86.18 83.52 78.30 84.24 92.43 75.92 79.50 84.52 

 Causal MMPC 89.42 91.25 77.34 90.44 76.32 88.52 82.53 86.98 85.35 
  IAMB 94.25 80.28 88.69 93.60 89.71 88.17 88.49 80.61 87.98 

  FBED 85.90 94.85 83.01 81.64 84.67 75.49 87.90 92.77 85.78 

  MMMB 80.70 85.15 85.89 75.65 79.53 87.06 90.47 81.97 83.30 
 Proposed FSCI 92.33 87.22 94.56 88.82 85.24 81.11 90.44 76.06 86.97 

            

 

non-causal feature selection algorithms also gave low 

classification accuracies on these data. On the Ionosphere 

dataset, compared with the original data, the FSCI algorithm 

achieved the best results. On the Spambase and Sonar 

datasets, compared with the original data, FSCI did not 

improve the classification accuracy with NB classifier. The 

classification accuracy of the FSCI algorithm on the Abalone 

dataset is 93.27%, which is better than the classification 

accuracy using original data. 

Both non-causal feature selection algorithm and 

causal feature selection algorithms can effectively improve the 

classification accuracy of the original dataset. The proposed 

FSCI algorithm is slightly inferior to non-causal feature 

selection in KNN classification results, but this algorithm is 

superior to the other causal feature selection algorithms. In 

NB classification results, the proposed FSCI algorithm is 

second only to iamb algorithm and superior to other causal 

feature selection algorithms. In the classification results of DT 

classifier, the FSCI algorithm proposed in this paper was also 

better than using the original dataset. In addition to MMMB 

algorithm, other non-causal and causal feature selection 

algorithms can effectively improve the classification accuracy 

of data. 

Figure 4 shows the average results of the three 

classifiers in Table 4. As can be seen from Figure 4, in these 8 

data sets, both non-causal and causal feature selection 

algorithms effectively improved the accuracy of the original 

classification. The proposed FSCI algorithm is superior to the 

other non-causal and causal feature selection algorithms 

tested. 

d) Algorithm complexity 

The algorithm complexity comparison is shown in 

Table 5. FCBF performs forward and backward heuristic 

search and its complexity is O(M*N*logN). ReliefF algorithm 

complexity is linear. As for causal feature selection 

algorithms, the complexity depends on the number of features 
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Table 4. Overall classification accuracies for 3 classifiers on 8 datasets (%) 

 

Classifier  kNN NB DT Average 

      

Original  84.06 86.10 84.21 84.79 

Non-causal FCBF 85.68 90.39 82.99 86.35 
 ReliefF 86.30 88.05 84.52 86.29 

Causal MMPC 83.38 86.85 85.35 85.19 

 IAMB 86.14 87.30 87.98 87.14 
 FBED 86.01 85.56 85.78 85.78 

 MMMB 86.83 86.95 83.30 85.69 

Proposed FSCI 86.98 88.24 86.97 87.40 
      

 

Table 5. Algorithm complexity comparison of tested algorithms 
 

Algorithm Complexity Average time from 8 datasets (min) Remark 

    

Non-
causal 

FCBF O(M*N* logN) 9.71 M = number of samples 
N = number of original features  

n = number of selected features 

MB = number of features in Markov Blanket of Class 
k = number of iteration 

l = number of condition feature set size 

ReliefF O(M* N* n) 8.28 

Causal 

MMMB O(N* 2
MB)  27.57 

MMPC O(N* MB1) 22.29 
IAMB O(N* 2

MB) 26.86 

FBED O(N* MBk) 26.59 

 
Proposed 

 

FSCI 
Relevancy: O(N* n) 

Redundancy: 

O(N* 2
n

*logN)O 

21.35 

     

 

 
 
Figure 4. Overall classification accuracy using 3 classifiers on 8 

datasets (%) 

 

in MB. In order to compare the algorithm complexity, time is 

tested in the feature selection phase. The experiment was 

performed on Windows 10 operating system with a laptop 

computer that has Intel i5 CPU, 8GB RAM and as hard drive 

a 256GB SSD. The complexity comparison results in both Big 

O notation and computational time for each algorithm are 

shown in Table 5. 

 

4.2 Discussion 
 

4.2.1 Feature selection discussion 
 

FSCI chooses more features than some other 

algorithms because FSCI uses a heuristic search strategy. 

When irrelevant features are deleted, the algorithm may stop 

after other algorithms. Among the causal and non-causal 

algorithms, the non-causal ones chose more features, because 

ReliefF algorithms only analyses the relevance of features. In 

experimental results based on 8 datasets, the difference in 

number of selected features between Spambase and Sonar 

datasets affected the average result. The reasons are that 

Spambase dataset is a sparse dataset, and the Sonar dataset is a 

highly correlated dataset. 
 

4.2.2 Classification results discussion 
 

With KNN classifier the FSCI algorithm achieved 

the best classification accuracy. This is because FSCI is the 

most stable in the 8 datasets. Although the other algorithms 

can get the best classification result in a single dataset, the 

white line of different algorithms is different. For example, 

sonar and ionosphere datasets achieved better classification 

results with MMMB algorithm, but the experimental results 

show that the proposed FSCI algorithm had better universality 

or consistency in performance. 

With NB classifier, the results of sonar and 

Spambase datasets differ. One reason is that the sonar data has 

high similarity in elements. MI is the standard function in the 

experiment. These features will affect the NB classification 

accuracy of FSCI algorithm. Another reason is that Spambase 

dataset is a sparse dataset. In the process of removing 

irrelevant features, the differences in dataset will affect the 

analysis of the second part of redundant features. 

For DT classifier, the proposed FSCI algorithm 

effectively improved the original results according to the 

experimental results on 8 datasets. The reason is that in the 

process of DT training, feature selection is carried out. 

 

5. Conclusions 
 

This paper proposed a causal feature selection 

algorithm named FSCI. FSCI uses heuristic search strategy to 

avoid setting a threshold and this reduces the complexity of 

the algorithm. From the experimental results on 8 datasets, the 

FSCI algorithm can reveal causality while effectively 
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reducing the number of features and improving classification 

accuracy. Moreover, the proposed FSCI algorithm also 

provided better average accuracy compared with both non-

causal and causal prior feature selection algorithms.  
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