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Abstract 
 

Aging has extensive impacts on brain cognition. In this work we proposed a method using Hjorth parameters to classify 

the elderly’s electroencephalography (EEG) signals from that of middle age group by applying K-nearest neighbor (KNN) and 

Random forest (RF) classifiers. We acquired EEG of 20 healthy middle age subjects and 20 healthy elderly subjects in resting 

state eyes-open for 5 minutes and eyes-closed for 5 minutes using an 8-electrodes device. Euclidean and Manhattan distance 

measures were tested using KNN. The classifier performance was evaluated by using accuracy, sensitivity, specificity, and kappa 

statistic. The best accuracy achieved was 91.25 %, and kappa statistic of 0.825, in eyes-closed state. In eyes-open state 90% 

accuracy was achieved with kappa statistic of 0.80. RF achieved 83.75% accuracy with kappa statistic of 0.675 in eyes-closed 

state and 78.75% accuracy with Kappa statistic of 0.575 in eyes-open state. The KNN performed better using Manhattan distance 

function in both eyes-open and eyes-closed states. Results showed the potential of Hjorth parameters as the suitable EEG features 

in the classification of EEG aging signals. 

 

Keywords: electroencephalography, aging, Hjorth parameters, k-nearest neighbor, classification 

 

 

1. Introduction 
 

The increasing proportion of older age people in the 

population has attracted the interest in research on aging 

(Dushanova & Christov, 2014). Aging is considered a major 

risk factor of Alzheimer’s disease (AD). Several neuro 

 
imaging techniques applied to investigate the pathological and 

physiological aging and age related issued, including 

functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET), magneto encephalography 

(MEG) and electroencephalography (EEG) (Ishii et al., 2017). 

Several measures have been applied to investigate the changes 

in EEG signals. Time domain and frequency domain features 

have been calculated including advance features such as 

entropy, fractal dimension and network features to study the 

EEG alteration (Petti et al., 2016; Takahashi et al., 2009; 

Zappasodi, Marzetti, Olejarczyk, Tecchio, & Pizzella, 2015). 

It is very crucial to investigate the age-related changes in 
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healthy older population who are more vulnerable to 

neurodegenerative disease.  

To discriminate the elderly age EEG signal from 

young adult, feature extraction and classification techniques 

have been applied in the recent studies (Al Zoubi et al., 2018; 

Petti et al., 2016). Most of the recent studies have investigated 

the differences between old age adults and young age adults. 

There is a gap to investigate the differences between the EEG 

signals of an elderly age group and a middle age group. The 

spectral analysis of EEG aging signals is limited and for 

further advance analysis is required to develop a clinical tool 

for the better understanding of healthy aging signal and the 

link between the healthy elderly EEG and initiation of 

dementia. EEG is high temporal resolution, cost-effective and 

non-invasive technique. It is being used to investigate the 

structural and functional organization of brain. 

The EEG frequency and band power differ in eyes-

open and eyes-closed states. It has demonstrated that eyes-

open and eyes-closed states show differences in EEG 

measurements in topography and bands power (Barry, Clarke, 

Johnstone, Magee, & Rushby, 2007). Moreover, the alpha 

activity was found dominant in eyes-closed state and it was 

suppressed in eyes-open state with visual stimulation (Barry et 

al., 2007). The heathy older participants showed reduction in 

alpha activity as compared to healthy young subjects in 

posterior and central region in open and close eyes (Barry & 

De Blasio, 2017). In resting state, EEG slowing is a 

distinguished characteristic of healthy elderly in both eyes-

open and eyes-closed states (Giaquinto & Nolfe, 1986). The 

alterations in EEG activity are well known in eyes-open and 

eyes-closed states and resting EEG demonstrates age-

dependent changes throughout the life span. 

Hjorth parameters are high order statistical time 

domain features (Hjorth, 1970; Leite & Moreno, 2018). Hjorth 

parameters have been applied in many applications. For 

example, Hjorth parameters have been used to asses a semi-

automatic method for temporal lobe seizure lateralization 

using EEG (Cecchin et al., 2010). Hjorth parameter based 

technique has been introduced to detect the insomnia from 

EEG signals (Hamida, Ahmed, & Penzel, 2015). To classify 

the mild cognitive impairment patients from healthy subject 

Hjorth parameters achieved 80% accuracy (Hadiyoso & Tati, 

2018). In emotion recognition study, Hjorth parameters were 

effective to represent the event related properties of EEG and 

SVM achieved 70% of accuracy (Mehmood & Lee, 2015a). 

Hjorth activity and mobility have been used to design the 

method for laterization of seizure using raw EEG (Cecchin et 

al., 2010). As compared to frequency domain analysis, Hjorth 

parameters can be easily calculated with less computational 

cost, which makes them useful in real time application with 

reduced resources (Hjorth, 1973). The short time Fourier 

transform and wavelet techniques are useful to analyze the 

non-stationary signals, but contain large number of data points 

cause difficulties in classification including the increased 

computational complexity cost and risk of overfitting. Hjorth 

parameters have used to overcome these issues for the 

classification of non-stationary signals (Kaboli, Walker, & 

Cheng, 2015). Furthermore, Hjorth parameters use frequency 

content of EEG signals, and are dependent on band power so 

it makes them robust to non-stationarities (Vidaurre, Krämer, 

Blankertz, & Schlögl, 2009). 

Several machine learning models have been 

developed to classify the neurodegenerative diseases such as 

AD and Parkinson’s disease (Das, 2010; Lehmann et al., 

2007). K-nearest neighbor (KNN) has been widely applied in 

EEG research studies including brain computer interface, 

epilepsy, autism, emotion recognition and AD (Sha’abani, 

Fuad, Jamal, & Ismail, 2020; Al-Nuaimi, Jammeh, Sun, & 

Ifeachor, 2017). An EEG-based Concealed Information Test 

was developed and KNN achieved 96.7% accuracy using 

Hjorth parameters (Bablani, Edla, & Dodia, 2018). KNN has 

been also utilized to automatically classify sleep stages from a 

single channel EEG using three distance measures (Qureshi, 

Karrila, & Vanichayobon, 2018). A pervasive EEG-based 

depression detection system was designed and KNN achieved 

highest accuracy of 79.27% (Cai et al., 2018). Random forest 

(RF) was applied on several EEG features including Hjorth 

parameters and provided 98.1% overall accuracy to classify 

the human emotions (Vaid, Singh, & Kaur, 2015). RF has 

been used effectively to develop the sleep stage scoring 

techniques based on EEG (Bi, Liao, & Lu, 2018; Boostani, 

Karimzadeh, & Nami, 2017).       

Aging is considered as a major risk factor in 

cognitive decline (Salat, 2011). The researchers have lighted 

the crucially needed biomarker of brain aging to understand 

the aging mechanism and identify those individuals who are at 

risk to age-related neurological disorders, cognitive decline 

and death (Paixao et al., 2020). The design of comprehensive 

and effective tools is needed to improve the brain health. It is 

necessary to investigate the age-related decline in healthy 

aging and the association of aging with mild cognitive 

impairment and dementia. The features and classification of 

EEG in healthy aging may provide better understanding of 

aging process and basis of age-related cognitive decline to 

improve the wellness of aging population. 

In this work, we proposed Hjorth parameters-based 

technique by applying KNN and RF to classify the EEG aging 

signals of elderly age versus middle age in the eyes-open and 

eyes-closed resting conditions. We further compared the 

performance of these two classifiers. 

 

2. Materials and Methods 
 

In this work we recorded EEG in eyes-open and 

eyes-closed states for 5 minutes each. Preprocessing was 

applied on EEG data to clean the data. Feature extraction 

technique was applied to extract the Hjorth parameter as EEG 

features and KNN and RF classifiers were employed to 

classify the data as shown in Figure 1. 
 

 
Figure 1. Illustration of main steps involved in experiment 

 

2.1 EEG recording and preprocessing 
 

This study was approved by the ethics committee of 

Prince of Songkla University, Songkla, Thailand (HSC-

HREC-61-006-02-1). Participant who had no neurological 
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disorder and could communicate were considered as healthy 

subject. There were forty healthy subjects in this study. They 

were divided into two groups of 20 middle age subjects (age 

range, 41 to 60 years; mean age 50.50±5.77 years) and 20 

elderly subjects (age range, 61 to 84 years; mean age 

71.03±5.45 years) as shown in Table 1. All participants signed 

an informed consent form and had no neurological disorder. 

We used Ultracortex Mark IV headset (OpenBCI, New York, 

USA) with eight electrodes FP1, FP2, C3, C4, P7, P8, O1 and 

O2 according to 10-20 international electrode placement 

system. EEG sampling rate was 250 Hz and impedance was 

kept below 5 kΩ. Infinite impulse response (IIR) 50 Hz notch 

filter was used to remove the line noise. EEG was filtered 

using 2nd order Butterworth filter at 0.5 Hz to 45 Hz. EEG 

was divided into delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 

Hz) and beta (13-30 Hz) and gamma (30 -45 Hz). MATLAB 

R2019b (Mathworks Inc., Natick, USA) was used for analysis. 

Examples of raw EEG signals recorded from middle aged and 

elderly from FP1, C3, P7, and O1 electrodes are shown in 

Figure 2. 

 

2.2 Hjorth parameters  
 

Hjorth parameters are time domain indicators used 

for the analysis of signals and features extraction process. 

Hjorth parameters have been used in recent studies in EEG, 

electrocardiogram (ECG) and electromyogram (EMG) 

(Mouzé-Amady & Horwat, 1996; Rizal & Hadiyoso, 2015; 

Vidaurre et al., 2009). Hjorth parameters have three features 

included activity, mobility, and complexity and they can be 

computed for EEG signals (Vidaurre et al., 2009). Activity 

parameter represents the power in the signal (s(t)), variance in 

time domain as shown in equation (1). 

 

 (1) 
 

Mobility represents the mean frequency of the 

signal, and it can be calculated from the square root of the 

ratio of the variance of the first derivate of the signal (s' (t)) 

and the variance of the signal as shown in equation (2) 

(Grover & Turk, 2020). 
 

 

(2) 

 

The complexity parameter represents the changes in 

the frequency. Complexity is the ratio of the mobility of first 

derivative of signal (s' (t)) divided by the mobility of the 

signal (s(t)), and it can be calculated by using the equation (3). 

 

 

(3) 

 

2.3 K-nearest neighbor 
 

K-nearest neighbor (KNN) is a simple non-

parametric machine learning model based on supervised 

learning. KNN is also called learner algorithm, as instead of 

learning it stores the dataset and it performs action at the time 

of classification.  KNN has been employed in EEG analysis 

using Hjorth indicator as input features for classification 

(Bablani et al., 2018; Mehmood & Lee, 2015b). 

Table 1. Demographic details of participants 
 

Group Middle aged Elderly 

Gender Male Female Male Female 
     

Number of subjects 9 11 8 12 
Age (years) 45.51±6.21 53.11±4.11 71.75±4.60 71.15±7.34 

     

 

Data are mean ± SD 
 

(a)  

(b)  
 

Figure 2. Examples of raw EEG of electrode FP1, C3, P7 and O1: (a) Middle aged, (b) Elderly 
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We calculated Hjorth parameters of EEG signals 

and tested KNN to discriminate the two age groups: middle 

aged and elderly. We tested Euclidean and Manhattan distance 

values K =1, 3, 5, 7, and 9. Euclidean distance (DE) and 

Manhattan distance (DM) are calculated using the equation (4) 

and (5) (Gao & Li, 2020).  

 

 

(4) 

 

 

(5) 

 

2.4 Random forest  
 

Random forest (RF) is a useful modification of 

bagging, and it builds a large combination of de-correlated 

trees and the average those trees (Hastie, Tibshirani, & 

Friedman, 2001). RF utilizes the majority vote to predict the 

classes based on the separation of data from multiple decision 

trees. Bagging and random selection of features are used to 

grow the multiple trees (El Bouchefry & de Souza, 2020). The 

RF classifier consists of randomly selected features at each 

node to grow a tree. Bagging is a technique used to reduce the 

variance of as estimated prediction function and it is 

considered as suitable for low-bias procedures and high 

variance such as tree(Hastie et al., 2001). RF has been used 

for the classification of EEG signals for an emotion 

recognition (Vaid et al., 2015) and a sleep stage classification 

(Bi et al., 2018).  

The RF algorithm applies the general technique of 

bootstrap aggregation also called bagging to tree learners. For 

a training set X = x1, x2, x3, … … … xn with the responses 

obtained as Y = y1, y2, … … … yn and bagging (B times) 

selects the random sample from sample data and fits the trees 

to these selected samples (Breiman, 2001). 

For b=1,...,B: 

1) Samples with replacements, N training samples 

from X, Y are called Xa, Xb. 

2) Classification tree fb is trained on Xa, Xb. 

After the training, to make a prediction to a new 

point, s' can be obtained by averaging the predictions from all 

the individual tree on s' as sown in equation (6) (Breiman, 

2001).  
 

 

(6) 

  
2.5 Classification performance  

 

The 10-fold cross validation was used in this work. 

The classification performance was evaluated using accuracy 

(Acc) in equation (7), sensitivity (Sn) in equation (8), 

specificity (Sp) in equation (9), and Cohen’s kappa value (Ks) 

in equation (10).TP and TN, represent the true positive and 

true negative and FP, FN represent false positive and false 

negative, respectively. Pa indicates the probability of observed 

agreement and Pb shows the probability occurred by chance, 

whereas the value Ks ≥0.75 generally shows an excellent 

agreement. Receiver operating curve (ROC) value was 

computed. ROC value is calculated with true positive rate 

(sensitivity) against a false positive rate (1-specificity). The 

area under the ROC curve (AUC) is the numerical index used 

to describe the behavior of ROC curve as defined in equation 

(11) (Calì & Longobardi, 2015). 
 

 
(7) 

 

 
(8) 

 

 
(9) 

 

 
(10) 

 

 

(11) 

 

3. Results and Discussion 
 

In this work we used 10-fold cross validation in 

classification.  EEG signals were recorded in eyes-open and 

eyes-closed states. Hjorth parameters were calculated and 

KNN and RF were used to classify the EEG signals of middle 

aged and elderly. Table 2 shows the comparison of Euclidean 

and Manhattan distance measures for the distance value of 

K=1, 3, 5, 7, and 9 in eyes-closed and eyes-open state. For 

K=1, KNN obtained highest accuracy of 91.25±4.11% using 

Manhattan distance measure and 91.25±4.87% accuracy with 

Euclidean distance measure. In eyes-open state for K=1, 

90.00±5.40% accuracy was achieved by using Manhattan 

distance measure while the accuracy of 83.75±6.02% was 

achieved with Euclidean distance measure. The RF achieved 

78.75±13.97% accuracy in eyes-open state and 83.75±12.36 

% accuracy in eyes closed state. However, in both eyes-open 

and eyes-closed states, Manhattan distance measure produced 

higher accuracy compared to Euclidean distance measure. Our 

results showed that the classification accuracy was reduced 

with higher value of K. This work achieved a highest 

classification accuracy when K=1 with low classification 

errors.    

The overall accuracy in both eyes-open and eyes-

close states by using KNN and RF is shown in Figure 3. KNN 

has achieved better accuracy in eyes-open and eyes-closed 

states as compared to RF classifier. The highest overall 

accuracy was achieved 91.25% and 90.00% at K=1 in eyes-

closed and eyes-open, respectively. Our work has a similar 

finding to other studies that using KNN with K=1 provides 

highest accuracy. For example, a recent study of Parkinson’s 

disease detection system obtained accuracy of 96.54 % using 

KNN with K=1 (Chen et al., 2013). By using power spectral 

density features, KNN obtained highest accuracy with K=1 

(Moosavian, Ahmadi, Tabatabaeefar, & Khazaee, 2013). In
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Table 2. Classification results 10-fold cross-validation 

 

Classifier State 

Accuracy (%)  standard deviation 

K=1 K=3 K=5 K=7 K=9 

       

KNN (Manhattan) Eyes open 

Eyes-closed 

90.00±5.40 81.25±6.51 81.20±6.51 71.25±8.21 73.75±7.89 

91.25±4.11 82.50±6.46 82.50±6.21 83.75±7.06 52.50±7.35 

KNN (Euclidean) Eyes open 
Eyes-closed 

83.75±6.02 81.20±6.84 75.00±6.94 70.00±7.91 73.75±8.40 
91.25±4.87 81.17±6.06 81.25±7.20 76.25±6.98 81.20±6.60 

RF Eyes open 

Eyes-closed 

78.75±13.97 

83.75±12.36 
   

 

Data are mean ± SD 

 

 
 

Figure 3. Accuracy of KNN and RF in eyes-closed and eyes-open  
 

the comparison of resting state, eyes-closed was found more 

effective in the classification of aging signals. Manhattan 

distance measure improved the accuracy in eyes-open and was 

found effective in eyes-closed states as well. 

Table 3 shows the classification results including 

sensitivity, specificity, ROC value and Cohen’s Kappa value 

in both eyes-open and eyes-closed states. Classification 

parameters show the evaluation of KNN in both states. The 

highest area under the ROC curve value of 0.916 for eyes-

closed state and 0.906 for eyes-open state were obtained using 

KNN and RF, respectively. Kappa values show the excellent 

performance of classification model by using KNN. In 

comparison of classification performance KNN showed better 

sensitivity, specificity and kappa values compared to 

RF.Hjorth parameters have been used in this work as features 

to extract the information from EEG signals. The 

classification results show the efficacy of Hjorth parameters in 

the discrimination of EEG signals in aging. Sensitivity values 

of 0.913 in eyes closed state and 0.900 in eyes-open state 

show the correctly identified instances of both classes. 

Sensitivity and specificity results verify the highest accuracy 

achieved in open and close eyes as shown in Table 3. 

In previous study, KNN has shown highest 

classification performance with sensitivity and specificity 

>90% in resting state condition for the detection of MCI using 

EEG (Siuly et al., 2020). For the discrimination of 

Alzheimer’s disease, KNN obtained the sensitivity and 

specificity of 100% and 80% respectively under the resting 

state condition(Al-Nuaimi et al., 2017). In the EEG-based 

depression detection study, KNN classification performance 

was better than RF and other classifiers (Li, Hu, Sun, & Cai, 

2016). KNN demonstrated a better classification result 

compared with RF in EEG based automatic seizure detection 

system (Slimen & Seddik, 2020).     

An effective Parkinson’s disease detection system 

was designed using fuzzy-KNN and reported sensitivity and 

specificity of 96.25% and 95.07% respectively (Chen et al., 

2013). In the investigation of age alteration of electrical 

activities of young versus old, Hjorth parameters and fractal 

dimension were found higher in older participants (Portnova, 

2018). In our study, Hjorth parameters were used as input 

features and we obtained highest accuracy of 91.25% to 

discriminate the aging EEG signals.  

It is important to understand and investigate the 

transitional stage between normal healthy aging and 

neurodegenerative diseases such as mild cognitive impairment 

(MCI) and Alzheimer’s disease (AD). In order to investigate 

MCI transition to AD, Poil and colleague used Hjorth 

parameters to develop the EEG biomarker for AD prediction 

system and obtained sensitivity of 88% and specificity of 82% 

(Poil et al., 2013). In our current study we achieved sensitivity 

and specificity of >90% in eyes-closed and 90% in eyes-open 

state. In recent studies, magnetic resonance imaging (MRI) 

and functional MRI (fMRI) have been used to investigate the 

age prediction using machine learning techniques (Dosenbach 

et al., 2010; Valizadeh, Hänggi, Mérillat, & Jäncke, 2017). 

The current study proposed a simple and useful technique 

using EEG which is economical and portable as compared to 

MRI and fMRI.  

Age prediction has been performed using different 

techniques including EEG signals analysis and brain 

anatomical measurement (Al Zoubi et al., 2018; Valizadeh et 

al., 2017). A machine learning model was designed to predict 

the brain aging using nested cross-validation approach and 

prediction model and achieved R2 = 0.37 resting state EEG 

(Al Zoubi et al., 2018). A recent study performed the 

classification of young versus middle aged adults obtained R2 

= 0.60 with an accuracy of 87.2% in resting state open eyes, 

but the study excluded elderly subjects (Dimitriadis & Salis, 

2017). The graph theory network features were utilized to 

classify the young and middle age groups and SVM achieved 

accuracy ranging from 82% to 89% in resting state brain 

network analysis (Petti et al., 2016). Our study achieved 

accuracy of 91.25% which is higher than previous studies to 

the best of our knowledge. Moreover, the application of only 

three features (Hjorth parameters) is also advantageous in 

order to reduce the computational cost (Hjorth, 1970; Kaboli 

et al., 2015).  
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Table 3. Classification results of middle aged versus elderly in eyes-closed and eyes-open states 

 

Classifier State Sensitivity Specificity ROC Area Kappa-statistic 

      

KNN Eyes-closed 0.913 0.912 0.908 0.825 

Eyes-open 0.900 0.900 0.906 0.800 

RF Eyes-closed 0.838 0.837 0.916 0.675 
Eyes-open 0.788 0.787 0.871 0.575 

      

 

We calculated sample entropy as EEG feature in 

eyes-open and eyes-closed states and performed classification 

using KNN and RF classifiers (Table A1 in the Appendix). 

The classification results of sample entropy were compared 

with the classification results obtained with Hjorth parameters. 

The highest accuracies with sample entropy achieved via 

KNN classifier were 73.75% with K=3 in eyes-open state 

using Euclidean distance measure and 77.50% with K=1 in 

eyes-closed state using Manhattan distance measure. The 

accuracy of RF classifier provides 72.50% in eyes-closed state 

and 70% accuracy in eyes-open state. Therefore, the 

classification results of Hjorth parameters are better than the 

results obtained from sample entropy.           

In this preliminary work, we have proposed a useful 

feature set merged with KNN classifier to distinguish the 

elderly age group using brain electrical activities. The 

effectiveness of EEG resting state has also been illustrated. 

The eyes-closed state has shown more prominent results in 

Table 2. KNN signified the potential of Hjorth parameters in 

the study of aging EEG signals better than RF. 

 

4. Conclusions 
 

This preliminary work presented the research on 

classification of EEG signal of middle age group and elderly 

age group in eyes-open and eyes-closed resting state using 8-

channels device. Three Hjorth parameters, activity, mobility, 

and complexity were used. KNN and RF classifiers were 

applied on these features to classify the EEG data. KNN 

achieved the accuracy of 91.25% in eyes-closed and 90% 

accuracy was achieved in eyes-open state using 10-fold cross 

validation. In our next study, we plan to include young subject 

to find the comprehensive correlation of EEG signals with 

aging.    
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Appendix 
 
Table A1.  Classification results of sample entropy 

 

Classifier Value of K State Accuracy (%) Sensitivity Specificity Kappa Statistic 

       

RF N/A Eyes-closed 72.50 0.725 0.720 0.425 

Eyes-open 70.00 0.725 0.675 0.400 

KNN (Euclidean) 1 Eyes-closed 71.25 0.713 0.712 0.425 
3 Eyes-open 73.75 0.738 0.737 0.475 

KNN (Manhattan) 1 Eyes-closed 67.50 0.675 0.674 0.300 

1 Eyes-open 77.50 0.775 0.770 0.550 
       

 

 

 

 


