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InGaAs ring-shaped nanostructures, or quantum rings (QRs), have been
fabricated by droplet epitaxy using solid-source molecular beam epitaxy (MBE). The
droplet forming conditions have been varied by changing the growth parameters
including substrate temperature (Ts~120-300°C) during Ing sGag s deposition, Inp sGag s
deposited amount (2-5ML), and In-mole-fraction (x~0.3-0.7) of InGa droplets. The
morphology of the QRs was characterized by atomic force microscopy (AFM). The
effects of each growth parameters on the InGaAs QRs are investigated. Increasing Ts
results in the InGaAs QRs of a larger size but lower density due to 2-dimensional
expansion and merging of InGa droplets. Furthermore, increasing IngsGags amount
deposited results in larger QRs at low T,. However, the QR density oscillates with
increasing IngsGags amount due to merging of small droplets into a full-layer. At
higher T, increasing IngsGags amount results in the QRs of a higher height, higher
density but smaller diameter due to the accumulating compressive strain inside larger
QRs and the partial relaxation. Moreover, varying In-mole-fraction (x) of InyGa.
droplets lead to a variation of crystallized-QR size and density, i.c.; high density tiny-
size QRs from high-Ga-content droplets and low density large-size QRs from high-In-
content droplets. For photoluminescence (PL) measurement, another set of samples
were grown under the droplet forming conditions of 2-5 ML IngsGaos deposition at
210°C, with an additional 100-nm GaAs capping layer grown by migration-enhanced
epitaxy and conventional method. The optical properties of the InGaAs QRs were
analyzed by PL spectra of the respective samples at 20-100 K. The PL intensity is
relatively low due to low density of the QRs (~10* cm™). The PL measuring
parameters, including eXxcitation intensity, measuring temperature and polarization
have been varied. When increase the excitation intensity, the PL intensities increase
without shifting, indicating the ground-state energy of the InGaAs QR systems. With
increasing the measuring temperature, the PL intensities decrease without thermal
broadening. It is also observed that the spectra of 3 ML sample are not shifted.
However, the spectra of 4 ML sample are red-shifted, implying the existence of the
strain field. Finally, the polarized PL spectra correspond to the elongation of the QRs,
confirming the anisotropy of the QRs.
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