

Songklanakarin J. Sci. Technol. 43 (6), 1604-1609, Nov. - Dec. 2021

Original Article

The pressure dependence of the critical temperature of MgB_2

Thaipanya Chanpoom*

Physics and General Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Mueang, Nakhon Ratchasima, 30000 Thailand

Received: 3 July 2020; Revised: 16 December 2020; Accepted: 29 December 2020

Abstract

The dependence of the critical temperature T_c on the pressure P in the magnesium diboride MgB_2 has been studied in the two-band model. In each band consists of two pairing interaction, electron-phonon interaction and non-electron-phonon interaction. This research derived the exact equation of the critical temperature dependence on pressure for magnesium diboride superconductor. It was found that increasing electron-phonon coupling constant and non-electron-phonon coupling constant of 1st and 2nd band will increase the T_c . The critical temperature decreased as pressure increased and can be fitted well to the experimental T_c versus P in magnesium diboride.

Keywords: pressure effect, magnesium diboride, two-band superconductor, weak-coupling interaction, high-Tc superconductor

1. Introduction

The superconductor, MgB_2 was superconducting at 39K with a big surprise which was discovered by Nagamatsu in 2001 (Nagamatsu, Nakagawa, Muranaka, Zenitani, & Akimitsu, 2001). Although, the structure MgB2 is regarded as a conventional superconductor based on the Bardeen-Cooper-Schrieffer (BCS) theory, its high critical temperature (Vinod, Varghese, & Syamaprasad, 2007), anomalous temperature behavior of the specific heat (Hardy et al., 2010) and shift from 0.5 isotope exponent (Budko et al., 2001) cannot be explained by the BCS theory. Because of the absence of grainboundary weak links, MgB_2 is more similar to conventional superconductor than to high temperature superconductors (Larbalestier et al., 2001). Liu, Mazin, and Kortus (2001) predicted the existence of two-band in MgB_2 and it has been observed in experimental studies (Lavarone et al., 2002). It is concluded that $M_g B_2$ is a superconductor with two energy gaps, the σ band energy gap originating from σ bonding and the π band energy gap originating from π bonding (Xi, 2008); the σ band energy gap of 6.8 MeV opens on cylindrical Fermi surfaces while the π band energy gap of 1.8 MeV is associated to the three dimensional Fermi surfaces (Choi, Roundy, Sun, Cohen, & Louie, 2002).

*Corresponding author Email address: nakonrachasima@yahoo.co.th

principal parameters determining The the superconducting properties and used to tune the critical temperature can be varied by applying external pressure to the superconductors. The electronic and magnetic properties of superconductors can be altered via changes in lattice parameters. Some materials such as AVO4 orthovanadates undergo the structural change into different phases under applied pressure (Errandonea & Garg, 2018). Hodder investigated the pressure dependence of T_c on the conventional superconductor and showed that T_c decreased as the pressure increased (Hodder, 1969). For Tl-based and Bibased superconductors, the critical temperature increased as pressure is increased (Chanpoom, 2020). At high pressure some elements or compounds, the structural transitions onto and superconductivity phase and showed metallic superconductivity state under pressure (Buzea & Robbie, 2005). The investigation of pressure dependence on the critical temperature in high temperature superconductors is useful in the search for new superconductors with highly T_c values. In the first high temperature superconductor $La_{2-x}Ba_xCuO_4$, it was found that the critical temperature increased with the external pressure to superconductors. The critical temperature of $H_{g}Ba_{2}Ca_{2}Cu_{3}O_{8+\delta}$ can increase to 160K under high pressure (Gao et al., 1994). Krzyosiak et al. (2018) studied the effect of high pressure on the critical temperature of superconductors. They suggested that the dependence of the critical temperature on high external pressure varied with parameters and showed four types of curve change in response to applied pressure. The pressure could induce the formation of a super-lattice in MgB_2 (Tschauner, Errandonea, & Serghiou, 2006). In MgB_2 , hydrostatic pressure can reduce the density of state and can lead to a reduction in the transition temperature from 39.7K at P = 0GPa to 37.7K at P = 1.2GPa(Shabbir, wang, Ghorbani, Dou, & Xiang, 2015).The hydrostatic pressure of 1.2GPa can significantly enhance flux pinning or the critical current density of optimally doped $Ba_{0.6}K_{0.4}Fe_2As_2$ from $5 \times 10^5 A/cm^2$ to nearly $10^6 A/cm^2$ at 2T, and from $2 \times 10^5 A/cm^2$ to nearly $5.5 \times 10^5 A/cm^2$ at 12T(Shabbir, wang, Ma, Dou, Yan, & Mei, 2016). The pressure induced a transition from the regime where pinning is controlled by spatial variation in the critical transition temperature to the regime controlled by spatial variation in the mean free path (Shabbir, wang, Ghorbani, Dou, & Xiang, 2015). For $Sr_4V_2O_6Fe_2As_2$ superconductor, at 1.2GPa, the transition temperature can increase from 15K to 22K, as well as the critical current density, J_c up to 30 times at both low and high fields (Shabbir, wang, Ghorbani, Shekhar, Dou, & Srivastava, 2015). In $Sr_{0.6}K_{0.4}Fe_2As_2$ tape, hydrostatic pressure induced pinning centers are the main source of $J_{\rm c}$ enhancement, along with a fractional contribution from geometric changes around the grain boundaries under pressure (Shabbir et al., 2017).

After the existence of superconductivity in two-band superconductor MgB_2 studies about the dependence on pressure of the critical temperature reported that the critical temperature decreases as the pressure increases but there is a different value of on pressure coefficient (Goncharov et al., 2001; Tang et al., 2001; Tomita, Hamlin, & Schilling, 2001). Kononenko et al. (2015) studied the effect of two-band in MgB_2 under hydrostatic pressure that showed the underestimation of effect of pressure on the interband scattering. The effect of pressure on the critical temperature of $M_{gB_{2}}$ can be explained with two-band BCS model incorporating interband interactions; increasing interband electron-phonon (electron-electron) coupling will increase (decrease) the critical temperature (Ogbuu & Abah, 2015). Ummario (2005) studied the pressure dependence of the critical temperature in MgB_2 and two-band Eliashberg theory found that T_c decreases as the pressure increases and can be fitted very well with the experimental T_c versus P. The pressure dependence of T_c is complex and depends on various parameters such as the phonon frequency and the density of state.

This research studied the pressure dependence on the critical temperature by using BCS-like model. This study also sets up the theoretical model to investigate the pressure dependence on the critical temperature. The exact formula of T_c 's equation depending on pressure is derived. The comparison with the experimental data is shown.

2. Materials and Methods

Experiments suggest that MgB_2 is a two-band s-wave superconductor. The multiband superconductors were first introduced by Suhl, Matthias, and Walker (Suhl, Matthias, & Walker, 1959) and Moskalenke, Palistrant, and Vakalyuk (Moskalenke, Palistrant, & Vakalyuk, 1991) showing that a two-gap superconductor was described by a two band mechanism with an interband pairing channel. The pairing interaction consists of two parts, an attractive electron-phonon interaction and an attractive non-electron phonon interaction in σ -band, π -band and $\pi - \sigma$ scattering of interband pairs. The pressure dependence of T_c can be derived from weak-coupling BCS model (Bardeen, Cooper, & Schrieffer, 1957) and strong-coupling Eliashberg model (Eliashberg, 1961).

The linearized Hamiltonian of a two-band superconductor with the interband scattering and intraband pairs is used (Kristofeffel & Rubin, 2001; Udomsamuthirun, Kumvongsa, Burakorn, Changkanarth, & Yoksan, 2005).

$$H = H_{\pi} + H_{p} + H_{p\pi}$$

$$H_{\pi} = \sum_{k\sigma} \varepsilon_{\pi k\sigma} \pi_{k\sigma}^{+} \pi_{k\sigma} + \sum_{kk'} V_{\pi\pi kk'} \pi_{k\uparrow}^{+} \pi_{-k\downarrow}^{+} \pi_{-k\downarrow} \pi_{k\uparrow}^{+} \pi_{-k\downarrow}^{+} \pi_{k\uparrow}^{+} \pi_{k\downarrow}^{+} \pi_{k\downarrow}^{+} \pi_{k\downarrow}^{+} \pi_{k\downarrow}^{+} \pi_{k\downarrow}^{+} \pi_{k\downarrow}^{+} \pi_{-k\downarrow}^{+} \pi_{k\downarrow}^{+} \pi_{k\downarrow$$

here

$$H_{p\pi} = \sum_{kk'} V_{p\pi kk'} (p_{k\uparrow}^+ p_{-k\downarrow}^+ \pi_{-k'\downarrow} \pi_{k'\uparrow} + \pi_{k\uparrow}^+ \pi_{-k\downarrow}^+ p_{-k'\downarrow} p_{k'\uparrow}) \bigg]$$

here H_{π} , H_{p} are the Hamiltonian of π -band and σ -band respectively, $H_{p\pi}$ is the Hamiltonian of interband scattering.

Following the two-band Hamiltonian of superconductivity and applying standard techniques, the linearized gap equations as

$$\Delta_{pk} = -\sum_{k'} V_{ppkk'} \left(\frac{\Delta_{pk'}}{2\sqrt{\varepsilon_{pk'}^2 + \Delta_{pk'}^2}} \right) \tanh\left(\frac{\sqrt{\varepsilon_{pk'}^2 + \Delta_{pk'}^2}}{2T} \right) - \sum_{k'} V_{p\pi kk'} \left(\frac{\Delta_{\pi k'}}{2\sqrt{\varepsilon_{\pi k'}^2 + \Delta_{\pi k'}^2}} \right) \tanh\left(\frac{\sqrt{\varepsilon_{\pi k'}^2 + \Delta_{\pi k'}^2}}{2T} \right)$$
(3)

$$\Delta_{\pi k} = -\sum_{k'} V_{\pi\pi kk'} \left(\frac{\Delta_{\pi k'}}{2\sqrt{\varepsilon_{\pi k'}^2 + \Delta_{\pi k'}^2}} \right) \tanh\left(\frac{\sqrt{\varepsilon_{\pi k'}^2 + \Delta_{\pi k'}^2}}{2T} \right) - \sum_{k'} V_{\pi p kk'} \left(\frac{\Delta_{p k'}}{2\sqrt{\varepsilon_{p k'}^2 + \Delta_{p k'}^2}} \right) \tanh\left(\frac{\sqrt{\varepsilon_{p k'}^2 + \Delta_{p k'}^2}}{2T} \right)$$
(4)

here $\varepsilon_{ik'}(i = p, \pi)$ is the band dispersion measured from the Fermi energy, $\Delta_{ik'}(i = p, \pi)$ is the superconducting gap and $V_{ikk'}(i = p, \pi)$ is pairing interaction potential. The two-band model, the paring interaction consists of two parts (Daemen & Overhauser, 1990; Yoksan, 1991), an attractive electron-phonon interaction V_{ph} and an attraction non-Electron-phonon interaction U_c . The ω_p and ω_c are the characteristic energy cutoff of the Debye phonon and non-phonon respectively. The interaction potential $V_{ikk'}$ may be written as

$$V_{ikk'} = \begin{cases} -V_{ph}^{i} - U_{c}^{i} &, \text{ for } 0 < |\varepsilon_{k}| < \omega_{D} \\ -U_{c}^{i} &, \text{ for } \omega_{D} < |\varepsilon_{k}| < \omega_{c} \end{cases}$$
(5)

 $i = p, \pi, p\pi$. The interactions of the superconducting order parameter are

$$\Delta_{jk} = \begin{cases} \Delta_{j1} &, \text{for } 0 < |\varepsilon_k| < \omega_D \\ \Delta_{j2} &, \text{for } \omega_D < |\varepsilon_k| < \omega_C \end{cases}$$
(6)

 $j = p, \pi$. Substituting Equation (5),(6) in Equation (3) and (4) and replacing the summation over k' by integration over energy $\varepsilon_{ik'}$ (using $k_B = h = 1$) and constant density of state $N(\varepsilon_k) = N(0)$, at $T = T_c$, yields

$$\begin{pmatrix} (\lambda_{1} + \mu_{1})I_{1} - 1 & (\lambda_{12} + \mu_{12})I_{1} & \mu_{1}I_{2} & \mu_{2}I_{2} \\ (\lambda_{12} + \mu_{12})I_{1} & (\lambda_{2} + \mu_{2})I_{1} - 1 & \mu_{12}I_{2} & \mu_{2}I_{2} \\ \mu_{1}I_{1} & \mu_{12}I_{1} & \mu_{1}I_{2} - 1 & \mu_{12}I_{2} \\ \mu_{12}I_{1} & \mu_{2}I_{1} & \mu_{12}I_{2} & \mu_{2}I_{2} - 1 \end{pmatrix} \begin{vmatrix} \Delta_{11} \\ \Delta_{21} \\ \Delta_{22} \\ \Delta_{22} \end{vmatrix} = 0$$

$$I_{1} = \int_{0}^{\omega_{p}} \frac{\tanh\left(\frac{\varepsilon}{2T_{c}}\right)}{\varepsilon} d\varepsilon \qquad I_{2} = \int_{\omega_{p}}^{\omega_{c}} \frac{\tanh\left(\frac{\varepsilon}{2T_{c}}\right)}{\varepsilon} d\varepsilon$$

$$\lambda_{1} = N(0)V_{ph}^{1}, \lambda_{2} = N(0)V_{ph}^{2}, \lambda_{12} = N(0)V_{ph}^{12} = N(0)V_{ph}^{21}$$

$$\mu_{1} = N(0)U_{c}^{1}, \mu_{2} = N(0)U_{c}^{2}, \mu_{12} = N(0)U_{c}^{12} = N(0)U_{c}^{21}$$

$$\lambda_{1} = n (0)U_{c}^{1}, \mu_{2} = N(0)U_{c}^{2}, \mu_{12} = N(0)U_{c}^{12} = N(0)U_{c}^{21}$$

here

 λ_1, λ_2 are the phonon coupling constant of 1^{st} and 2^{na} band

 μ_1, μ_2 are the non-phonon coupling constant of 1^{st} and 2^{nd} band

 λ_{12}, μ_{12} are the interband phonon and non-phonon coupling constant respectively.

Solving the secular equation of Equation (7), It gets

$$I_{1} = \frac{1 - m_{1}I_{2}}{l_{1} + m_{1} + (2b_{m} - m_{1}l_{1})I_{2}}$$
(8)

here $l_t = l_1 + l_2$, $m_t = m_1 + m_2$ and $b_m = m_{12}^2 - m_1 m_2$

Let λ_t and μ_t depended on pressure P , differentiation of Equation (8) with respect to P yield

$$\frac{dI_{1}}{dP} = \frac{\lambda_{i}\phi_{\lambda_{i}} + \mu_{i}\phi_{\mu_{i}} - 2\mu_{i}\lambda_{j}\phi_{\lambda_{i}}\ln\left(\frac{\omega_{e}}{\omega_{D}}\right)}{(\lambda_{i} + \mu_{i})\left(\lambda_{i} + \mu_{i} + (4b_{\mu} - 2\lambda_{i}\mu_{i})\ln\left(\frac{\omega_{e}}{\omega_{D}}\right)\right)B_{0}}$$
(9)

here the bulk modulus $B_0 = -\frac{dP}{d \ln V}, \frac{d \ln \mu_t}{d \ln V} = \phi_{\mu_t}, \frac{d \ln \lambda_t}{d \ln V} = \phi_{\lambda_t}$

The T_c 's equation can be derived from differentiation of $I_1 = \int_{0}^{\omega_p} \frac{\tanh\left(\frac{\varepsilon}{2T_c}\right)}{\varepsilon} d\varepsilon$ with respect to pressure; in case

 $\omega_D >> T_c$, the variation of the critical temperature on pressure is

$$\frac{d \ln T_c}{dP} = \frac{d \ln \omega_D}{dP} - \frac{dI_1}{dP}$$

$$= \frac{d \ln \omega_D}{d \ln V} \cdot \frac{d \ln V}{dP} - \frac{dI_1}{dP}$$

$$= \frac{r_G}{B_0} - \frac{dI_1}{dP}$$
(10)

here $r_G = -\frac{d \ln \omega_D}{d \ln V}$ is the mode Gruneisen parameter. By substituting Equation (9) in Equation (10) the exact formula of T_c 's equation of two-band superconductors can be written as

$$T_{c} = Exp\left[\frac{r_{G}}{B_{0}} - \left(\frac{\lambda_{i}\phi_{\lambda_{i}} + \mu_{i}\phi_{\mu_{i}} - 2\mu_{i}\lambda_{i}\phi_{\lambda_{i}}\ln\left(\frac{\omega_{c}}{\omega_{D}}\right)}{(\lambda_{i} + \mu_{i})\left[\lambda_{i} + \mu_{i} + \left(4b_{\mu} - 2\lambda_{i}\mu_{i}\right)\ln\left(\frac{\omega_{c}}{\omega_{D}}\right)\right]B_{0}}\right]\right]P$$
(11)

Equation (11) shows the formula of pressure dependence on the critical temperature, varying on parameters $\lambda_i, \mu_i, \phi_{\lambda}, \phi_{\mu}, b_{\mu}, r_G, B_0, \omega_D$ and ω_c .

3. Results and Discussion

The pressure dependence of the critical temperature of two-band superconductor in weak-coupling limit is derived analytically as shown in Equation (11). This study adjusted parameters $\lambda_t, \mu_t, \phi_{\lambda_t}, \phi_{\mu_t}, b_{\mu}, r_G, B_0, \omega_D$ and ω_c to get desired experimental result. The critical temperature at zero pressure is $T_c(0) = 37.4K$ (Lorenz, Meng, & Chu, 2001); this research used the set of parameters as $\phi_{\lambda_t} = 2.2, \phi_{\mu_t} = 1.8, b_{\mu} = 0.1, \omega_c = 800K, \omega_D = 745K, B_0 = 90GPa$ and $r_G = 1$. The calculation of Equation (11) varied on P, λ_r and μ_t is shown in Figure 1. It was found that the T_c decreased as pressure increased.

This research numerically evaluates the critical temperature as a function of pressure order the range 0-2GPa for different values of $\lambda_t = 0.2, 0.3$ and $\mu_t = 0.1, 0.2$. It was found that increasing λ_t and μ_t will increase the T_c . The variation of the critical temperature with the pressure corresponded to the experimental data of M_gB_2 (Lorenz *et al.*, 2001). It is observed that the case of $\lambda_t = 0.3$ and $\mu_t = 0.1$ fits well with the data of M_gB_2 over the range 0-2GPa.

In case of pressure range 0-30GPa, this study numerically evaluates the dependence on pressure of T_c values at $T_c(0) = 37.3K$ (Tissen, Nefedova, Kolesnikov, & Kulakov, 2001). The results uses parameters as $\phi_{\lambda} = 2.6, \phi_{\mu} = 1.8, b_{\mu} = 0.1, \omega_c = 800K$ and $\omega_D = 745K, B_0 = 90GPa$ and $r_G = 1$. The calculation using Equation (11) are shown in Figure 2. It was found that the T_c decreases as pressure increases and the critical temperature approaches to zero at very high pressure.

Figure 1. The variation of *Tc* versus *P* for different value of λ_t and μ_t based on Equation (11). On pressure range 0-20GPa.

Figure 2. The variation of *Tc* versus *P* for different value of λ_t and μ_t based on Equation (11). On pressure range 0-30GPa.

1607

1608

For this case, over the range 0-30GPa and values of $\lambda_t = 0.1, 0.2$ and $\mu_t = 0.05, 0.15$ it was found that the critical temperature increases as λ_t and μ_t increase. The result agreed with the experimental data of MgB_2 (Tissen, Nefedova, Kolesnikov, & Kulakov, 2001).

It is observed that the critical temperature vanished at very high pressure. The influence of the coupling constant of 1st and 2nd band, both coupling constant λ_t and μ_t can increase T_c ; the non-phonon coupling constant μ_t showed more effect on the critical temperature than the phonon coupling constant λ_t at very high pressure.

4. Conclusions

This research has investigated the pressure dependence of the critical temperature and focused on MgB_2 superconductor. The exact equation for the critical temperature using the two-band BCS model is derived. It was found that the critical temperature decreased as the pressure increased and can be fit well with the experimental data of MgB_2 over the entire pressure range. Both the electron-phonon coupling constant λ_t and the non-electron-phonon coupling

constant μ_t showed effect on the critical temperature of MgB_2 , increasing the electron-phonon coupling constant and the non-electron-phonon coupling constant will increase the T_c . The effect of pressure on the critical temperature of MgB_2 .

can be explained within the two-band BCS model taking into account the electron-phonon and non-electron-phonon attractive interaction with the weak-coupling limit.

Acknowledgements

The author would like to thank Nakhon Ratchasima Rajabhat University for financial support.

References

- Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. *Physical Review*, 108,1175-1204.
- Bud'ko, S. L., Lapertot, G., Petrovic, C., Cunningham, C. E., Anderson, A., & Canfield, P. C. (2001). Boron isotope effect in superconducting MgB2. *Physical Review Letters*, 86, 1877-1880.
- Buzea, C., & Robbie, K. (2005). Assembling the puzzle of superconducting elements: a review. Super conductor Science and Technology, 18, R1.
- Chanpoom, T. (2020). The dependence of the critical temperature on pressure. *International Journal of Modern Physics B*, 34(29), 2050276-(1-11).
- Choi, H. J., Roundy, D., Sun, H., Cohen, M. L., & Louie, S. G. (2002). The origin of the anomalous superconducting properties of MgB2. *Nature*, 418, 758-760.
- Daemen, L. L., & Overhauser, A. W. (1990). Isotope effect at higher critical temperatures. *Physical Review B*, 41, 7182.

- Eliashberg, G. M. (1961). Temperature Green's function for electrons in superconductor. *Soviet Physics JEPT*, *12*, 1000-1002.
- Errandonea, D., & Garg, A.B. (2018). Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. *Progress in Materials Science*, 97, 123-169.
- Gao, L., Xue, Y. Y., Chen, F., Xiong, Q., Meng, R. L., Ramirez, D., . . Mao, H. K. (1994). Superconductivity up to 164K in HgBa₂Cam-1O2m+2+x(m=1,2,3) under quasihydrostatic pressures. *Physical Review B*, 50, 4260 (R).
- Goncharov, A. F., Struzhkin, V. V., Gregoryanz, E., Hu, J., Hemley, R. J., Mao, H. -K., . . . Canfield, P. C. (2001). Raman spectrum and lattice parameters of MgB2 as a function of pressure. *Physical Review B*, 64(10), 100509.
- Hardy, F., Wolf, T., Fisher, R., A., Eder, R., Schweiss, P., Adelmann, P., . . . Meingast, C. (2010). Calorimetric evidence of multiband superconductivity in Ba(Fe0.925Co0.075)2 As2 single crystals. *Physical Review B*, 81, 060501 (R).
- Hodder, R. E. (1969). Pressure effects on the superconducting transition temperature of Pb. *Physical Review*, 180, 530.
- Kononenko, V., Tarenko, V., Belogolovskii, M., Doring, S., Schmidt, S., & Seidel, P. (2015). Tracing the evolution of the two energy gaps in magnesium diboride under pressure. *Low Temperature Physics*, 41, 264.
- Kristofeffel, N. & Rubin, P. (2001). Two-band high-Tc superconductivity with pseudogap. *Physica C*, 356, 171-175.
- Krzyzosiak, M., Gonczarek, R., Gonczarek, A., & Jacak, L. (2018). Simple analytical model of the effect of high pressure on the critical temperature and other thermodynamic properties of superconductors. *Scientific Reports*, 8, 7709.
- Larbalestier, D. C., Cooley, L. D., Rikel, M. O., Polyanskii, A. A., Jiang, J., Patnaik, S., . . . Haas, M. (2001). Strongly linked current flow in polycrytalline forms of superconductor MgB2. *Nature*, 410, 186-189.
- Lavarone, M., Ka rapetrov, G., Koshelev, A. E., Kwok, W. K., Crabtree, G. W., Hinks, D. G., . . . Lee, S. I. (2002). Two-band superconductivity in MgB2. *Physical Review Letter*, 89, 187002.
- Liu, A. Y., Mazin, I. I., & Kortus, J. (2001). Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps. *Physical Review Letters*, 87, 87005.
- Lorent, B., Meng, R. L., & Chu, C. W. (2001). High pressure study on MgB2. *Physical Review B*, 64, 012057.
- Moskalenko, V. A., Palistrant, M. E., & Vakalyuk, V. M. (1991). High11 temperature superconductivity and the characteristics of the electronic energy spectrum. *Soviet Physics Uspekhi*, 34, 717.
- Nagamatsu, j., Nakagawa, N., Muranaka, T., Zenitani, Y., & Akimitsu, J. (2001). Superconductivity at 39K in Magnesium Diboride. *Nature*, *410*, 63-64.
- Ogbuu, O. A., & Abah, O. (2015). Effect of interband interactions on the pressure dependence on

transition temperature of MgB2. *Physica C*, *519*, 100-103.

- Shabbir, B., Huang, H., YaO, C., Ma, Y., Dou, S., Johansen, T. H., . . . Wang, X. (2017). Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure. *Physical Review Materials*, 1(4), 044805.
- Shabbir, B., Wang, X., Ghorbani, S. R., Dou, S. X., & Xiang, F. (2015). Hydrostatic pressure induced transition from δT_c to δl pinning mechanism in MgB₂. Superconductor Science and Technology, 28(5), 055001.
- Shabbir, B., Wang, X., Ghorbani, S. R., Shekhar, C., Dou, S. X., & Srivastava, O. N. (2015). Hydrostatic pressure: A very effective approach to significantly enhance critical current density in granular iron pnictide superconductors. *Scientific Reports*, 5, 08213.
- Shabbir, B., Wang, X., Ma, Y., Dou, S. X., Yan, S. S., & Mei, L. M. (2016). Study of flux pinning mechanism under hydrostatic pressure in optimally doped (Ba, K)Fe₂As₂ single crystals. *Scientific Reports*, 6, 23044.
- Suhl, H., Matthias, B. T., & Walker, L. R. (1959). Bardeencooper-schrieffer theory of superconductivity in the case of overlapping bands. *Physical Review Letters*, 3, 552.
- Tang J., Qin, L. -C., Matsushita, A., Takano, Y., Toqano, K., Kito, H., & Ihara, H. (2001). Lattice parameter and Tc dependence of sintered MgB2 superconductor on

hydrostatic pressure. *Physical Review B*, 64, 132509.

- Tissen, V. G., Nefedova, M. V., Kolesnikov, N. N., & Kulakov, M. P. (2001). Effect of pressure on the superconducting Tc of MgB2. *Physica C*, 363, 194-197.
- Tomita, T., Hamlin, J. 1 J., & Schilling, J. S. (2001). Dependence of Tc on hydrostatic pressure in supercnducting MgB2. *Physical Review B*, 64, 092505.
- Tschauner, O., Errandonea, D., & Serghiou, G. (2006). Possible superlattice formation in high-temperature treated carbonaceous MgB₂ at elevated pressure. *Physica B: Condensed Matter*, 371(1), 88-94.
- Udomsamuthirun, P., Kumvongsa, C., Burakorn, A., Changkanarth, P., & Yoksan, S.(2005). Effect of density of state on isotope effect exponent of twoband superconductors. *Physica C*, 425, 149-154.
- Ummarino, G. A. (2005). Pressure dependence of critical temperature in MgB2 and two-bands Eliashberg theory. *Physica C*, 423, 96-102.
- Vinod, K., Varghese, N., & Syamaprasad, U. (2007). Superconductivity of MgB2 in the BCS framework with emphasis on extrinsic effects on critical temperature. *Superconductor Science and Technology*, 20(10), R31.
- Xi, X. (2008). Two-band superconductor magnesium diboride. *Reports on Progress Physics*, 71, 116501.
- Yoksan, S. (1991). Isotope effect in high-Tc superconductors. Solid State Communications, 78, 233-236.