TABLE OF CONTENTS

TABLE OF CONTENTS	i	
LIST OF TABLES		
LIST OF FIGURES	iv	
LIST OF ABBREVIATIONS	xi	
INTRODUCTION	1	
LITERATURE REVIEWS	3	
MATERIALS AND METHODS	22	
Materials	22	
Methods	25	
RESULTS AND DISCUSSION	31	
CONCLUSION		
LITERATURE CITED		
APPENDICES		
Appendix A Calculation examples	64	
Appendix B UV spectra of cotton fabrics loaded with vanillin	71	
Appendix C TGA curves	86	
Appendix D DSC curves	90	

Page

LIST OF TABLES

Table		Page
1	The main properties of cyclodextrins	6
2	Applications of β -CD in chemical industry	10
3	Molar ratios of β -CD to glyoxal and their actual weight	26
4	The catalysts and temperatures used in the preparation of	
	glyoxal-β-CD	27
5	The molar ratios of glyoxal to β -CD and temperatures used in	
	the preparation of glyoxal-β-CD	27
6	The conditions used in dry and cure processes for cotton fabrics	28
7	The conditions used in dry and cure processes for silk fabrics	29
8	The amounts of β -CD on glyoxal to β -CD treated cotton fabrics	
	from defined catalysts and temperatures	36
9	The amounts of β -CD on glyoxal to β -CD treated silk fabrics from	
	defined catalysts and temperatures	36
10	The amount of β -CD on glyoxal- β -CD treated cotton fabric from	
	defined ratios of glyoxal and β -CD and temperatures	37
11	The amount of β -CD on glyoxal- β -CD treated cotton fabric from	
	defined of glyoxal and β -CD and temperatures	38
12	The amount of β -CD on glyoxal- β -CD treated cotton fabrics after	
	dry process	39
13	The amount of β -CD on glyoxal- β -CD treated silk fabric after dry	
	process	39
14	The amount of β -CD on glyoxal- β -CD treated cotton fabric after	
	dry and cure processes	40
13	The amount of β -CD on glyoxal- β -CD treated silk fabric after dry	
	and cure processes	40

LIST OF TABLES (Continued)

Appendix TablePa		
1	The amount of glyoxal-β-CD on the cotton fabric	69
2	The amount of glyoxal- β -CD on the silk fabric	70

LIST OF FIGURES

Figure

Page

1	Chemical structures of α -, β - and γ -cyclodextrin	3
2	A structural scheme of a torus-shaped cyclodextrin molecule	4
3	Molecular dimensions of α -, β - and γ -cyclodextrin	5
4	Synthesis of BETA W7 MCT	12
5	Reaction of MCT-β-CD and cotton	14
6	Reaction of the vinyl sulphone dye with cotton and β -CD	16
7	BTCA crosslinked β-CD and cotton	17
8	Synthesis of β -CD crosslinked chitosans with glyoxal	21
9	Structure of (A) vanillin; (B) phenolphthalein	22
10	Flow chart of the experiment procedure	25
11	Hemiacetal formations	31
12	Acetal formations	32
13	FTIR spectra: A (1) β -CD powder; (2) glyoxal- β -CD and	
	B 40% glyoxal	33
14	TGA curves: (1) β-CD powder; (2) 40 % glyoxal; (3) glyoxal-β-CD	34
15	DSC curves: (1) β-CD powder; (2) 40 % glyoxal; (3) glyoxal-β-CD	35
16	TGA curves: (1) untreated cotton; (2) glyoxal- β -CD treated cotton	41
17	TGA curves: (1) untreated silk, (2) glyoxal- β -CD treated silk	41
18	SEM photographs: (1) untreated cotton; (2) untreated silk;	
	(3) glyoxal- β -CD treated cotton; (4) glyoxal- β -CD treated silk	42
19	UV spectra of cotton fabrics loaded with vanillin by immersing:	
	measured after 3 days (1) untreated cotton; (2) glyoxal- β -CD treated	
	cotton; measured after after 25 days (3) untreated cotton;	
	(4) glyoxal- β -CD treated cotton	44

Figure Page 20 UV spectra of cotton fabrics loaded with vanillin by padding: (1) untreated cotton after 3 days; (2) glyoxal- β -CD treated cotton after 3 days; (3) untreated cotton after 25 days; (4) glyoxal- β -CD treated 44 cotton after 25 days 21 UV spectra of silk fabrics loaded with vanillin by immersing: (1) untreated silk after 3 days; (2) glyoxal-\beta-CD treated silk after 3 days; (3) untreated silk after 25 days; (4) glyoxal-β-CD treated silk after 25 days 45 22 UV spectra of silk fabrics loaded with vanillin by padding: (1) untreated silk after 3 days; (2) glyoxal- β -CD treated silk after 3 days; (3) untreated silk after 25 days; (4) glyoxal- β -CD treated silk after 25 days 45 23 UV spectra of untreated cotton fabrics loaded vanillin by immersing measured after: (1) 3 days; (2) 5 days; (3) 10 days; (4) 13 days; (5) 18 days; (6) 20 days; (7) 25 days 46 24 UV spectra of glyoxal-β-CD treated cotton fabrics loaded with vanillin by immersing after: (1) 3 days; (2) 5 days; (3) 10 days; (4) 13 days; (5) 18 days; (6) 20 days; (7) 25 days 47 25 UV spectra of untreated cotton fabrics loaded with vanillin by padding measured after: (1) 3 days; (2) 5 days; (3) 10 days; (4) 13 days; 47 (5) 18 days; (6) 20 days; (7) 25 days 26 UV spectra of glyoxal-β-CD treated cotton fabrics loaded vanillin by padding measured after: (1) 3 days; (2) 5 days; (3) 10 days; 48 (4) 13 days; (5) 18 days; (6) 20 days; (7) 25 days 27 UV spectra of untreated silk fabrics loaded with vanillin by immersing measured after: (1) 3 days; (2) 5 days; (3) 10 days; (4) 13 days; (5) 18 days; (6) 20 days; (7) 25 days 48

Figure

vi

28	UV spectra of glyoxal-β-CD treated silk fabrics loaded with vanillin	
	by immersing measured after: (1) 3 days; (2) 5 days; (3) 10 days;	
	(4) 13 days; (5) 18 days; (6) 20 days; (7) 25 days	49
29	UV spectra of untreated silk fabrics loaded with vanillin by padding	
	measured after: (1) 3 days; (2) 5 days; (3) 10 days; (4) 13 days;	
	(5) 18 days; (6) 20 days; (7) 25 days	49
30	UV spectra of glyoxal-β-CD treated silk fabrics loaded with vanillin	
	by padding measured after: (1) 3 days; (2) 5 days; (3) 10 days;	
	(4) 13 days; (5) 18 days; (6) 20 days; (7) 25 days	50
31	UV spectra of glyoxal-β-CD treated cotton fabrics loaded with	
	vanillin by: (1) immersing; (2) padding (measured after 25 days)	49
32	UV spectra of glyoxal- β -CD treated silk fabrics loaded with vanillin	
	by: (1) immersing; (2) padding (measured after 25 days)	51
33	UV spectra of glyoxal- β -CD treated cotton loaded with vanillin by	
	immersing: measured after 3 days (1) unwashed; (2) washed;	
	measured after 25 days (3) unwashed; (4) washed	52
34	UV spectra of glyoxal- β -CD treated cotton loaded with vanillin by	
	padding: measured after 3 days (1) unwashed; (2) washed;	
	measured after 25 days (3) unwashed; (4) washed	53
35	UV spectra of glyoxal- β -CD treated silk loaded with vanillin by	
	immersing: measured after 3 days (1) unwashed; (2) washed;	
	measured after 25 days (3) unwashed; (4) washed	53
36	UV spectra of glyoxal- β -CD treated silk loaded with vanillin by	
	padding: measured after 3 days (1) unwashed; (2) washed;	
	measured after 25 days (3) unwashed; (4) washed	54

Appendix Figure

1	The calibration curve of phenolphthalein	65
2	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 3 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	72
3	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 5 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	72
4	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 10 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	73
5	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 13 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	73
6	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 18 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	74
7	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 20 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	74
8	UV spectra of cotton fabrics loaded with vanillin by padding	
	(measure after 25 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	75
9	UV spectra of cotton fabrics loaded with vanillin by padding	
	(measure after 3 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal-β-CD treated cotton after washing	75

Appendix Figure

Page

10	UV spectra of cotton fabrics loaded with vanillin by padding	
	(measure after 5 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	76
11	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 10 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	76
12	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 13 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal-β-CD treated cotton after washing	77
13	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 18 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	77
14	UV spectra of cotton fabrics loaded with vanillin by immersing	
	(measure after 20 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	78
15	UV spectra of cotton fabrics loaded with vanillin by padding	
	(measure after 25 days): (1) untreated cotton; (2) glyoxal- β -CD	
	treated cotton; (3) glyoxal- β -CD treated cotton after washing	78
16	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 3 days): (1) untreated silk; (2) glyoxal-β-CD	
	treated silk; (3) glyoxal-β-CD treated silk after washing	79
17	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 5 days): (1) untreated silk; (2) glyoxal-β-CD	
	treated silk; (3) glyoxal-β-CD treated silk after washing	79
18	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 10 days): (1) untreated silk; (2) glyoxal-β-CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	80

Appendix Figure

ix

19	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 13 days): (1) untreated silk; (2) glyoxal-β-CD	
	treated silk; (3) a glyoxal- β -CD treated silk after washing	80
20	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 18 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	81
21	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 20 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	81
22	UV spectra of silk fabrics loaded with vanillin by immersing	
	(measure after 25 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	82
23	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 3 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	82
24	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 5 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	83
25	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 10 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	83
26	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 13 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) a glyoxal- β -CD treated silk after washing	84
27	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 18 days): (1) untreated silk; (2) glyoxal- β -CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	84

Appendix Figure

Х

28	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 20 days): (1) untreated silk; (2) glyoxal-β-CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	85
29	UV spectra of silk fabrics loaded with vanillin by padding	
	(measure after 25 days): (1) untreated silk; (2) glyoxal-β-CD	
	treated silk; (3) glyoxal- β -CD treated silk after washing	85
30	TGA curve of β -CD powder	87
31	TGA curve of 40 % glyoxal	87
32	TGA curve of glyoxal-β-CD	88
33	TGA curve of untreated silk	88
34	TGA curve of glyoxal-β-CD treated silk	89
35	TGA curve of glyoxal-β-CD treated cotton	89
36	DSC curve of β -CD powder	91
37	DSC curve of 40 % glyoxal	91
38	DSC curve of glyoxal-β-CD	92

LIST OF ABBREVIATIONS

β-CD	=	β-Cyclodextrin
OMC	=	Octyl methoxycinnamate
CDNMA	=	Acrylamidomethylated β-cyclodextrin
MCT-β-CD	=	Monochlorotriazinyl-
NMA	=	N-methylol-acrylamine
BTCA	=	1,2,3,4-Butane tetracarboxylic acid
SHPI	=	Sodium hypophosphite
GPTMS	=	3-Glycidyloxypropyl-trimethoxysilane
TEOS	=	Tetraethoxysilane
FTIR	=	Fourier Transform-Infrared Spectroscopy
TGA	=	Thermogravimetric Analysis
DSC	=	Differential Scanning Calorimetry
SEM	=	Scanning Electron Microscope