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Abstract 
 

In this paper, we considered two-sample multivariate testing for testing the equality of two population mean vectors of 

two normal populations in this situation in which one covariance is assumed to be known and the other unknown when both the 

sample sizes are larger than their dimensions. We adapted a test statistic from Yao (1965) and developed its distribution. The 

accuracy of the proposed test is investigated by simulation study. Under simulation study, the simulated results showed that the 

attained significance levels of proposed tests are close to nominal significance level setting in every situation considered. All 

proposed tests gave excellent performance and power in every situation considered except when the sample size from population 

with known covariance matrix is smaller than that from population with unknown covariance matrix. The two-sided proposed 

test and the one-sided proposed test as 
a 1 2H :    work very well when the dimension is less than 30. Finally, we applied the 

proposed tests for analyzing the real data. 

 

Keywords: approximate degrees of freedom, covariance matrix unknown, hypothesis testing, multivariate Behrens–Fisher  

                        problem, two–sample multivariate test 

 

 

1. Introduction 
 

Usually for two multivariate means testing with the 

sample sizes larger the dimension, the two independent 

samples are assumed to be drawn from two independent 

normal populations both with unknown but equal covariance 

matrices or with unknown and unequal covariance matrices 

(Behrens–Fisher case). But in some scientific studies, 

multivariate experiments consist of standard treatment and 

new treatment so that the covariance of standard treatment 

may be treated as known from historical data while the 

covariance caused by the new treatment may not be the same 

as the standard one. The two-sample testing problem when the 

two variances are unknown and unequal which is known as 

the ‘‘Behrens–Fisher’’ problem, was studied by Welch (1938, 

1947), Scheffé (1970), Kim and Cohen (1998), Schechtman 

and Sherman (2007). The two-sample testing problem when 

one variance known but the other one unknown was studied 

by Maity and Sherman (2006), Peng and Tong (2011). 

Pooling the samples may not be a good idea because the  

 
covariances may be very different from each other. Many 

researchers have investigated this problem and various 

methods of approach were suggested including Maity and 

Sherman (2006), who studied “The Two-sample T test with 

one variance unknown”, and Peng and Tong (2011), was 

published “A note on a two-sample T test with one variance 

unknown”, both of which considered the univariate case that 

is a special case of the Behrens-Fisher problem. In this paper, 

we studied under the multivariate case that is also a special 

cases of the Behrens-Fisher problem, and give some 

suggestions.  
 

2. Materials and Methods 
 

Let 
ii1 i2 in, ,..., ;i 1,2X X X  be two random 

samples from two independent p-variate normal populations 

with unknown p 1  mean vector 
i i1 i2 ip(μ ,μ ,...,μ ) ;  

i=1,2  and unknown p p  positive definite covariance 

matrix i , 
ij p i i~N ( , ),X   ij=1,2,..., n , i=1,2  in which each 

in  p . Without the equality assumption of the covariance 

matrices, referred to as the Behrens-Fisher problem, we are
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interested in the testing problem of 
0 1 2H :    against 

a 1 2H :    in situations where one p p  positive definite 

covariance matrix is known but the other one is unknown. Without loss of generality, we assume that the first covariance matrix, 

i , is known. The sample means and sample covariances are computed as 

 

in

i ij
j=1i

1

n
 X X      and   in

i ij i ij i
j=1i

1
( )( ) , i=1,2

n -1
  S X X X X  

respectively. We note that 1
1 p 1

1

N ( , )
n

X


: 1
1 p 1

1

N ( , )
n

X


 with 1  known and 2
2 p 2

2

N ( , )
n

X


: 2
2 p 2

2

N ( , )
n

X


  with 
2  unknown. 

 

With independence of two samples, then  

1 2
1 2 p 1 2

1 2

N ( , )
n n

  X X
 

 : 1 2
1 2 p 1 2

1 2

N ( , )
n n

  X X
 

   

 

Theorem.  Given two random samples as above, the test statistic for testing hypothesis as 
0 1 2H :    against 

a 1 2H :    is 

 

   1
1 2 1 2 p,υ-p+1

υp
distributesas F

υ-p+1

 X X S X X       (1) 

where 
p, p 1F  

 is the F-distribution with degrees of freedom p and υ p+1   which υ  is obtained from 

 

      

   

2
1 1

1 2 1 1 1 2

11
1 2 1 2

/n1 1

υ n 1

 



   
     

X X S S X X

X X S X X



 

     

   

2
1 1

1 2 2 2 1 2

12
1 2 1 2

/n1

n 1

 



   
     

X X S S S X X

X X S X X

 

and 1 2

1 2n n
 

S
S

  which 
2S  is the estimate of 

2 . 

 

Proof.  Consider the test statistic 1
1 2 1 2( ) ( ) X X S X X  and use the univariate Welch (1938, 1947) approximate degree of 

freedom (APDF) method along with parallel procedure of Yao (1965), that is, if pN ( , )Y 0 : pN ( , )Y 0   then the Wishart matrix 

(n 1) V  has Wishart distribution with degree of freedom (n 1)  where V is the sample covariance matrix of Y and n is the 

sample sizes of  Y .  Now consider for any arbitrary constant vector ,b 0  we have 

 

 N 0, b Y b b:  N 0, b Y b b          (2) 

then 2
(n 1)(n 1) ( )   b V b b b: 2

(n 1)(n 1) ( )   b V b b b   and  

 

 
(n 1)

0

t
( )

(n 1) (n 1)
( )



 

 


 
 



b Y

b b b Y

b V b b V b

b b





:

 
(n 1)

0

t
( )

(n 1) (n 1)
( )



 

 


 
 



b Y

b b b Y

b V b b V b

b b





       (3) 

where 
(n 1)t 

 is t-distribution with degree of freedom n 1 . Squaring both sides, we obtained 

 
2

2
(n 1)

( )
t t 





b

b Y

b Vb
:

2
2
(n 1)

( )
t t 





b

b Y

b Vb
.         (4) 

Bush and Olkin (1959) showed that  

 

*

* 2
1

* *

( )
sup t t 


  


b b b

b Y
Y V Y

b Vb

        (5) 

where the maximizing *t
b

 is  * 1b V Y  and also 1 2
p,(n 1)T

Y V Y: 2
p,(n 1)T 

 when 2
p,(n 1)T 

 has a Hotelling distribution with degree of 

freedom n 1 . Then for every fixed number b 0 , we obtain 
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2
α,(n 1)P(t t ) α b

         (6) 

while for the supremum all b 0 , 

 

*
2
α,p,(n 1)P(t T ) α 

b
.         (7) 

In our case, for every fixed number b 0 , b Sb is a linear combination of two chi-square variates with degree of freedom p 

and 
2n 1  as  

 

1 2

1 2n n

   
      

   

S
b Sb b b b b

 .           (8) 

Applying the Welch (1947)-APDF method, we obtained 

 
2
α,dfP(t t ) α b

          (9) 

with degree of freedom ( df )  as 

 

   
2 2

1 1 2 2

1 2

/ n / n1 1 1

df n 1 n 1

    
    

     

b b b S b

b Sb b Sb

 .      (10) 

Then extending this to the supremum for all 1 b S Y 0 , with hopefully condition exist, so that  
*

2
α,p,dfP(t T ) α 

b  
where the 

expression of df  is 

 

   
2 2

1 1 1 1
1 1 2 2

1 1
1 2

/n /n1 1 1

df n 1 n 1

   

 

    
    

        

Y S S Y Y S S S Y

Y S Y Y S Y

 .    (11) 

This lead to reject 
0 1 2H :    with critical region 

 
1 2

α,p,dfY S Y T   

When we replace 
1 2 Y X X  ,  υ = df   and 2

p, p,υ p+1

υp
T = F

υ p+1
 


 , then    1

1 2 1 2
 X X S X X  distributed as 

2
p,υ p,υ p+1

υp
T = F

υ p+1



 where  

 

     

   

2
1 1

1 2 1 1 1 2

11
1 2 1 2

/n1 1

υ n 1

 



   
     

X X S S X X

X X S X X

      

   

2
1 1

1 2 2 2 1 2

12
1 2 1 2

/n1
.

n 1

 



   
     

X X S S S X X

X X S X X

  (12) 

The proof is completed. 

 

The performance of this testing statistic will be studied by simulation technique. From the data conditions as above and 

with the proposed testing statistic, we can test 
0 1 2H :    against 

a 1 2H :    in which 
0H  will be rejected at level of 

significance α  if 

 

   1 2
1 2 1 2 α,p,υ α,p,υ p+1

υp
T = F

υ p+1




  


X X S X X
      (13) 

where 
α,p,υ p+1F 

 is the th(1 α)  quantile of the F-distribution with degrees of freedom p and υ p+1 . 

For the one-sided alternative test of 
0 1 2H :    against  

a 1 2H :     or 
0 1 2H :    against  

a 1 2H :   , we 

applied Follmann’s technique (Follmann, 1996); with our unrestricted alternative proposed test. We propose a test statistic for 

testing one-sided multivariate hypothesis, 
0 1 2H :    against  

a 1 2H :     as 

 

   1
1 2 1 2T=  X X S X X   and   1 2

X X 1  

where (1,1,...,1)1 is p 1  vector and we will reject 
0H  at significant level α  if  



1644 S. Chongcharoen & M. Rodchuen / Songklanakarin J. Sci. Technol. 43 (6), 1641-1647, 2021 

  
 
 

2
1 2α,p,υT T    and  

1 2( ) 0 X X 1 . 

By Theorem 2.1 of Follmann (1996), one has 
1 2( ) 0 1   and the significance level is approximated by 

 
2 2

1 2α,p,υ 1 2 1 2α,p,υ 1 2P(T T ( ) 0) P(T T ) P( ( ) 0)         X X 1 X X 1 1
(2α)

2
 α . 

Similarly, we can have the one-sided alternative test of 
0 1 2H :    against  

a 1 2H :   , so we will reject 
0H  at significant 

level α  if  

 
2

1 2α,p,υT T    and  
2 1( ) 0 X X 1 . 

The performance of our unrestricted alternative proposed test and both one-sided alternative tests are illustrated by Monte Carlo 

study as Tables 1-3. The application of these proposed tests to the real data is also illustrated. 

 

3. Simulation Study 
 

The Monte Carlo simulation study was conducted by using R program version 3. 5.1 ( 64 bit)  for investigating the 

accuracy of all proposed tests on two-sample multivariate test with one covariance matrix unknown. The datasets  are generated 

by “MASS” package version 7.3–51.1 from Venables and Ripley (2002) for p- multivariate normal distribution with the mean 

vector 
i  and the positive definite covariance matrix 

i i i iW W ,  i i1 i2 ipW Diag[w , w ,..., w ], ijw (2 i) (p j 1) / p,    
 

(i)
i jk( ), 

 

(i)
jj 1,

0.1
j k(i) j k

jk ( 1) (0.2 i) ,
  

 
i 1,2; j,k 1,2,...,p; j k    given by Hu, Bai, Wang, and Wang (2017). The 

initial value of random–number seed was set at 
312 1 .  Then 

1  and 
2  were set to be known and unknown respectively. Each 

testing statistic was computed repeatedly 10,000 times in each setting. The attained significance level ˆ( )  and the attained power 

(1-β) were computed by the number of rejections under the null hypothesis divided by 10,000 and the number of rejections under 

the alternative hypothesis divided by 10,000, respectively.   For the null hypothesis, we set the mean vectors as 
1 2;   

i i1 i2 ip(μ ,μ ,...,μ ) ; i=1,2   where  
d

1j 2 j ij

ii

~ U 1,1 ,;     j 1,2, p...,  when  U 1,1 denotes uniform distribution with the 

support  1,1 , and for the alternative two-sided test, we set  
iid

1j ~ U 1,1 , and    
i

2 j

id

~ U 1.5, 1 U 1,1.5    . For the alternative 

one-sided test, 
a 1 2H :   , the mean vectors were set to be  

iid

1j ~ U 1,1  and   
d

2 j

ii

~ U 1.5, 1   .  For the alternative one-sided 

test, 
a 1 2H :   ,  the mean vectors were set to be   

iid

1j ~ U 1,1  and   
iid

2 j ~ U 1,1.5 . The significance level is set at 0.05  . We 

considered the performance of all proposed tests for p 5,10,30,50  with different condition of samples sizes as 

1 2n n ,
1 2n n and 

1 2n n .  

 
Table 1. Simulation results at nominal significance levels 0.05  and 

1 2n n .  
 

p n1, n2 

two-sided test 
one sided test 

a 1 2(H : )   
one sided test 

 
a 1 2(H : )   

Type I error rate Empirical power Type I error rate Empirical power Type I error rate Empirical power 

        

5 20,20 .0464 .8318 .0454 .9358 .0477 .3385 

 35,35 .0494 .9904 .0497 .9969 .0469 .5614 

 50,50 .0452 .9996 .0475 .9999 .0488 .7329 
 100,100 .0487 1.0000 .0512 1.0000 .0478 .9619 

10 40,40 .0475 .9701 .0461 1.0000 .0469 .9896 

 70,70 .0463 .9998 .0434 1.0000 .0501 1.0000 
 100,100 .0476 1.0000 .0504 1.0000 .0511 1.0000 

30 120,120 .0439 1.0000 .0459 1.0000 .0437 1.0000 
 210,210 .0432 1.0000 .0450 1.0000 .0482 1.0000 

 300,300 .0500 1.0000 .0488 1.0000 .0504 1.0000 

50 200,200 .0410 1.0000 .0435 1.0000 .0443 1.0000 
 350,350 .0458 1.0000 .0444 1.0000 .0469 1.0000 

 500,500 .0482 1.0000 .0498 1.0000 .0501 1.0000 

Max. ˆ| α-α |  .0090 - .0066 - .0063  
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Table 2. Simulation results at nominal significance levels 0.05  and 
1 2n n .  

 

p n1, n2 

two-sided test 
one sided test 

a 1 2(H : )   
one sided test 

 
a 1 2(H : )   

Type I error rate Empirical power Type I error rate Empirical power Type I error rate Empirical power 

        

5 25,20 .0528 .8532 .0551 .9459 .0486 .3656 
 40,35 .0528 .9923 .0522 .9986 .0509 .5812 

 60,50 .0482 .9994 .0504 1.0000 .0487 .7402 

 110,100 .0506 1.0000 .0502 1.0000 .0500 .9668 
10 50,40 .0541 .9784 .0528 1.0000 .0539 .9955 

 80,70 .0499 .9999 .0499 1.0000 .0492 1.0000 

 110,100 .0491 1.0000 .0471 1.0000 .0527 1.0000 
30 140,120 .0525 1.0000 .0501 1.0000 .0528 1.0000 

 230,210 .0480 1.0000 .0504 1.0000 .0481 1.0000 

 350,300 .0522 1.0000 .0519 1.0000 .0516 1.0000 

50 220,200 .0448 1.0000 .0456 1.0000 .0457 1.0000 

 400,350 .0496 1.0000 .0485 1.0000 .0470 1.0000 
 550,500 .0499 1.0000 .0504 1.0000 .0460 1.0000 

Max. ˆ| α-α |  .0052 - .0051 - .0043  
       

 
Table 3. Simulation results at nominal significance levels 0.05  and 

1 2n n .  
 

p n1, n2 

two-sided test 
one sided test 

a 1 2(H : )   
one sided test 

 
a 1 2(H : )   

Type I error rate Empirical power Type I error rate Empirical power Type I error rate Empirical power 

        

5 20,25 .0399 .8965 .0435 .9668 .0432 .3847 
 35,40 .0462 .9943 .0477 .9991 .0438 .5965 

 50,60 .0474 1.0000 .0524 1.0000 .0456 .7814 

 100,110 .0503 1.0000 .0489 1.0000 .0506 .9726 
10 40,50 .0433 .9898 .0429 1.0000 .0435 .9977 

 70,80 .0452 1.0000 .0456 1.0000 .0475 1.0000 

 100,110 .0464 1.0000 .0484 1.0000 .0496 1.0000 
30 120,140 .0388 1.0000 .0436 1.0000 .0413 1.0000 

 210,230 .0457 1.0000 .0441 1.0000 .0448 1.0000 

 300,350 .0487 1.0000 .0467 1.0000 .0482 1.0000 
50 200,220 .0388 1.0000 .0437 1.0000 .0390 1.0000 

 350,400 .0407 1.0000 .0453 1.0000 .0419 1.0000 

 500,550 .0444 1.0000 .0472 1.0000 .0436 1.0000 

Max. ˆ| α-α |  .0112 - .0071 - .0110  
       

 

From simulation results (Table 1-3), all the estimated attained significance level values considered are very close to the 

nominal significance levels setting 0.05   as expected.  The last row of each table provides the absolute maximum 

discrepancy between the nominal significance level setting and the estimated attained significance level over 13 conditions 

showing that the proposed test has excellent performance in every case considered except for 
1 2n n , in which it gave a fairly 

good performance in every case considered. 

For the alternative two-sided test and one-sided test, 
a 1 2H :   , overall situations considered both equal and 

unequal sample sizes, it was shown that the proposed test tend to give excellent power. 

For the alternative one-sided test, 
a 1 2H :   , overall situations considered both equal and unequal sample sizes, it 

was shown that the proposed test tend to have the highest power when p 10 .  For small dimension or p 10  such as in this 

case p 5 , we recommend to use our proposed test when n 100. 

 

4. Application for Real Data Set 
 

The data for illustrating the proposed tests are of Parkinson's disease. The dataset was created by Max Little of the 

University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the 

speech signals and published by Little, McSharry, Roberts, Costello, and Moroz (2007). The data from a range of biomedical 

voice measurements (recurrence pitch entropy density (RPDE), detrended fluctuation analysis (DFA), two nonlinear dynamical 

complexity measures (D2) and three nonlinear measures of fundamental frequency variation (spread1), (spread2), (PPE)) of 31 
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people were used to test the equality of mean vectors of two 

independent groups, healthy controls and patients. The sample 

size of the groups were 8 and 23, respectively. Without loss of 

generality, we assume that the covariance matrix from healthy 

controls group is known. After statistical computation and 

normality checking, we obtained the testing statistic for two-

sided test equal to 43.16392 with degree of freedom 22 and p-

value equal to 0.002387514. The testing result leads us to 

reject 0 1 2H :    and then we can conclude that there are 

difference between the two mean voice signals of healthy 

control and patient groups. For the alternative one-sided test, 

a 1 2H :   , we obtained the same testing statistic as two-

sided test with critical value at significant level 0.05 equal to 

16.71269 and 
2 1( )X X 1 =1.892498. The testing result 

cannot lead us reject 
a 1 2H :    and then we can conclude 

that the mean voice signals of healthy controls are less than 

the mean voice signals patient of the group; the mean and 

standard deviation are shown in Table 4. This shows that the 

alternative one-sided test as 
a 1 2H :    works very well 

even though the dimension is small and 
1 2n n .  

 

5. Conclusions 
 

In this paper, we considered two-sample 

multivariate testing for testing the equality of two population 

mean vectors of two normal populations in situation which 

one covariance is assumed to be known and the other is 

unknown. We adapted a test statistic from Yao (1965) and 

developed its distribution. We also proposed one-sided 

alternative testing statistics of these two population means by 

using Follmann’s technique (Follmann, 1996) with our 

unrestricted alternative proposed test. The accuracy of all 

proposed tests is investigated by simulation study. Under 

simulation study, the simulated results showed that all 

proposed tests gave attained significance levels close to 

nominal significance level in every situation considered, 

especially when the sample size from population with known 

covariance matrix is larger than or equal to that from the 

population with unknown covariance matrix. When the 

sample size from the population with known covariance 

matrix is larger than or equal to that from the population with 

unknown covariance matrix, the two-sided proposed test and 

the one-sided proposed test with 
a 1 2H :    gave excellent 

power in every situation considered but the one-sided 

proposed test with 
a 1 2H :    gave excellent powers when 

the two samples sizes are larger or equal to 100. When the 

sample size from the population with known covariance 

matrix is smaller than that from the population with unknown 

covariance matrix, the one-sided proposed test with 

a 1 2H :   gave an excellent performance and power in 

every situation considered but the two-sided proposed test and 

the one-sided proposed test with 
a 1 2H :    work very well 

when the dimension is less than 30. Over all conditions 

considered, we recommend to use our two-sided proposed 

testing statistic and two one-sided proposed testing statistics 

when the sample size from population with known covariance 

matrix is larger than or equal to those from the population 

with unknown covariance matrix and the sample size of both 

Table 4. Mean and standard deviation voice signals of healthy  

controls and patients’ groups 
 

Feature 
Healthy controls Patients’ groups 

mean SD mean SD 
     

RPDE .4426 .0784 .5148 .0964 

D2 2.1545 .2231 2.4146 .0645 

DFA .6957 .0518 .7239 .0539 
Spread1 -6.7593 .5637 -5.4116 .7382 

Spread2 .1603 .0577 .2412 .0562 

PPE .1230 .0381 .2264 .0645 
     

 

samples should be larger 50. When the sample size from the 

population with known covariance matrix is smaller than that 

from the population with unknown covariance matrix, we can 

use two-sided proposed test and the one-sided proposed test as 

a 1 2H :    with small dimensions. 
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