LIST OF FIGURES

Figure	
1	Fish sauce production
2	An overview of the electromagnetic spectrum
3	Principle of NIR measurement
4	NIR measuring modes
5	Flow diagram of NIR calibration and validation process
6	Principal component decomposition. The new axes called principal
	components (PC _i) are linear combinations of the original variables
	(Xi), calculated so that the first PCs point in the direction of
	greatest dispersion of the samples
7	Scheme for explanation of Principal Components Analysis (PCA).
	PCA is based on a decomposition of the data matrix \mathbf{X} into two
	matrices \mathbf{V} and \mathbf{U} . The matrix \mathbf{V} is usually called the loadings
	matrix, and the matrix \mathbf{U} is called the scores matrix
8	Scheme for explanation of Factor Analysis (FA). FA is based on a
	decomposition of the data matrix \mathbf{X} into two matrices \mathbf{V} and \mathbf{U} . The
	matrices \mathbf{U} and \mathbf{V} are called scores and loading matrices,
	respectively
9	PLS component decomposition. PLS models are based on principal
	components of both the independent data \mathbf{X} and the dependent data.
	Y . The matrices \mathbf{t} and \mathbf{u} are the principal component scores of the
	X and the Y data matrix. A regression set up between both scores
	called PLSR model
10	Scheme for explanation of Partial least squares (PLS) regression.
	The matrix \mathbf{X} is decomposed into a matrix \mathbf{T} (the score matrix) and
	a matrix P' (the loadings matrix) plus an error matrix E. The matrix
	\mathbf{Y} is decomposed into \mathbf{U} and \mathbf{Q} and the error term \mathbf{F} . These two
	equations are called outer relations. The goal of the PLS algorithm
	is to minimize the norm of \mathbf{F} while keeping the correlation between
	X and Y by the <i>inner relation</i> $\mathbf{U} = \mathbf{BT}$

Figure		Page
11	Scheme for explanation of MWPLSR. The sums of squared	
	residuals (SSR) are calculated with the PLS models;	
	SSR $_{i} = (y_{i} - X_{i} \hat{b}_{i})^{t} (y_{i} - X_{i} \hat{b}_{i}) \cdot Log(SSR)$ is plotted as a function of the	
	position of the window	31
12	Scheme for explanation of SCMWPLS	32
13	The boundaries are obtained by linear discriminant function	34
14	SIMCA classification of two classes as shown in the soft modeling	
	representation of the data. SIMCA uses PCA as a starting point. An	
	unknown sample is identified by its position within a class	35
15	KNN classification (a) 1-NN classification, (b) 3-NN	
	Classification. An unknown object u is classified in the group	
	which the object's nearest neighbor belong	37
16	Architectures of (a) biological neurons and (b) artificial neural	
	networks	38
17	Block diagram of quantitative modeling process for chemical and	
	physical properties	42
18	Block diagram of classification modeling process	44
19	Block diagram for prediction of chemical and physical properties	
	with developed SCMWPLS models using NIR spectra	52
20	Block diagram of quantitative modeling process for sensory	
	properties	54
21	NIR transflectance spectra of 100 Thai fish sauce samples. (a) the	
	NIR region of 1100-2500 nm and (b) the NIR region of 1100-1900	
	and 2000-2440 was used for chemometric analysis	59
22	Residue lines for total nitrogen content of Thai fish sauces	
	obtained by moving window partial least square regression	
	(MWPLSR). The shade areas are final informative regions	60
23	Residue lines for chemical and physical parameters of Thai fish	
	sauces obtained by moving window partial least squares regression	
	(MWPLSR). The shade areas are final informative regions	62

Figure		Pag
24	The average NIR transflectance in the spectra region of 2264-2428	
	nm corresponding to the total nitrogen content for three groups	
	of Thai fish sauces	7
25	Three groups scatter plots obtained by the Linear Discriminant	
	Analysis (LDA) classified model (: standard pure fish sauces	
	(SPF), •: standard mixed fish sauces (SMF), Δ : out of standard fish	
	sauces (OF)).	7
26	Factor loadings for the first two factors extracted from the NIR	
	region of 2264-2428 nm using factor analysis; (a) Factor 1 and (b)	
	Factor 2. The extraction and rotation methods used in factor	
	analysis were principal component analysis and Varimax with	
	Kaiser Normalization methods, respectively	8
27	Factor score coefficients based on the first two factors extracted	
	from the NIR region of 2264-2428 nm using factor analysis; (a)	
	Factor 1 and (b) Factor 2. The extraction and rotation methods	
	used in factor analysis were principal component analysis and	
	Varimax with Kaiser Normalization methods, respectively	8
28	Distribution of 100 fish sauce sample based on factor scores of the	
	first two factors calculated from the spectra region of 2264-2428	
	nm (\Box : standard pure fish sauces, •: standard mixed fish sauces, Δ : out of standard fish sauces)	8
29	Three groups scatter plots obtained by the Factor Analysis- Linear	
	Discriminant Analysis (FALDA) classified model (: standard	
	pure fish sauces (SPF), •: standard mixed fish sauces (SMF), Δ :	
	out of standard fish sauces (OF))	8
30	Cooman's plot of the classification models performed on the	
	region of 2264-2428 nm using the test set (n=20); \Box : standard	
	pure fish sauces, \bigcirc : standard mixed fish sauces, Δ : out of	
	standard fish sauces	8

Figure		Page
31	Corrective classification rate versus K(from K=1 to K=15)	89
32	Diagram showing the network structure with 83 wavelength input	
	variables. This is a network comprising four hidden neurons and a	
	single output neuron. Transfer functions (f_i) for hidden and output	
	layers are LOGSIG (f_1) and PURELIN (f_2) , respectively. The	
	weights to layer from input (W_i) are given in an Appendix C	92
33	The sensory profiles of Thai pure fish sauce and mixed fish sauce	
	based on generic descriptive analysis test. The distance from the	
	center is the mean value for the attributes	101
34	Clustering of 20 fish sauces based on their sensory properties (P,	
	pure fish sauce; M, mixed fish sauce) using cluster analysis	103
35	Scores for the twenty fish sauce samples and correlation	
	coefficients of the fifteen sensory attributes with principal	
	component 1 and 2. (P, pure fish sauce; M, mixed fish sauce)	105
36	Scores for the twenty fish sauce samples and correlation)	
	coefficients of the fifteen sensory attributes with principal	
	component 1 and 3. (P, pure fish sauce; M, mixed fish sauce	106
37	NIR tranflectance spectra of 20 Thai commercial fish sauce	
	samples	108
38	NIR spectra loadings for the first two principal components	
	performed by principal component analysis (PCA)	109
39	Scores for the twenty fish sauce samples and correlation	
	coefficients of the sensory attributes and NIR spectra with	
	principal component 1 and 2. (P, pure fish sauce; M, mixed fish	
	sauce)	112
40	Scores for the twenty fish sauce samples and correlation	
	coefficients of the sensory and chemical attributes with principal	
	component 1 and 2. (P, pure fish sauce; M, mixed fish sauce)	118

viii

Figure		Page
41	Scores for the twenty fish sauce samples and correlation	
	coefficients of the sensory and physical attributes with principal	
	component 1 and 2. (P, pure fish sauce; M, mixed fish sauce)	123
42	Residue lines for brown color of Thai fish sauces obtained by	
	moving window partial least squares regression (MWPLSR). The	
	shade areas are final informative regions	128
43	Residue lines for five aromatic descriptors of Thai fish sauces	
	obtained by moving window partial least squares regression	
	(MWPLSR). The shade areas are final informative regions. (a)	
	sweet aromatic, (b) caramelized aromatic, (c) fermented aromatic,	
	(d) fishy aromatic, and (e) musty aromatic	129
44	Residue lines for four taste descriptors of Thai fish sauces obtained	
	by moving window partial least squares regression (MWPLSR).	
	The shade areas are final informative regions. (a) sweet taste, (b)	
	salty taste, (c) bitter taste, and (d) umami taste	132
45	Residue lines for three aftertaste descriptors of Thai fish sauces	
	obtained by moving window partial least squares regression	
	(MWPLSR). The shade areas are final informative regions. (a)	
	sweet aftertaste, (b) salty aftertaste, and (c) bitter aftertaste	135
46	Residue lines for two flavor descriptors of Thai fish sauces	
	obtained by moving window partial least squares regression	
	(MWPLSR). The shade areas are final informative regions. (a)	
	caramelized flavor and (b)fishy flavor	137
Appendi	ix Figure	

B1	NIR instrument was used in this study (a) an InfraAlyzer 500	
	spectrometer and (b) a 0.3 mm British cup	172