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ABSTRACT

5571010063:  Petrochemical Technology Program
Natthapong Suviriyapan: The Optimization-Based Synthesis and
Design of WaterAVastewater Network for Water Management in
Petroleum Refinery Effluent Treatment Plant.
Thesis Advisors: Dr.Uthaiporn Suriyapraphadilok, Prof Rafiqul
Gani, and Asst. Prof. Kitipat Siemanond 202 pp.

Keywords: Recycle/ Refinery/ Superstructure/ W astewater treatment/ W ater

network

The advent of complicated industrial water/wastewater management
problems contributes to a determination of effective systematic design for sustainable
solution of water balance among conservation, allocation and regeneration. The
objective of this work was to extend the research in the area of systematic design of
water/wastewater management by developing and modifying a generic model-based
synthesis and design of optimized water/wastewater network applying the framework
of Quaglia et al. (2013). A petroleum refinery effluent treatment plant was
implemented in order to formulate different design schemes with two criteria
involving with the structure of the treatment system and the requirement of water
effluent alternatives that required a sequential solution procedure for different
optimization model formulations in two stages. The solution obtained in the case
study demonstrated the network design with an improvement in the reduction of a
total annualized cost (TAC) and wastewater discharge rate (WWDR) because of a
water recycling option. As a consequence, the main key features of developing this
approach was to screen and obtain potential optimal networks from a large
dimension of problem in an effective time manner, and to provide design flexibility
to different scenarios using abovementioned strategic formulations. This developed
approach is suitable for all design phases including a new process system, existing
process or a retrofit design and is also portable to adapt to be beneficial as
preliminary designed pattern for an application in process simulation of further
detailed treatment process modelling and design.



(The Optimization-Based Synthesis and Design of Water/Wastewater Network for
Water Management in Petroleum Refinery Effluent Treatment Plant)
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