TABLE OF CONTENTS

	Page	
TABLE OF CONTENTS	i	
LIST OF TABLES		
LIST OF FIGURES		
INTRODUCTION	1	
LITERATURE REVIEWS	5	
The Chao Phraya River Basin	5	
Evapotranspiration	8	
Rainfall	43	
Water Budget	65	
MATERIALS AND METHODS	70	
Meteorological Data Analyzing	72	
Actual Evapotranspiration	76	
Rainfall	95	
Water Budget	102	
RESULTS AND DISCUSSION		
Meteorological Data Analyzing	108	
Actual Evapotranspiration	123	
Rainfall	135	
Water Budget	142	
CONCLUSION AND RECOMMENDATION	156	
LITERATURE CITED	161	
APPENDIX	180	
Appendix A	181	
Appendix B	201	
Appendix C	218	
Appendix D	225	
Appendix E	228	
Appendix F	239	

LIST OF TABLES

Table		Page
1	Landsat 7 mission specification	29
2	Landsat 7 and ETM+ characteristic	30
3	The MODIS spectral bands	33
4	The 44 standard MODIS data products	35
5	The spectral bandpasses of ASTER Satellite Sensors	38
6	Twelve basic cloud classifications	50
7	Relationship between cloud height and cloud temperature	52
8	The three spectral-bands of Meteosat	54
9	Description of GMS channels	56
10	Characteristics of the TRMM instrument	58
11	Water budget components at field, irrigation service, and basin level	68
12	The 27 MODIS images used for actual evapotranspiration calculation	81
13	The 6 Landsat 7 images used for actual evapotranspiration calculation	81
14	The cropping calendar for The Office of Regional Irrigation	88
15	The values of soil water depletion (D) and soil coefficient (Ks)	92
16	Mean actual evapotranspiration and evaporation in eight sub-basins	131
17	The crop coefficient for the rice, maize and sugarcane	134
18	The lengths of crop development stage for various planting periods	134
19	Mean rainfall in eight sub-basins	140
20	Mean irrigation requirement in eight sub-basins	147
21	The water budget calculation in Ping sub-basin	149
22	The water budget calculation in Wang sub-basin	150
23	The water budget calculation in Yom sub-basin	151
24	The water budget calculation in Nan sub-basin	152
25	The water budget calculation in Sakae Krang sub-basin	153
26	The water budget calculation in Pasak sub-basin	154
27	The water budget calculation in Chao Phraya and Tha Chin sub-basin	155

Appe	ndix Table	Page
B1	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Nakhon Sawan Station (Recorded evaporation:	
	1971-1980, 1982-2002)	202
B2	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Suphan Buri Station (Recorded Evaporation:	
	1971-1980, 1982-2002)	203
В3	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Lop Buri Station (Recorded Evaporation:	
	1982-1984, 1986-2002)	203
B4	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Bua Chum Station (Recorded Evaporation:	
	1971-1973, 1975-2002)	204
В5	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Kanchana Buri Station (Recorded Evaporation:	
	1976-1980, 1982-2002)	204
В6	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Thong Phaphum Station (Recorded	
	Evaporation: 1971-2002)	205
В7	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Bangkok Metropoli Station (Recorded	
	Evaporation: 1971-1980, 1982-1991, 1995-2002)	205
B8	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Loei Station (Recorded Evaporation:	
	1971-1980, 1982-2002)	206
В9	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Mae Hong Son Station (Recorded Evaporation:	
	1982-1983, 1985-2002)	206

Appen	ndix Table	Page
B10	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Mae Sarianng Station (Recorded Evaporation:	
	1982-2002)	207
B11	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Chiang Rai Station (Recorded Evaporation:	
	1971-2002)	207
B12	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Phayao Station (Recorded Evaporation:	
	1982-2002)	208
B13	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Chiang Mai Station (Recorded Evaporation:	
	1973-1980, 1982-2002)	208
B14	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Lampang Station (Recorded Evaporation:	
	1976-1980, 1982-2002)	209
B15	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Lamphun Station (Recorded Evaporation:	
	1982-2002)	209
B16	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Phrae Station (Recorded Evaporation:	
	1982-2002)	210
B17	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Nan Station (Recorded Evaporation:	
	1971-1980, 1982-2002)	210
B18	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Tha Wangpha Station (Recorded Evaporation:	
	1971-2002)	211

Appen	ndix Table	Page
B19	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Thung Chang Station (Recorded Evaporation:	
	2000-2002)	211
B20	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Uttardit Station (Recorded Evaporation:	
	1982-2002)	212
B21	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Sukhothai Station (Recorded Evaporation:	
	2000-2002)	212
B22	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Tak Station (Recorded Evaporation:	
	1982-2002)	213
B23	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Mae Sot Station (Recorded Evaporation:	
	1975-1980, 1982-2002)	213
B24	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Bhumibol Dam Station (Recorded Evaporation:	
	1971-1980, 1982-2002)	214
B25	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Umphang Station (Recorded Evaporation:	
	1977-2002)	214
B26	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Phitsanulok Station (Recorded Evaporation:	
	1971-1980, 1982-2002)	215
B27	The correlation coefficient between pan evaporation and reference	
	evapotranspiration at Phetchabun Station (Recorded Evaporation:	
	1974-1980, 1982-2002)	215

Appen	ppendix Table Pa		
B28	The correlation coefficient between pan evaporation and reference		
	evapotranspiration at Lom Sak Station (Recorded Evaporation:		
	1971-2002)	216	
B29	The correlation coefficient between pan evaporation and reference		
	evapotranspiration at Wichian Buri Station (Recorded Evaporation:		
	1982-1983, 1986-2002)	216	
B30	The correlation coefficient between pan evaporation and reference		
	evapotranspiration at Kamphaeng Phet Station (Recorded Evaporation:		
	1982-2002)	217	
D1	Student's t-Distributions, Percentage points	226	
F1	The weather location and coordinate for the comparison	240	
F2	The comparison between actual evapotranspiration calculated by		
	SEBAL and by the Penman-Monteith method and their		
	correlation coefficients	241	
F3	The comparison between actual evapotranspiration from SEBAL		
	and from the Penman-Monteith method and their correlation		
	coefficients after there is temporal interpolation of actual		
	evapotranspiration from SEBAL	256	
F4	Monthly rainfall from TRMM image and from rain gauge station		
	and their correlation coefficients	269	

LIST OF FIGURES

Figure		Page
1	The location of the Chao Phraya River Basin in Thailand	5
2	The location of eight sub-basins in the Chao Phraya River basin	6
3	The location of weather stations recorded by Thai Meteorological	
	Department	71
4	The location of rain gauge stations recorded by Royal Irrigation	
	Department	71
5	The concept of actual evapotranspiration calculation using SEBAL,	
	MODIS, and Landsat 7 images	80
6	The concept of actual evapotranspiration calculation using the FAO	
	Penman-Monteith method and weather data	83
7	The concept of crop coefficient calculation	85
8	The crop coefficient of rice, maize, sugarcane, cassava, small	
	vegetation, and fruit	91
9	The concept of the comparison between actual evapotranspiration	93
	calculated by SEBAL and the FAO Penman-Monteith method	
10	The concept to consider rainfall from rain gauge stations and	
	TRMM (3B42 V6) images	96
11	Accumulated rainfall of TRMM image from January to December	97
12	The components of water budget concept	103
13	The concept of water budget computation	107
14	Mean annual reference evapotranspiration and their linear trends	
	in the Ping, Wang, Yom, Nan, Sakae Krang, Pasak, Chao Phraya,	
	and Tha Chin sub-basin	109
15	Mean annual pan evaporation and their linear trends in the Ping,	
	Wang, Yom, Nan, Sakae Krang, Pasak, Chao Phraya, and Tha Chin	
	sub-basin	110
16	Mean annual net radiation and their linear trends in the Ping, Wang,	
	Yom, Nan, Sakae Krang, Pasak, Chao Phraya, and Tha Chin sub-basin	111

LIST OF FIGURES (cont'd)

Figure	,	Page
17	Mean annual temperature and their linear trends in the Ping, Wang,	
	Yom, Nan, Sakae Krang, Pasak, Chao Phraya, and Tha Chin sub-basin	112
18	Mean annual relative humidity and their linear trends in the Ping,	
	Wang, Yom, Nan, Sakae Krang, Pasak, Chao Phraya, and Tha Chin	
	sub-basin	113
19	Spatial reference evapotranspiration from January to December	115
20	Mean monthly reference evapotranspiration in the Ping, Wang, Yom, Na	an,
	Sakae Krang, Pasak, Chao Phraya, Tha Chin sub-basin and the upper,	
	lower, and whole catchment of the Chao Phraya River Basin	119
21	Mean monthly net radiation (Rn) in the Ping, Wang, Yom, Nan,	
	Sakae Krang, Pasak, Chao Phraya, and Tha Chin sub-basin	120
22	Mean monthly temperature in the Ping, Wang, Yom, Nan, Sakae Krang,	
	Pasak, Chao Phraya, and Tha Chin sub-basin	120
23	Mean monthly relative humidity in the Ping, Wang, Yom, Nan,	
	Sakae Krang, Pasak, Chao Phraya, and Tha Chin sub-basin	121
24	Mean monthly net radiation, temperature, and relative humidity in the	
	upper, lower, and whole catchment of the Chao Phraya River Basin	122
25	Mean annual rainfall and their linear trends in the Ping, Wang, Yom,	
	Nan, Sakae Krang, Pasak, Chao Phraya, and Tha Chin sub-basin	124
26	The process of SEBAL calculation	125
27	Monthly actual evapotranspiration from MODIS image and	
	weather data from January to December	128
28	Accumulated rainfall from recorded rainfall and TRMM image	
	during January to December	136
29	Mean monthly rainfall in the Ping, Wang, Yom, Nan, Sakae Krang,	
	Pasak, Chao Phraya, and Tha Chin sub-basin	139
30	Spatial distribution of irrigation requirement from January to December	144

LIST OF FIGURES (cont'd)

Appendix Figure Pa		
C 1	Data format structure for 3B-42, TRMM and other GPI Calibration	223
E1	Actual evapotranspiration from MODIS image (no. 1-27)	229
E2	The location of Landsat 7 images in the Chao Phraya River Basin	
	and the Spatial actual evapotranspiration of Landsat 7 omage (no 1-6)	234
F1	The distribution of all actual evapotranspiration used for	
	comparison in 27 days of MODIS images	255
F2	The distribution between actual evapotranspiration from SEBAL	
	and actual evapotranspiration from the Penman-Monteith after there is	
	temporal interpolation of actual evapotranspiration from SEBAL	255
F3	The distribution of all monthly rainfall used for comparison	293
F4	The distribution of monthly rainfall used for comparison in each month	294

LIST OF ABBREVIATIONS

c_p	=	Air specific heat (J/kg/K)
d	=	Zero plane displacement (m)
d_{e-s}	=	Relative earth-sun distance (-)
d_r	=	Inverse squared relative earth-sun distance (-)
ET_c	=	Actual evapotranspiration rate (mm/hr)
ET_o	=	Reference evapotranspiration (mm/hr)
G	=	Soil heat flux (W/m ²)
H	=	Sensible heat flux (W/m ²)
k	=	Von Karman's constant = 0.41
L	=	Monin-Obukhuv length (m)
L_{λ}	=	Spectral radiance for band λ (W/ m ² /sr/ μ m)
r_{ah}	=	Aerodynamic resistance to heat transport (s/m)
R_n	=	Net radiation flux (W/m ²)
$R_{s}\downarrow$	=	Incoming shortwave radiation (W/ m ²)
$R_{L}\downarrow$	=	Incoming longwave radiation (W/ m ²)
$R_{L\uparrow}$	=	Outgoing longwave radiation (W/m ²)
R_c	=	Corrected thermal radiance from the surface (W/ $m^2/sr/\mu m$)
R_p	=	Path radiance in the $10.4-12.5~\mu m$ band (W/ $m^2/sr/\mu m$)
R_{sky}	=	Narrow band downward thermal radiation for a clear sky (W/
		$m^2/sr/\mu m)$
T_a	=	Near surface air temperature (K)
T_s	=	Surface temperature (K)
u	=	Wind velocity (m/s)
u *	=	Friction velocity (m/s)
z	=	Height (m)
z_{om}	=	Momentum roughness length (m)

 α = Surface albedo (-)

 $\alpha_{path - radiance}$ = Albedo path radiance (-)

 α_{toa} = Albedo at top of atmosphere (-)

 β = Solar elevation angle (degrees)

 γ = Aspect angle of the pixel (radians)

 δ = Declination of the earth (radians)

 ε_o = Broad band surface emissivity (-)

 ε_{NB} = Narrow band surface emissivity (-)

 ε_a = Atmospheric emissivity (-)

 θ = Solar incidence angle (degrees)

 λ = Latent heat of vaporization (J/kg)

 λET = Latent heat flux (W/m²)

 ρ = Air density (kg/m³)

 $\rho\lambda$ = Reflectivity for band λ (-)

 σ = Stefan-Boltzmann constant (5.67 X10⁻⁸ W/m²/K⁴)

 τ_{sw} = Shortwave transmissivity of air (-)

 τ_{NB} = Narrow band transmissivity of air (-)

 ϕ = Latitude of the pixel (radians)

 ψ_h = Stability correction for heat transport (-)

 ψ_m = Stability correction for momentum transport (-)

 ϖ = Mountain wind speed weighting coefficient (-)

 ω_{λ} = Weighting coefficient for band λ (-)