

THESIS

EVALUATION OF LANDSLIDE SENSITIVE AREAS FOR CUT SLOPE IN PHUKET

DAMRONG PUNGSUWAN

GRAUDATE SCHOOL, KASETSART UNIVERSITY 2006

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

Master of Engineering (Civil Engineering) DEGREE

Civil Engineering FIELD Civil Engineering DEPARTMENT

TITLE: Evaluation of Landslide Sensitive Areas for Cut Slope in Phuket.

NAME: Mr. Damrong Pungsuwan

THIS THESIS HAS BEEN ACCEPTED BY	
utwick Jorday	THESIS ADVISOR
(Assistant Professor Suthsak Soralump, Ph.D.)
Warakon M.	COMMITTEE MEMBER
(Associate Professor Warakorn Mairaing, Ph.D.)
SK	_COMMITTEE MEMBER
(Assistant Professor Suneerat Kusalasai, Ph.D.	_)
Warakon M.	DEPARTMENT HEAD
(Associate Professor Warakorn Mairaing, Ph.D.)
	0.000
APPROVED BY THE GRADUATE SCHOOL ON <u>3 Nov.</u>	2006
Vinni Arthy L	DEAN
(Associate Professor Vinai Artkongharn, M.	A.)

THESIS

EVALUATION OF LANDSLIDE SENSITIVE AREAS FOR CUT SLOPE IN PHUKET

DAMRONG PUNGSUWAN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering (Civil Engineering) Graduate School, Kasetsart University 2006

ISBN 974-16-2862-5

Damrong Pungsuwan 2006: Evaluation of Landslide Sensitive Areas for Cut Slope in Phuket. Master of Engineering (Civil Engineering), Major Field: Civil Engineering, Department of Civil Engineering. Thesis Advisor: Assistant Professor Suttisak Soralump, Ph.D. 173 pages. ISBN 974-16-2862-5

This study attempted to improve a method of determination of landslide susceptibility map and evaluated landslide sensitive areas for cut slope in Phuket island. The improvement of landslide susceptibility map was made by introducing engineering soil properties parameter, RMR and SMR parameters for weighting factor analysis. The evaluation of landslide sensitive areas for cut slope was evaluated by weighting factor method and logistic regression analysis.

The field investigation was done in 87 areas and located in 14 watersheds. Data collected in each area included a field estimation of strength of intact rock, joint spacing, joint condition, degree of weathering, ground water condition and joint orientation. These were used for evaluation of RMR and SMR factors. Descriptions of slope condition were collected for determination of landslide probability by logistic regression analysis.

The results of weighting factor method shows that RMR and SMR factors have slight effect on landslide hazard map. However, RMR and SMR value show direct relation with the prediction of landslide for slope cutting. As for rainfall intensity factor, the landslide potential map that considered 1 year return period of rainfall gives large difference compared to the map that used concept of 5 return periods of rainfall. Furthermore, landslide potential classes done by cumulative frequency analysis gives more realistic result than using equal range of score concept. Nevertheless, the cumulative frequency analysis of total score shows limited accuracy due to limited and slightly biased data. Finally, RMR and SMR values show significant effect on landslide probability of failure when analyzed by logistic regression data. The significant outcome of the research is the map showing the sensitive areas for slope cutting, produced by weighting factor analysis and logistic regression analysis.

Student's signature

2 / Nov / 2006 Thesis Advisor's signature

ACKNOWLEDGEMENTS

The author wishes to express profound gratitude and deepest appreciation to his academic supervisor, Dr.Suttisak Soralump for his sincere invaluable guidance, continuous encouragement and kind attention throughout thesis period. Sincere appreciation is extended to Dr. Warakorn Mairaing and Dr. Suneerat Kusalasai for their very useful suggestions related to this research and for serving on the thesis committee.

The author would like to express sincere thanks to the Geotechnical Engineering Research and Development Center (GERD), Department of Civil Engineering and Department of Mineral Resource. Sincere appreciation is also expressed to Mr.Bunpoat Kunsuwan for the rainfall analysis data and to Mr.Worawat Thowiwat for the laboratory data. Words of thanks are given to Ms.Mananya Chantasorn for her support about GIS knowledge and to Mr.Sirisartra Youngsanphu for his support about geological data.

The author would like to express sincere thanks to the organizing officials and to Ms.Arunee Riandara for the organizing of the author's course of study throughout the Master of Engineering at the International Graduate Program in Civil Engineering, Kasetsart University. Furthermore, special thanks are provided to Mr. Tony SweetApple of Faculty of Humanity, Kasetsart University for investigating English of this research paper.

Finally, the author wishes to express his gratitude to his beloved parents and sisters for their invaluable support and continuous encouragement and with due respect, the author dedicates this work to his beloved family.

Damrong Pungsuwan

September 2006

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	i
LIST OF FIGURES	
INTRODUCTION	
General Introd	luction
Statement of I	Problems
Objective of F	Research
Scope of Rese	earch
LITERATURE REVIEW	
Landslides	
Factors Affect	ting Landslide
Landslide Haz	zard Map in Thailand1
General Meth	od of Evaluating Landslide Hazard Zonation 1
Weighting Fac	ctor Method 2
Rock Mass Qu	ualitative System 2
Cut Slope	
Logistic Regre	ession 2
	nation of Phuket Province 2
MATERIALS AND METHO	DD
Materials	
Method	
	n 3
Evaluation Na	tural landslide susceptibility map and hazard map 3
	ation 3
	ating (RMR) and Slope Mass Rating (SMR)
Estimation	
Slope Conditi	on data 3
Data verificati	ion for RMR and SMR factor
	nsitive Area for Cut slope 4
	ssion 4
RESULTS AND DISCUSSI	ON 4
	on 4
	ctor Analysis for Landslide Hazard Area 5
	landslide susceptibility and hazard map (7 factors) 6
6	ation 7
	alysis
	Analysis Including RMR Value
	ndslide Susceptibility and Hazard Map by
	XMR Value
	ctor Analysis Including SMR Value
-	ndslide Susceptibility and Hazard Map by
0	MR Value
Collect Slope	Condition Data from Field Investigation 10

TABLE OF CONTENTS (Continued)

Failure Verification (RMR included)	107
Processing Cut Slope Failure and Hazard Map by	
	109
6	114
Processing Cut Slope Failure Map and Hazard Map by	
	116
e	123
Processing Cut Slope Probability of Failure Map by Considering	
	126
	130
Processing Cut Slope Probability of Failure Map by Considering	
	133
CONCLUSIONS	137
RECOMMENDATION	140
	141
APPENDIX	146

LIST OF TABLES

Table

1	The landslide potential and the rang of probability	11
2	The detailed descriptions of different weighted factor values	12
3	The landslide potential and the rang of total score	13
4	The detailed descriptions of different weighted factor values	14
5	The landslide potential and the rang of total score	15
6	Rock mass rating	21
7	Adjustment rating for joints	23
8	Adjustment rating for methods of excavation of slopes	23
9	Tentative description of SMR classes	24
10	Discontinuity condition factor λ	24
11	Range of standard cut slope gradients for bedrock soil	26
12	Rainfall (mm.) in Muang Phuket	29
13	Relative humidity (%) in Muang Phuket	30
14	Mean temperature (°C) in Muang Phuket	30
15	Mean max. temperature (°C) in Muang Phuket	31
16	Mean min. temperature (°C) in Muang Phuket	31
17	Population density	32
18	Data collection for the analysis of landslide sensitive area	36
19	Plan area of 7 factors	42
20	Landslide potential classification of rock type	53
21	Potential landslide level of rock series in 6 provinces	
	(by rock type)	54
22	Landslide potential classification of lineament zone	55
23	Landslide potential classification of slope	55
24	Landslide potential classification of elevation	55
25	Landslide potential classification of surface drainage zone	55
26	Landslide potential classification of land used	56
27	Landslide potential classification of soil characteristic	56
28	Soil group (Department of Land Development, 2001)	56
29	Landslide potential classification of rainfall intensity	59
30	Landslide potential classification of rainfall intensity	60
31	Landslide potential classification of engineering soil properties.	60
32	The numerical weight assignment to the parameters influencing	00
52	the landslide potential in Phuket	61
33	The landslide potential and the range of total score for all return	01
55	periods of rainfall	62
34	Predicted landslide susceptibility area considering 7 related factors	65
34 35		05
55	Predicted landslide hazard area for 5 return periods of rainfall	72
26	considering 7 related factors	72
36	Comparison of landslide potential area and landslide hazard area	72
27	considering 7 related factors	73
37	Field investigation in 14 watersheds	80
38	Field investigation data for RMR rating	83

LIST OF TABLES (Continued)

Table Page 39 Average rock mass rating classified by rock type 83 40 The numerical weight assignment to the RMR factor influencing the landslide in Phuket. 86 Area of landslide classes considered by including 7 related 41 factors and RMR factor..... 89 42 Predicted landslide hazard area for 5 return periods of rainfall include related factors and RMR factor..... 94 43 Example of SMR estimation PK06..... 95 44 Average slope mass rating classified by rock type 95 The numerical weight assignment to the SMR factor 45 influencing the landslide in Phuket..... 98 Area of landslide classes considered by including 7 related 46 factors and SMR factor 101 47 Predicted landslide hazard area for 5 return periods of rainfall including 7 related factors and SMR factor 105 48 The landslide potential and the range of total score considering RMR factor for all return period of rainfall..... 109 49 Area of failure cut slope classes considered by including 7 related factors and RMR factor..... 111 Predicted failure cut slope hazard area for 5 return periods 50 of rainfall including 7 related factors and RMR factor..... 113 51 The landslide potential and the range of total score considering SMR factor for all rainfall return period..... 116 Area of failure cut slope classes considered by including 7 52 related factors and SMR factor 118 53 Predicted failure cut slope hazard area for 5 return periods of rainfall including 7 related factors and SMR factor..... 121 54 Variable means between failure and non-failure of cut slope...... 124 Result of linear regression analysis for cumulative rainfall 55 intensity 3 days (RMR factors included) 124 Results of enter logistic procedure..... 56 125 Result of linear regression analysis for cumulative rainfall 57 intensity 3 day 100 years return period (RMR factors included)... 125 Results of enter logistic procedure..... 58 126 59 Parameter means and distribution of predictive failure of cut slope (RMR included)..... 129 Variable means between failure and non-failure of cut slope...... 60 131 Result of linear regression analysis for cumulative rainfall 61 intensity 3 days (SMR factors included)..... 131 Results of enter logistic procedure..... 62 132 Result of linear regression analysis for cumulative rainfall 63 intensity 3 days 100 years return period (SMR factors included) 132 64 Results of enter logistic procedure..... 133

LIST OF TABLES (Continued)

Table		Page
65	Parameter means and distribution of predictive failure of cut slope (SMR included)	136
Appendix T	able	
1	Slope characteristics obtained from field investigation	147
2	Slope characteristics obtained from field investigation for evaluated RMR and SMR	154
3	Conclusion of result USCS, Atterberg's limits, sieve analysis, and direct shear test, Phuket	168
4	Consistency index of soil following rock type	169
5	Data failure slope condition for regression analysis	170
6	Data non-failure slope condition for regression analysis	171

v

LIST OF FIGURES

Figure

1	Landslide type	4
2		5
3	Slope height, H, vs slope height factor, x	5
4	Topographic map of Phuket province	3
5		5
6	Rock mass rating (RMR) descriptions for field survey sheet	
		8
7		0
8		4
9		-5
10		-6
11		7
12		8
13		.9
14		0
15		1
16		2
17		3
18	Landslide susceptibility map by weighting factor method	
		64
19		5
20		6
21		7
22	Landslide hazard map considering 20 years return period of	
		8
23	Landslide hazard map considering 50 years return period of	
		9
24	Landslide hazard map considering 100 years return period of	
		0
25	Landslide hazard map in Phuket using 1, 5, 20, 50 and 100 years	
		1
26	Predicted landslide hazard area for 5 return periods of rainfall	
		2
27	6	4
28		5
29		6
30		6
31		7
32		7
33		8
34		8
35		9
36		1

LIST OF FIGURES (Continued)

Figure

37	Field survey locations, cut slope condition
38	Graph relationships between cut slope failures and RMR rating.
39	Graph relationships between cut slope non failures and RMR rating
40	Normal distribution curve RMR value classified by slope condition
41	Cumulative frequency of RMR value classified by slope condition
42	Landslide potential classified by RMR value
43	Landslide susceptibility map by considering 7 related factors and RMR factor
44	Area of landslide classes considered by including 7 related factors and RMR factor
45	Comparison between the landslide susceptibility map by considering 7 related factors and considered by including 7 related factors and RMR factor
46	Comparison of landslide classes between considered by 7 related factors and considered by including 7 related factors and RMR factor
47	The landslide hazard map in Phuket shown by rainfall intensity return period of 1, 5, 20, 50 and 100 years respectively
48	(RMR factor included) The landslide hazard map in Phuket by rainfall intensity return period of 1, 5, 20, 50 and 100 years respectively
49	(RMR factor included) Predicted landslide hazard area for 5 return periods of rainfall including 7 related factors and RMR factor
50	Comparison between the landslide hazard map by considering 7 related factors and considered by including 7 related factors and RMR factor
51	Comparison of landslide hazard between considered by 7 related factors and considered by including 7 related factors and RMR factor
52	Graph relationships between cut slope failures and SMR rating.
53	Graph relationships between cut slope non failures and SMR rating
54	Normal distribution curve SMR value classified by slope condition
55	Cumulative frequency of SMR value classified by slope condition
56	Landslide potential classified by SMR value
57	Landslide susceptibility map by considering 7 related factors and SMR factor

LIST OF FIGURES (Continued)

Figure

Page

58	Area of landslide classes considered by including 7 related
	factors and SMR factor 101
59	Comparison between the landslide susceptibility map 102
60	Comparison of landslide classes 102
61	The landslide hazard map in Phuket shown by rainfall
	intensity return period of 1, 5, 20, 50 and 100 years respectively
	(SMR factor included) 103
62	The landslide hazard map in Phuket by rainfall intensity return
	period of 1, 5, 20,50 and 100 years respectively
	(SMR factor included) 104
63	Predicted landslide hazard area for 5 return periods of rainfall
	including 7 related factors and RMR factor
64	Comparison between the landslide hazard map
65	Comparison of landslide hazard
66	Graph relationships between failure of cut slope and RMR factor 107
67	Graph relationships between failure of cut slope and RMR factor 107
68	Normal distribution of total score (7 related factors and
00	RMR factor) classified by slope condition
69	Cumulative frequency of total score (7 related factors and
0)	RMR factor) classified by slope condition
70	Cut slope failure potential classified by 7 related factors and
70	RMR factor
71	Area of failure cut slope classes considered by including 7
/ 1	related factors and RMR factor
72	
12	Area of failure cut slope classes considered by including 7
72	related factors and RMR factor
73	The failure cut slope of hazard map in Phuket showing rainfall
	intensity return period of 1, 5, 20, 50 and 100 years respectively
	(RMR factor included)
74	Predicted failure cut slope hazard area for 5 return periods of
	rainfall including 7 related factors and RMR factor
75	Graph relationships between cut slope failures and SMR factor 114
76	Graph relationships between cut slope non failures and
	SMR factor 114
77	Normal distribution of total score (7 related factors and SMR
	factor) classified by slope condition 115
78	Cumulative frequency of total score (7 related factors and
	SMR factor) classified by slope condition 115
79	Cut slope failure potential classified by 7 related factors and
	SMR factor 116
80	Area of failure cut slope classes considered by including 7
	related factors and SMR factor 117

viii

LIST OF FIGURES (Continued)

Figure

Page

81	Area of failure cut slope classes considered by including 7 related factors and SMR factor	118
82	Comparing between the failure cut slope hazard map	119
83	Comparison of failure cut slope hazard classes	119
84	The failure cut slope of hazard map in Phuket showing rainfall	
	intensity return period of 1, 5, 20, 50 and 100 years respectively	
	(SMR factor Include)	120
85	Predicted failure cut slope hazard area for 5 return periods of	
	rainfall including 7 related factors and SMR factor	121
86	Comparison of landslide hazard	122
87	Probability of failure of sensitive area for cut slope for 1 year	
	rainfall return period (RMR factor included)	127
88	Probability of failure of sensitive area for cut slope for 100 years	
	rainfall return period (RMR factor included)	128
89	Probability of failure of sensitive area for cut slope for 1 year	
	rainfall return period (SMR factor included)	134
90	Probability of failure of sensitive area for cut slope for 100 years	
	rainfall return period (SMR factor included)	135
91	Recommendation of landslide sensitive area for cut slope by	
	weighting factor analysis	138
92	Recommendation of landslide sensitive areas for cut slope by	
	logistic regression analysis	139

Appendix Figure

1	Raingage station	162
2	Cumulative rainfall intensity 3 days contour return period	
	1 years	163
3	Cumulative rainfall intensity 3 days contour return period	
	5 years	164
4	Cumulative rainfall intensity 3 days contour return period	
	20 years	165
5	Cumulative rainfall intensity 3 days contour return period	
	50 years	166
6	Cumulative rainfall intensity 3 days contour return period	
	100 years	167

EVALUATION OF LANDSLIDE SENSITIVE AREAS FOR CUT SLOPE IN PHUKET

INTRODUCTION

General Introduction

Landslides have become one of the major natural disasters over the past few years in our country. It is the most common natural hazard and threatening condition for people in mountainous area. Even when it happens away from the inhabited area, landslide can be a significant hazard and has a serious economic impact by blocking roads and river (Akbar, 1998).

In Thailand, many groups of researcher studied about the landslide occurrences and have developed landslide susceptibility map. The landslide susceptibility map is used for a hazard management. In order to develop the map property, factors related to slope instability need to be studied. Slope instability processes are the product of local geomorphic, hydrologic, and geologic conditions; modification of these conditions by geodynamic processes, vegetation, land use practices, human activities and frequency and intensity of precipitation and seismicity (Soeters and Van Westen, 1996). Recently, Geographic Information System (GIS) application is a powerful analysis tool to handle spatial data. Since the landslide hazard zonation is very much related to spatial information e.g. topography, geology, land cover, rainfall etc, GIS can be effective in analyzing these factors at various locations of a given area (Rajbhandari, 1995). This research is focused on the process of combining engineering soil properties and weighting factor method by using GIS application. An important thing in evaluating the hazard associated with the failure of landslide induced by cut slope is the probability of failure.

The development on Phuket island is rapidly growth and requires more infrastructure such as transportation route, resort projects, residential and commercial buildings. Building those structures in mountain area can trigger landslide. Therefore, this study is also focused on the determination of sensitive area for cut slope in Phuket.

Statement of Problems

The stability of cut slope on mountainous area is a major concern to the developed area as well as for the safety of those staying in these areas. Any kind of slope failure may lead to disruption in traffic, socio-economic activities, loss of property, injuries or sometimes even deaths of humans and/or livestock, and environmental degradation. Moreover, humans trigger landslide by carelessly cutting a slope for construction, especially at the toe slope.

Therefore, an assessment of the stability conditions in mountainous area is quite important especially as granitic and mudstone soil is the most common soil

found in Thailand and has the highest rate of landslide (Geotechnical Engineering Research and Development Center, 2006). Several techniques can be used to evaluate landslide potential area such as infinite slope analysis, weighting factor method and logistic regression method. The slope mass rating (SMR) technique has been found to be quite useful where it can be practiced, and is effectiveness in interpreting stability and recommending control measures. The technique is based on the well established rock mass rating (RMR) technique. The RMR and SMR technique has been used earlier in many mining and engineering projects related to tunnels and cut slope.

In order to improve the landslide susceptibility map by weighting factor method, it is necessary to improve the parameter to predict landslide such as engineering soil properties factor, RMR and SMR factors.

Objective of Research

The objectives of this study are:

1. Determine the sensitive areas of landslide and cut slope failure due to urban development in Phuket area by combination engineering soil properties factor into weighing factor method using GIS application.

2. Develop and verify landslide susceptibility caused by cut slope failure by using field investigation data.

3. To propose a method in calculating probability of cut slope failure and to combine into landslide hazard map by using field investigation data.

Scope of Research

1. Study area located in Phuket province.

2. Engineering parameters of slope material were determined by rock mass classification method and used the analyzed data from previous study.

3. GIS application was used for data analysis.

LITERATURE REVIEW

Landslides

Varnes (1978) defined term Landslide "the movement of a mass of rock, debris or earth down a slope". The criteria used in classification of landslides presented in emphasizing type of movement and type of material. The names for the type of materials are rock, debris, and earth. The movement has been divided into fall, topples, slides, spreads, and flows, as shown in Fig 1. This scheme considers fall, slides, and flows in bedrock, soils and unconsolidated deposits. The moisture content increases from rockfall to debris flow, and ultimately, a very wet debris flow grades into a very turbid stream.

A landslide is the mass movement, usually sudden, of soil and debris down a steep slope. Landslides can be triggered by heavy rainfall, earthquake or undercutting of the base of slopes by river (Ian Davis and Gupta, 1989).

The term landslide is defined as outward and downward movement of mass, consisting of rock and soil due to natural or manmade factors. High intensity rainfall triggers many landslides (Fauziah, 2004).

The processes involved in slope movements comprise a continuous series of events from cause to effect. Varnes (1978) provided a list of the causes of slides follows Varnes's distinction that the three broad types of landslide processes are which that increase shear stresses, contribute to low strength, and reduce material strength.

Varnes (1978) classified landslides according to the type of movement undergone on the one hand and the type of materials involved on the other (Fig 1). Types of movement were grouped into falls, slides and flows. The materials concerned were simply grouped as rocks and soils. Obviously, one type of slope failure may grade into another; for example, slides often turn into flows. Complex slope movements are those in which there is a combination of two or more principal types of movement. Multiple movements are those in which repeated failures of the same type occur in succession, and compound movements are those in which the failure surface is formed of a combination of curved and planar sections.

Falls are very common. The moving mass travels mostly through the air by free fall, saltation or rolling, with little or no interaction between the moving fragments. Movements are very rapid and may not be preceded by minor movements. A rockfall event involves a single block or group of blocks that become detached from a rock face; each block may be a falling block behaving more or less independently of other blocks. Blocks may be broken during the fall. There is temporary loss of ground contact and high acceleration during the descent, with blocks attaining significant kinetic energy. Blocks accumulate at the bottom of a slope as scree deposit. If a rockfall is active or very recent, then the slope from which it was derived is scarped. Frost thaw action is one of the major causes of rockfall.

Toppling failure is a special type of rockfall, which can involve considerable volumes of rock. The danger of slope toppling increases with increasing discontinuity angle, and steep slopes in vertically jointed rocks frequently exhibit signs of toppling failure.

In slides, the movement results from shear failure along one or several surfaces, such surfaces offering the least resistance to movement. The mass involved may or may not experience considerable deformation. One of the most common types of slide occurs in clay soils, where the slip surface is approximately spoon-shaped. Such slides are referred to as rotational slides (Fig 2). They are commonly deep-seated (depth/length ratio = 0.15—0.33). Backward rotation of the failed mass is the dominant characteristic, and the failed material remains intact to the extent that only one or a few discrete blocks are likely to form.

Although the slip surface is concave upwards it seldom approximates to a circular arc of uniform curvature. For instance, if the shear strength of the soil is

lower in the horizontal than vertical direction, the arc may flatten out; if the soil conditions are reversed, then the converse may apply. What is more, the shape of the slip surface is very much influenced by the existing discontinuity pattern.

Rotational slides usually develop from tension scars in the upper part of a slope, the movement being more or less rotational about an axis located above the slope. The tension cracks at the head of a rotational slide are generally concentric and parallel to the main scar. Undrained depressions and perimeter lakes, bounded upwards by the main scar, characterize the head regions of many rotational slides.

When the scar at the head of a rotational slide is almost vertical and unsupported, then further failure is usually just a matter of time. As a consequence, successive rotational slides occur until the slope is stabilized. These are retrogressive slides and they develop in a headward direction. All multiple retrogressive slides have a common basal shear surface in which the individual planes of failure are combined. Non-circular slips occur in overconsolidated clays in which weathering has led to the development of quasi-planar slide surfaces, or in unweathered structurally anisotropic clays. Both circular and non-circular shallow rotational slips tend to form on moderately inclined slopes in weathered or colluvial clays.

Figure 2 The main features of a rotational slide Source: Varnes (1978)

Translational slides occur in inclined stratified deposits, the movement occurring along a planar surface, frequently a bedding plane. The mass involved in the movement becomes dislodged because the force of gravity overcomes the frictional resistance along the potential slip surface, the mass having been detached from the parent rock by a prominent discontinuity such as a major joint. Slab slides, in which the slip surface is roughly parallel to the ground surface, are a common type of translational slide. Such a slide may progress almost indefinitely if the slip surface is sufficiently inclined and the resistance along it is less than the driving force. Slab slides can occur on gentler surfaces than rotational slides and may be more extensive.

According to Skempton and Hutchinson (1969), compound and translational slides develop in clay deposits when rotation is inhibited by an underlying planar feature, such as a bedding plane or the base of a weathered boundary layer. Translational slides tend to be more superficial than compound slides, being governed by more shallow inhomogeneities. Clay that is subjected to part rotational, part translational sliding is often distorted and broken. Block slides may develop in the more lithified, jointed deposits of clay, blocks of clay first separating and then sliding on well-defined bedding, joint or fault planes. Slab slides are characteristic of more weathered clay slopes of low inclination. Material moves en masse with little internal distortion.

Weathered mantle and colluvial materials are particularly prone to slab failure, which rarely occurs with depth/length ratios greater than 0.1. If a sufficient number of overlapping slips develop, they may form a shallow translational retrogressive slide. Failures that involve lateral spreading may develop in clays, quick clays and varved clays. This type of failure is due to high pore water pressure in a more permeable zone at relatively shallow depth, dissipation of pore water pressure leading to the mobilization of the clay above. The movement is usually complex, being predominantly translational, although rotation and liquefaction, and consequent flow may also be involved. Such masses, however, generally move over a planar surface and may split into a number of semi-independent units. Like other landslides, these are generally sudden failures, although sometimes movement can take place slowly.

Rock slides and debris slides are usually the result of a gradual weakening of the bonds within a rock mass and are generally translational in character. Most rock slides are controlled by the discontinuity patterns within the parent rock. Water is seldom an important direct factor in causing rock slides, although it may weaken bonding along joints and bedding planes. Freeze—thaw action, however, is an important cause. Rock slides commonly occur on steep slopes and most are of single rather than multiple occurrence. They are composed of rock boulders. Individual fragments may be very large and may move great distances from their source. Debris slides are usually restricted to the weathered zone or to surficial talus. With increasing water content debris slides grade into mudflows. These slides are often limited by the contact between the loose material and underlying firm bedrock.

In a flow the movement resembles that of a viscous fluid (Bishop, 1973). In other words, as movement downslope continues, intergranular movements become more important than shear surface movements. Slip surfaces are usually not visible or are short-lived, and the boundary between the flow and the material over which it moves may be sharp or may be represented by a zone of plastic flow. Some content of water is necessary for most types of flow movement, but dry flows can and do occur. Consequently, the range of water content in flows must be regarded as ranging from dry at one extreme to saturated at the other. Dry flows, which consist predominantly of rock fragments, are simply referred to as rock fragment flows or rock avalanches and generally result from a rock slide or rockfall turning into a flow. They are generally very rapid and short-lived, and are frequently composed mainly of silt or sand. As would be expected, they are of frequent occurrence in rugged mountainous regions, where they usually involve the movement of many millions of tonnes of material. Wet flows occur when fine-grained soils, with or without coarse debris, become mobilized by an excess of water. They may be of great length.

Progressive failure is rapid in debris avalanches and the whole mass, either because it is quite wet or is on a steep slope, moves downwards, often along a stream channel, and it advances well beyond the foot of a slope. Lumb (1975) reported speeds of 30 m s for debris avalanches in Hong Kong. The main characteristics of many slips that occur in the residual soils (mainly decomposed granite) of Hong Kong are the rapid fall of debris (once movement starts the whole mass separates from the main slope within minutes) and the shallow depth of the slide, usually less than 3 m. The ratio of thickness to length of the scar is usually less than 1.5. There is rarely any prior warning that a slip is imminent. The prime cause of failure is direct infiltration of rainwater into the surface zones of slopes, leading to soil saturation and its loss of effective cohesion. Debris avalanches are generally long and narrow, and frequently leave V-shaped scars tapering headwards. These gullies often become the sites of further movement.

Debris flows are distinguished from mudflows on the basis of particle size, the former containing a high percentage of coarse fragments, while the latter consist of at least 50% sand-size or less. Almost invariably, debris flows follow unusually heavy rainfall or the sudden thaw of frozen ground. These flows are of high density, perhaps 60 to 70% solids by weight, and are capable of carrying large boulders. Like debris avalanches, they commonly cut V-shaped channels, at the sides of which coarser material may accumulate as the more fluid central area moves down-channel. Debris may move over many kilometres.

Mudflows may develop when a rapidly moving stream of storm water mixes with a sufficient quantity of debris to form a pasty mass. Because such mudflows frequently occur along the same courses, they should be kept under observation when significant damage is likely to result. Mudflows frequently move at rates ranging between 10 and 100m min and can travel over slopes inclined at 1° or less, although they usually develop on slopes with shallow inclinations, that is, between 5 and 15°. Skempton and Hutchinson (1969) observed that mudflows also develop along discretely sheared boundaries in fissured clays and varved or laminated fluvio-glacial deposits where the ingress of water has led to softening at the shear zone. Movement involves the development of forward thrusts due to undrained loading of the rear part of the mudflow, where the basal shear surface is Inclined steeply downwards. A mudflow continues to move down shallow slopes due to this undrained loading which is implemented by frequent small falls or slips of material from a steep rear scarp on to the head of the moving mass. This not only aids instability by loading but it also raises the pore water pressures along the back part of the slip surface (Hutchinson and Bhandari, 1971; Bromhead, 1978).

An earthflow involves mostly cohesive or fine-grained material, which may move slowly or rapidly. The speed of movement is to some extent dependent on water content in that the higher the content, the faster the movement. Slowly moving earthflows may continue to move for several years. These flows generally develop as a result of a build-up of pore water pressure, so that part of the weight of the material is supported by interstitial water with consequent decrease in shearing resistance. If the material is saturated, a bulging frontal lobe is formed and this may split into a number of tongues, which advance with a steady rolling motion. Earthflows frequently form the spreading toes of rotational slides due to the material being softened by the ingress of water. Skempton and Hutchinson (1969) restricted the term 'earthflow' to slow movements of softened weathered debris, as forms at the toe of a slide. They maintained that movement was transitional between a slide and a flow, and that earthflows accommodated less breakdown than mudflows.

Factors Affecting Landslide

Landslides in Relation to Geomorphology (Landform: Slope angle, elevation)

Mehortra, Sarkar and Dharmaraju (1992) analyzed that maximum number of landslides occur in the slope category of $31^{\circ}-40^{\circ}$ followed by slope category $21^{\circ}-30^{\circ}$. These slope categories in the field have been found to consist predominantly of moderate to highly weathered rock types frequently jointed and fractured as well. Incidence of landslides have been found to be much less on the rocky slopes generally steep, falling in the category of $51^{\circ}-60^{\circ}$ more than 60° .

The change of slope gradient may be due to natural or artificial interference i.e. to the undermining of the foot of the slope by stream erosion or by excavation. Exceptionally, the change of slope gradient may be produced by tectonic processes, by subsidence or uplift. The increase in slope gradient provokes a change of stress in the rock mass; the equilibrium is then distributed by the increase in shear stress. Upon the relief of lateral stress the rocks on the slope loosen and facilitate the penetration of water (Zaruba and Mencel, 1967).

Varnes (1984) noted that steepness of slope in relation to the strength of slope forming materials was very important: for zoning purposes, slope inclination was often grouped into range of degrees or percentages. He also pointed out that the interrelation between slope gradient and stability was not simple and that the steeper slope might not always be those most likely to fail. Many steep slopes of competent rock were more stable as compared to gentle slopes of weak material. The complex relationships between relative frequency of landslides, slope and lithology could be statistically examined.

The data suggested that while steeper slopes provided greater potential energy to induce failure, they were also indicative of higher strength materials. This trade-off between increased driving force and increased strength appeared to reduce the importance of slopes that were steeper than this threshold should be influenced to a greater degree by the remaining factors that affect landslide susceptibility.

Landslides in Relation to Geology (Lithology, Structural geology)

Lee and Min (2001) stated the landslide occurrence value was higher in granite gneiss and leucocratic gneiss areas, and was lower in quartz mica schist and biotite gneiss areas.

Khantaprab (1993) conducted a study on November 1988 landslides in southern Thailand and proposed the geology factors influencing the landslides. The areas underlain by granitic terrain with residual soil of weathered granite had higher landslides.

Landslides in Relation to Surface Drainage zone

It is observed that the incidence of landslides are more in areas having drainage density values between 3-4 km/km² characterized by medium to coarse texture having infiltration more or equal to runoff. The areas designated as low having drainage density values less than 3.0 km/km² and characterized by coarse texture with infiltration more than runoff. The frequency of landslides has been found to be comparatively much less in areas having drainage density values more than 4 km/km² having fine to medium texture (Mehrotra, Sarkar and Dharmaraju, 1992).

Landslides in Relation to Soil Characteristics

Collins and Znidarcic (2004) stated the relations between soil and rainfall parameters and the cause of failure for slopes subject to infiltration. Coarse-grained soils and high infiltration rates lead to the development of positive pore water pressures and failure will be caused by seepage forces within the slope. Fine-grained soils and low infiltration rates do not lead to the development of positive pore pressures and failure will more often occur due to the decrease in shear strength caused by the loss of suction. In general, shallower failures are associated with the development of positive pore pressures, while deeper failures are associated with a loss in suction. However, it should be noted that the failure depth is governed not only by the strength characteristics, but also by the hydraulic characteristics of the soil and that both should be investigated in performing detailed analyses.

Landslides in Relation to Land use and Land cover

Varnes (1984) stated effect of vegetation on slope stability appears to be complex in that depending on local conditions of soil depth, slope and type of vegetation, a vegetative cover in some ways definitely promotes stability and in other ways it may not.

Greenway (1987) also stated in the same way that vegetation that may be growing on a slope has traditionally been considered to have an indirect or minor effect on stability; and it is usually neglected in stability analysis. This assumption is not always correct and for certain forested slopes with relatively thin soil mantles has shown significantly in error. The relationship of landslide activities with various land use types in the Himalayan region, India. The agricultural lands have occupied the maximum area and have also shown maximum proneness to landslide. The high rate of landslide event in this category of land use could be due to its locations commonly preferred by local people either in old/dormant slide area or close to populated areas where ill planned construction activities have already taken place. The barren and sparsely vegetated areas have shown more frequent occurrences of landslides as compared to thickly and moderately vegetated areas possibility due to insufficient growth of secondary vegetation on the slope and the ground (Mehrotra, Sarkar and Dharmaraju, 1992).

Landslides in Relation to Rainfall Intensity

Precipitation causes an increase or risk in the water level and increases the pore water pressure within the rock or soil. This action greatly reduces the shearing strength of the soil. This same water or an increase in moisture content adds weight to the mass and lubricates the slip planes. The actions will increase the chances for the down slope movement of the landslide mass.

Rain and melt water penetrate into the joints producing hydrostatic pressure; the increase in pour-water pressure in soil induces a change of consistence, which in turn causes a decrease of cohesion and internal friction. Recurrent sliding movement generally occurs in the years of usually high rainfall (Zaruba and Mencel, 1967).

Summerfield (1991) said that raindrops possess kinetic energy by virtue of their mass and velocity. Although the impact velocity of raindrops varies depending on the droplet size, wind speed and turbulence, raindrops of maximum size under normal conditions of around 6 mm diameter have an impact velocity of about 9 m/s. At this speed, rain drops can directly move particles more than 10 mm across and coarser material can be dislodged by the removal of down slope support provided by finer sediment. Rain splash erosion can occur wherever vegetation does not entirely cover the ground, although it is a more potent erosive agent in environments where there is little or no vegetation cover. Both slope gradient and surface characteristics influence the effectiveness of rain splash erosion. Experimental studies have shown that on low angle slope at 5° only about 60% of the particles dislodged by the raindrop impacts move down slope but this percentage increases with gradient reaching 95% on 25° slopes. It also appears that rain splash erosion is more effective on sandy surfaces than those containing a high proportion of clay and silt-sized material, apparently because the presence of finer particles contribute to cohesion.

Landslide Hazard Map in Thailand

Samran (1984) studied the rainfall erosivity-factor, R in Universal Soil Loss Equation, USLE, for mountainous areas in northern Thailand from automatic record rainfall intensity. He reported results that rainfall erosivity-factor, R indicated highly significant relationships between rainfall factor and rainfall amount in terms of annual, seasonal and monthly basis. And annual, wet seasonal and monthly rainfall had highly significant relationships with elevation and aspect.

Pantanahiran (1994) conducted research to identify landslide areas and to develop a predictive landslide model using various parameters from a limited data base. Pipun and Kiliwong areas in Thailand were selected for model development and validation, respectively. Information obtained from topographic maps and remotely sensed data were used in this study. The predictive model was formulated using logistic regression under TIN and GRID modules in ARC/INFO and SAS software. Land use/land cover and landforms were the primary factors affecting landslides in the study areas. The sensitive areas in Pipun occur at an elevation of 400-600 m which had slopes of 16-30°. In addition, approximately 75% of all landslides in Pipun occurred within 140 m of a stream channel. Eight parameters including elevation, aspect, vegetations (TM4), flow accumulation, soil characteristics (Brightness), soil moisture (Wetness), slope, and flow direction were selected as significantly contributing to the model. The logistic model was represented by the equation:

$$Y = 1.8914 - 0.00281(Elevation) + 1.4215(Adjusted aspect) - 0.00505(TM4) + 0.00073(Flow accumulation) - 0.0042(Brightness) - 0.00504(Wetness) + 0.00698(Slope) - 0.00165(Flow direction) and P = 1/(1 + exp (-Y)) is the estimated probability (P) of landslide presence at$$

The results indicated that the predictive model correctly classified 82% of the landslides at a 0.4 cutoff probability.

Table 1	The landslide	potential an	d the rang of	f probability

a given cell.

Landslide Susceptibility Classes	Range of probability
Very low to nil susceptibility to landslide	0-20
Low susceptibility to landslide	21-40
Moderate susceptibility to landslide	41-60
High susceptibility to landslide	61-80
Very high susceptibility to landslide	80-100

Source: Pantanahiran (1994)

Auathaveepon (1995) reported application of satellite data on classification of landslide risk area in Amphoe Phipun, Changwat Nakhon Si Thammarat. Also the total of 226 square grid selected each 1x1 square kilometer corresponding with active landslide which occurred in 1989. The slope, landform, geological characteristics, soil characteristic, rainfall and landuse were investigated as independent variable coinside with appearant landslide on sattellite image. The relationships between the percentage of landslide and independent variables were formulated by stepwise

method. The best multiple regression equation is

Log Y = 1.3285-0.0101(Slope)- 0.1021(Landform)+ 0.9178(Land use) +0.5189(Geology)-0.8939(Soil)+0.3213(Rainfall)

in which the coefficient of determination (R^2) is equal 0.6538.

For landslide susceptibility study Department of Land Development used weighting factor index. Five factors such as rock type, slope, land use, soil properties and rainfall precipitation intensity were identified as the main factors governing slope instability in Thailand.

	Weight	Rating Value		
Parameter	Value	Description Ratin		Score
1. Rock type	10	1. Sedimentary rock	1	1x10=10
		2. Sandstone/Shale	2	2x10=20
		3. Limestone/Dolomite/Pyrite	3	3x10=30
		4. Metamorphic of Igneous	4	4x10=40
		rock/Quartzite		
		5. Granite/Slate	5	5x10=50
2. Slope (%)	9	1. 0-8%	1	1x9=9
		2. 8-16%	2	2x9=18
		3. 16-35%	3	3x9=27
		4. 35-50%	4	4x9=36
		5. >50%	5	5x9=45
3. Land used and	8	1. Forest	1	1x8=8
Land cover	and cover 2. Grassland/Deforest		2	2x8=16
		3. Vacant land/Orchard	3	3x8=24
		4. Agriculture	4	4x8=32
		5. Open area	5	5x8=40
4. Soil properties	7	1. Fine grain soil +deep	1	1x7=7
		2. Medium +deep/	2	2x7=14
		Fine grain soil +intermediate		
		3. Fine grain soil +shallow/	3	3x7=21
		Coarse grain soil +deep		
		4. Medium + intermediate	4	4x7=28
		5. Coarse grain soil +shallow	5	5x7=35
5. Rainfall	6	1. < 1,800 mm/yr	1	1x6=6
intensity		2. 1,801-2,100 mm/yr	2	2x6=12
		3. 2,101-2,400 mm/yr	3	3x6=18
		4. 2,401-3,200 mm/yr	4	4x6=24
		5. 3,201-4,000 mm/yr	5	5x6=30

Table 2 The detailed descriptions of different weighted factor values

Source: Department of Land Development (1996)

	Landslide Susceptibility Classes	Range of Score
Ver	y low to nil susceptibility to landslide	40-72
Low	v susceptibility to landslide	73-104

Table 3 The landslide potential and the rang of total score

Source: Department of Land Development (1996)

Moderate susceptibility to landslide

Very high susceptibility to landslide

High susceptibility to landslide

Naramngam (1996) applied GIS and factor of safety (F.S.) in determining landslide risk area sub-watershed Klong Kathu and Klong Dindaeng of Tapi watershed, Changwat Nakhon Si Thammarat. The F.S. value was calculated using the equations proposed by Mairaing, Abe, Gray and Megahan, Gray and Leiser, Wu et al. and Coppin and Richards. Applicability and efficiency of those equations were evaluated based on the concided value (CV) representing percentage of the overlaps in terms of size and location of landslide area between actual and simulated landslide maps. The most feasible equation in determining and mapping landslide risk area is Wu et al.'s equation when soil depth was given at 1.5 m. and 2.0 m.

Chalermpong (2002) conducted to identify landslide risk area and communities that might be affected by landslides in the East-Coast Gulf Watershed. Landslide statistics and factors were investigated. The landslide risk factors were employed together with the geographic information system to prepare, analyze, and map landslide risk area. The land use map, geology map, and soil group map were used to analyses landslide risk.

Junkhiaw (2003) applied the technique of geographic information system and Artificial Neural Network (ANN) to create modal flash flood and landslide risk area. The modal was conducted under the influence parameters such as the topographical, geomorphology, land use characteristics, and hydrometeorology. The Phuket Island was the study area. High level hazard of landslide was found on granite mountain.

Thaijeamaree (2003) studied the landslide behaviors for Nam Kor Watershed, Nam Kor subdistrict, Lom Sak district, Phetchabun Province. The studies were done by field survey on landslide area, field tests, and laboratory tests such as strength. Finite Element Method on soil slope during heavy rainfall was performed using these test results for infiltration analyses. The relationship of rainfall patterns and the stability of slope gave the critical rainfall causing landslide. This report found direct shear test showed when the moisture content of the samples increased, the shear strengths decreased. These relationships can establish the critical rainfall envelope when the Factor of Safety (FS.) is equal to unity. With the various rainfall patterns from 1-14 raining days, the critical rainfall envelope can be established and used as future warning levels for the villager.

105-136

137-168

169-200

Parameter	Weight Value		Rating Value	Score	
I drameter	Weight	Sub	Description	Rating	Score
В		A. Igneous rocks B. Sedimentary rocks C. Metamorphic rocks	5 3 1	5x3=15 3x3=9 1x3=3	
1.2 Lineament zone		2	A. Inside lineament zone B. Outside Lineament zone	3 1	3x2=6 1x2=2
2. Landform 2.1 Slope (%)	4	3	A. >70% B. 50-70% C. 30-50% D. 15-30%	5 4 3 2	5x3=15 4x3=12 3x3=9 2x3=6
2.2 Elevation- m		1	E. 0-15% A. >401 m B. 301-400 m C. 201-300 m D. 101-200 m E. 0-100 m	1 5 4 3 2 1	$ \begin{array}{r} 1x3=3 \\ 5x1=5 \\ 4x1=4 \\ 3x1=3 \\ 2x1=2 \\ 1x1=1 \end{array} $
3. Surface drainage zone	2		A. Inside B. Outside	2 1	2x2=4 1x2=2
4. Soil characteristics	2		 A. Gravel loam/Gravelly sand B. Sand C. Sandy loam D. Clayey loam/loam E. Clay, Mud 	5 4 3 2 1	5x2=10 4x2=8 3x2=6 2x2=4 1x2=2
5. Land used and Land cover	3		A. Agriculture areaB. Urban and build-upareaC. Other deforestationD. Forest area	4 3 2 1	4x3=12 3x3=9 2x3=6 1x3=3
6. Rainfall intensity (mm)	tensity (mm) B. 2,7 C. 2,6 D. 2,4		A. > 2,826 mm/yr B. 2,726-2,825 mm/yr C. 2,626-2,725 mm/yr D. 2,476-2,675 mm/yr E. 2,325-2,475 mm/yr	3 2.5 2 1.5 1	3x5=15 2.5x5=12.5 2x5=10 1.5x5=7.5 1x5=5

<u>Table 4</u> The detailed descriptions of different weighted factor values

Source: Thassanapak (2001)

Landslide Susceptibility Classes	Range of Score
Very low to nil susceptibility to landslide	21-33
Low susceptibility to landslide	34-45
Moderate susceptibility to landslide	46-58
High susceptibility to landslide	59-70
Very high susceptibility to landslide	71-82

Table 5 The landslide potential and the rang of total score

Source: Thassanapak (2001)

Study susceptibility of landslide by Thassanapak (2001) use weighted factor index. The influencing parameter of geology including rock types and lineament zone, slope gradient and elevation, surface drainage zone, land use and land cover, soil characteristics, and rainfall intensity were identified as the main factors governing slopes instability in Phuket Thailand.

Kunsuwan (2005) studied the landslide behavior for Khlong Krating, Khlong Takhian and Klong Thung Phen, in Chantaburi sub-basin during the heavy rainfalls and floods in 1999 and 2001. The hazard map was created by the relationships between the rainfall patterns, rainfall duration, return period, the slope stability and the critical rainfall envelop in order to use for landslides warning. The results showed that the failure slopes were on the area of 25-35 degree slopes and the depth of 2.5-3.5 meters. The soil profiles were on the weathered granite rock with high natural moisture contents. The shear strength of soil decreased with increase of the degree of saturation. The study of the distribution of the sediment carried from the landslide areas along the rivers found that the sediment of rocks decreased with increasing of the distance from the source. The critical F.S. occurred right after the end of heavy rainfall. The correlation of the slope stability analyses with the historical rainfall data lead to landslide critical rainfall envelope of the F.S. equal to 1.1.

General Method of Evaluating Landslide Hazard Zonation.

Definition of Hazard Zonation

To differentiate between the terms hazard; and risk, following definitions (given by Varnes, 1984) have become generally accepted:

NATURAL HAZARD (H): The probability of occurrence of a potentially damaging phenomenon within a specified period of time and within a given area.

VULNERABILITY (V): The degree of loss to a given element or set of elements at risk resulting from the occurrence of a natural phenomenon of a given magnitude. It is exposed on a scale from 0 (no damage) to 1 (total loss).

SPECIFIC RISK (Rs): The expected degree of loss due to a particular natural phenomenon. It may be expressed by the product of H and V.

ELEMENT AT RISK (E): The population, properties, economic activities, including public services, etc. at risk in a given area.

TOTAL RISK (Rt): The expected number of lives lost, persons injured, damage to property, or disruption of economic activity due to a particular natural phenomenon. It is therefore the product of specific risk (Rs) and elements at risk (E).

Hazard Assessment

Disaster result from vulnerable conditions being exposed to a potential hazard. Therefore, the first step in taking any mitigation measures is to assess the hazard. Hazard assessment aims to come to grips with: (a) the nature, severity and frequency of the hazards; (b) the area likely to be affected; and (c) the time and duration of impact. (Ian Davis and Gupta, 1989)

Landslide Hazard Zonation

Landslide hazard is commonly shown on maps, which display the spatial distribution of hazard classes (landslide hazard zonation). Zonation refers to " the division of the land in 'homogeneous' areas or domains and their ranking according to degrees of actual/potential hazard caused by mass movement" (Varnes, 1984).

Anbalagan (1992) stated that Landslide Hazard Zonation (LHZ) map depicts the division of land surface in to zones of varying degree of stability based on the estimated significance of the causative factors in inducing instability. He pointed out the usefulness of the LHZ map as follow.

The LHZ maps are useful for the following purposes

1. LHZ map help the planners to choose favourable location for site development schemes such as building and road construction. Even if the hazardous areas can not be avoided altogether, their recognition in the initial stages of planning may help to adopt suitable precautionary measures.

2. As the LHZ map delineates the areas into zones of varying degree of stability, the environmental regeneration measures can be initiated in high hazard areas by adopting suitable mitigation measures.

Mapping Scale

Van Westen (1994) stated selection of the working scale for a slope instability analysis project is determined by the purpose for which it is executed. He followed the scale of analysis presented in the International Association of Engineering Geologists monograph on engineering geological mapping (IAEA, 1976) in his study of landslide hazard zonation in Andes of Colombia. The scales are National scale (< 1: 1,000,000) Synoptic or regional scale (< 1:100,000) Medium scale (1:25,000 - 1:50,000) Large scale (1:5,000 - 1: 10,000)

Mapping Framework of Landslide

Einstein (1988) introduced the framework of mapping landslide in to five levels

- 1. State of nature map
- 2. Danger maps
- 3. Hazard maps
- 4. Risk maps
- 5. Landslide management maps

Hazard Mapping Analysis

Van wester (1993) stated in his publication that the most straightforward type of hazard map is a landslide inventory map displaying present and past landslides. Assessment of the area extent of landslides and their evolution in the recent past can be made with the use of multi-temporal photo interpretation and geomorphological fieldwork.

The report stated that the prediction of hazard in areas presently free of landslides requires different methods, based on the assumption that hazardous phenomena that have occurred in the past can provide useful information for the prediction of occurrences in the future. Therefore, mapping these phenomena and the factors thought to be of influence is very important in hazard zonation. He cited the two general approaches used for such mapping

1. Many of the geomorphology-based hazard zonation studies can be called hazard mapping studies, since the hazard is basically assessed in the field during mapping. This method is also called direct approach (Hansen, 1984).

2. Indirect methods calculate the importance of the combinations of parameters occurring in landslide locations, and extrapolate the results to landslide-free areas with similar combinations, mostly by statistical techniques (Hansen, 1984)

The report cited Hartlen and Viberg (1988) who differentiated between relative hazard and absolute hazard assessment techniques. The relative hazard assessment techniques differentiate the likelihood of occurrence of mass movements for different areas on the map, without giving exactly exact values.

Absolute hazard maps display an absolute value for the hazard, either as a factor of safety or a probability of occurrence. A combination is also possible, indicating the probability that the factor of safety is below one.

Absolute hazard assessment techniques can be divided into three main groups (Carrara, 1983; Hartlen and Viberg, 1988):

1. White box model, based on physical models (slope stability and hydrological models) also referred to as deterministic models;

2. Black, box models, not based not on physical models but on statistical analysis;

3. Grey box models, based partly on physical models and partly on statistics.

Principles of Hazard Zonation

According to Varnes (1984) Landslide Hazard Zonation is still in a stage of experimentation. He has indicated at least three basic principles or fundamental assumptions that have guided all zonation studies.

- 1. The past and present are keys to the future
- 2. The main conditions that cause landslide can be identified
- 3. Degree of hazard can be estimated

General Trend in Landslide Hazard Zonation Techniques

A large amount of research on hazard zonation has been done over the last 30 years as the consequences of and urgent demand for slope instability hazard mapping. Several types of landslide hazard zonation techniques have been developed in which Van westen (1994) has listed the summary of the various trends in the development of techniques as follow

Type of landslide analysis	Main characteristic
A. Distribution analysis	Direct mapping of mass movement features resulting in a map which gives information only for those sites where landslides have occurred in the past
B. Qualitative analysis	Direct, or semi-direct, methods in which the geomorphological map is renumbered to a hazard map or in which several maps are combined into one using subjective decision rules, based on the experience of the earth scientist
C. Statistical analysis	Indirect methods in which statistical analysis are used to obtain predictions of the mass movement hazard from a number of parameter maps
D. Deterministic analysis	Indirect methods in which parameter maps are combined in slope stability calculations

E. Landslide frequency analysis

Indirect methods in which earthquake and/or rainfall records or hydrological models are used for correlation with known landslide dates, to obtain threshold values with a certain frequency

Data Required for Input in GIS for Landslide

Van Westen (1994) pointed out the list of various input data needed to assess landslide hazard at regional, medium and large scale. The list is extensive, and only in a ideal case will all type of data be available. However, the amount and type of data that can be collected, determine the type of hazard analysis that can be applied ranging from qualitative assessment to complex statistical methods.

The data layer needed to analyze landslide hazard can be subdivided into five main groups; geomorphical; topographic; engineering geological or geotechnical; land use; and hydrological data. A data layer in a GIS can be seen as one digital map, containing one type of data composed of one type of element (points, line, units) and having one or more accompanying Tables. The layers that have to be taken into account vary for different environment.

Phases of Landslide Hazard Analysis Using GIS (Van westen, 1993)

The following phases can be distinguished in the process of mass movement hazard analysis using GIS:

1. Choice of working scale and the methods of analysis which will be applied;

2. Collection of existing maps and reports with relevant data;

3. Interpretation of Images and creation of new input maps;

4. Design of the data base and definition of the way in which data should be collected and stored;

5. Fieldwork to verify the photo-interpretation and to collect relevant quantitative data;

6. Laboratory analysis of soil and rock samples for classification;

7. Digitizing of maps and attribute data;

8. Validation of the entered data;

9. Manipulation and transformation of the raw data to a form which can be used in the analysis;

10. Analysis of data for preparation of hazard maps;

11. Evaluation of the reliability of the output maps and inventory of the errors which may have occurred during the previous phases.

12. Final production of hazard maps and adjoining reports.

Weighting Factor Method

A numerical rating system or a weight-rating system is based on the theory of logical combination. A weighting or a measure of relative importance, must be assigned each influencing factor. Each influencing factor was subdivided into subclasses and given index numbers. Although the index numbers are for identification only, the subclasses should be arranged in a logical sequence, such as from gentle to steep or small to large. The product of these factors was the potential of the area indicated susceptibility to landslide.

A simplified formula to predict the susceptibility to landslide is defined as follows;

 $M_t = M_1 W_1 + M_2 W_2 + M_3 W_3 + M_4 W_4 + \dots + M_n W_n$

Where $M_t = Total$ scores

M = Value of the importance factor

W = Value of subclasses of the importance factor

Rock Mass Qualitative System

Rock masses have been described from the earliest geological maps onwards. The descriptions of the rocks were initially in lithological and in other geological terms. With increasing knowledge of geology, geological features and the influence of geology on engineering the amount of information to be included in a description for geotechnical purposes increased, leading to sets of rules for the description or characterization of a rock mass geotechnically. Parallel with this development, a movement took place in mining and engineering geology to combine the characterization of a rock mass with direct recommendations for tunnel support. This resulted in rock mass classification systems. The systems were developed primarily empirically by establishing the parameters of importance, giving each parameter a numerical value and a weighting. This led, via empirical formulae, to a final rating for a rock mass. The final rating was related to the stability of the underground excavation. In systems that are more elaborate, the rating was also related to the support installed in the excavation and to stand-up times. The success of classification systems in underground excavations resulted in classification systems also being used for slopes. Classifications systems have been designed following many different calculation methods and also the used parameters and their influence on the final result differ widely from system to system. This obviously sets some question marks to the validity of classification systems. The correlation between the results of some systems is often quoted to prove that the systems do work, but also this on detailed investigation seems not to be so convincing.

Rock Mass Rating

In 1973 Bieniawski introduced the Geomechanics Classification also named the Rock Mass Rating (RMR), at the South African Council of Scientific and

Table 6 Rock mass rating

A. (LASSIFI	CATI	ON PARAMETE	RS AND THEIR RATIN	GS							
	1	Param	eter			R	ange of values					
	Strength of Strength index			>10 MPa 4-10 MPa			2-4 MPa	1-2 MPa		For this low range - uniaxial compressive test is preferred		
'	intact r mater	ial	Uniaxial comp. strength	>250 MPa	100-250 MPa		50-100 MPa	25-50 MPa		5-25 MPa	1-5 MPa	< I MPa
			ating	15	12		7	4		2	I	0
	Drill		Quality RQD	90%-100%	75%-90%		50%-75%	25%-50%			< 25%	
2		R	ating	20	17		13	8			3	
	Spaci	-	discontinuities	> 2 m	0.6-2 . m		200-600 mm	60-200 mm		< 60 mm		
3 Rating		ating	20	15		10	8		5			
4	Condition of discontinuities (See E)			Very rough surfaces Not continuous No separation Unweathered wall rock	Slightly rough surf Separation < 1 mm Slightly weathered walls	n So d Hi	ightly rough surfaces eparation < 1 mm ighly weathered alls	Slickensided surfac or Gouge < 5 mm thic or Scparation 1-5 mm Continuous	ck	Soft gouge >5 mm thick Separation > 5 mm Continuous		
		Ra	ating	30	25		20	10		0		
		tunne	w per 10 m el length (l/m)	None	< 10		10-25	25-125		:	> 125	
5	Ground water	(Maj	t water press)/ or principal σ)	0	< 0.1		0.1,-0.2	0.2-0.5			> 0.5	
			eral conditions	Completely dry 15	Damp		Wet	Dripping		F	lowing	
	ATING		ē	SCONTINUITY ORIEN	10		7	4			0	
	e and dip											
JUIK	e and dip			Very favourable 0	Favourable -2		Fair	Unfavourable		Very Unfavour		able
р	Tunnels & mines		Foundations	0			-5	-10		-12		
ĸ	atings				-2		-7	-15		-25		
C . D.			Slopes	0 MINED FROM TOTAL F	-5		-25	-50				
Ratin		33 CI.	ASSES DETERM	100 ← 81	80 ← 61		60 ← 41	40 ← 21			- 21	
	number			1	10 - 4 06		111	40 (21 IV	_		< 21 V	
	ription			Very good rock	Good rock		Fair rock	Poor rock	-+	V Very poor rock		
_		OFR	OCK CLASSES				T un rock	TOOTICK		very		
	number		I	1	11		111	IV			v	
	age stand-	up tin	ne	20 yrs for 15 m span	1 year for 10 m s	nan I	week for 5 in span	10 hrs for 2.5 m span		30 min for 1 m spa		snan
	sion of ro			> 400	300-400		200-300	100-200		< 100		span
	_		k mass (deg)	> 45	35-45			15-25		< 15		
	<u> </u>			TION OF DISCONTINU			25-55	1.5-25			(1)	
Disco	ontinuity l	-	(persistence)	<1 m 6	1-3 m		3-10 m	10-20 m		>	20 m	
Rating Separation (aperture) Rating			None 6	4 < 0.1 mm		0.1-1.0 mm	1-5 mm		0 > 5 mm			
Roughness Rating			Very rough 6	5 Rough 5		Slightly rough	Smooth		0 Slickensided 0		1	
Infilling (gouge) Rating		None 6	Hard filling < 5 mm		lard filling > 5 mm 2	Soft filling < 5 mm		Soft filling > 5 mm		mm		
Weathering Ratings		Unweathered 6	Slightly weathered 5		oderately weathered 3	Highly weathered		Decomposed 0		1		
_		DISC	CONTINUITY ST	RIKE AND DIP ORIEN	TATION IN TUNN	ELLING	••					
			Strike perpendi	cular to tunnel axis			Strike	parallel to tunnel a	xis			
Drive with dip-Dip 45-90° Drive with d			Drive with dip-	-Dip 20-45°		Dip 45-90°		Dip 20-45°				
	Ver	y favo	ourable	Favoura	ble		Very favourable	Fair				
Drive against dip-Dip 45-90°			p-Dip 45-90°	Drive against dip	-Dip 20-45°	Dip 0-20-Irrespective of strike°						
-												

*Some conditions are mutually exclusive. For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A.4 directly.

Source: Bieniawski (1989)

Industrial Research (CSIR). The rating system was based on Bieniawski's experience in shallow tunnels in sedimentary rocks. Originally, the RMR-system involved 49 unpublished case histories. Since then the classification has undergone several significant changes. In 1974 there was a reduction of parameters from 8 to 6 and in 1975 there was an adjustment of ratings and reduction of recommended support requirements. In 1976 a modification of class boundaries took place (as a result of 64 new case histories) to even multiples of 20 and in 1979 there was an adoption of the ISRM rock mass description. The newest version of RMR is from 1989, where Bieniawski published guidelines for selecting the rock reinforcement. In that version, Bieniawski suggested that the user could interpolate the RMR-values between different classes and not just use discrete values. Therefore, it is important to state which version is used when RMR-values are quoted. Since the Hoek-Brown, Yudhbir and Sheorev rock mass criteria suggest and prefer that the 1976 version of RMR should be used. When applying this classification system, one divides the rock mass into a number of structural regions and classifies each region separately. The RMRsystem uses the following six parameters, whose ratings are added to obtain a total RMR-value.

- i. Uniaxial compressive strength of intact rock material;
- ii. Rock quality designation (RQD);
- iii. Joint or discontinuity spacing;
- iv. Joint condition;
- v. Ground water condition; and
- vi. Joint orientation.

The first five parameters (i-v) represent the basic parameters (RMRbasic) in the classification system. The sixth parameter is treated separately because the influence of discontinuity orientations depends upon engineering applications. Each of these parameters is given a rating that symbolizes the rock quality description.

Slope Mass Rating

Most of the empirical rating methods apply adjustment factors to their basic rock mass rating. These adjustment factors account for such things as defect orientation, excavation method, weathering, induced stresses and major planes of weakness. Bieniawski (1976 and 1989) applies the adjustments by subtracting them from the rock mass rating. Table 1 show that the defect orientation adjustment can dominate the RMR. If the defect orientations are deemed "very unfavourable" an adjustment of -60 is required to the basic rock mass rating. Even for defect orientations denoted as "fair" this adjustment is -25. There is no guideline as to what "very unfavourable" means. Bieniawski (1989) recommends the use of the Romana (1985) SMR corrections for slopes. Romana used the same basic rock mass rating as RMR⁸⁹ but developed new adjustment factors for joint orientation and blasting to account for the lack of guidelines in the RMR methods. The equation for SMR is shown below. The joint orientation weighting includes a factor for the difference between joint dip and slope angle, F₃. This requires an iterative approach for design.
Table 7, 8 and Table 9 show the adjustment ratings.

$$SMR = RMR + F_1F_2F_3 + F_4$$

Romana (1985) developed his factors not only for rock mass failures but also for wedge and planar failure. A rock mass rating method should not be used for these two cases as they are defect controlled and can be assessed using such measures as stereographic projection. Even if the method was applicable, the ratings for planar failure are questionable. F₂ depends on defect dip and must account for the defect shear strength. However, the method seems to assume that friction angles are quite high. For example, bedding surface shears may attain strengths of ϕ' below 12° yet these would be given a 'very favourable' rating of 0.15.

Case		Very	Favourable	Fair	Unfavourable	Very	
		Favourable				unfavourable	
Р	$\alpha_j - \alpha_s$	> 2.09	30°-20°	20°-10°	10°-5°	<5°	
Т	$\left \alpha_{j} - \alpha_{s} - 180^{\circ} \right $	>30°	30°-20°	20°-10°	10°-5°	<>>*	
P/T	$F_1 = \left(1 - \sin\left \alpha_j - \alpha_s\right \right)^2$	0.15	0.4	0.7	0.85	1.00	
Р	$ \boldsymbol{\beta}_j $	<20°	20°-30°	30°-35°	35°-45°	>45°	
Р	$F_2 = \tan^2 \beta_j$	0.15	0.4	0.7	0.85	1.00	
Т	F_2	1.00	1.00	1.00	1.00	1.00	
Р	$\boldsymbol{\beta}_j - \boldsymbol{\beta}_s$	>10°	10°-0°	0°	0°-(-10°)	< - 10°	
Т	$\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{s}$	<110°	110°-120°	>120°	-	-	
P/T	F_{3}	0	-6	-25	-50	-60	
	P - Planar failure		α_s - Slope dip d	lirection	α_j - Defect dip direction		
	T - Toppling failure		β_s - Slope dip		β_j - Defect dip		

Table 7 Adjustment rating for joints

Source: Romana (1985)

Table 8 Adjustment rating for methods of excavation of slopes

ſ	Method	Natural	Presplitting	Smooth	Blasting or	Defficient
		Slope		Blasting	Mechanical	Blasting
	F_4	+15	+10	+8	0	-8

Source: Romana (1985)

SMR	0-20	21-40	41-60	61-80	81-100
Class	V	IV	III	II	Ι
Description	Very Bad	Bad	Normal	Good	Very Good
Stability	Completely Unstable	Unstable	Partially Stable	Stable	Completely Stable
Failures	Big planar or soil like	Planar or big wedges	Some joints or many wedges	Some blocks	None
Support	Reexcavation	Important/	Systematic	Occasional	None
		Corrective			

Table 9 Tentative description of SMR classes

Source: Romana (1985)

The CSMR method (Chen, 1995) is based on the SMR method. The CSMR applies a discontinuity condition factor, λ , that describes the conditions of the controlling discontinuity on which the ratings F1, F2 and F3 are based (Table 10). This factor ranges from 0.7 to 1.0. The CSMR method also assumes that the SMR method is applicable for a slope height of 80m but must be adjusted for other slope heights, H, using the slope height factor, x. The relationship for x, based on an extensive survey and rigorous analysis of slopes in China, is shown in Figure 3. With the addition of the two new factors, the equation for CSMR is defined as:

 $CSRM = \xi RMR + \lambda F_1 F_2 F_3 + F_4$

$$\xi = 0.57 + 34.4$$
H

where, H = Slope height in metres

<u>Table 10</u> Discontinuity condition factor λ

λ	Defect Condition
1.0	Faults, long weak seams filled with clay
0.8 to 0.9	Bedding planes, large scale joints with gouges
0.7	Joints, tightly interlocked bedding planes

Source: Chen (1995)

Figure 3 Slope height, H, vs slope height factor, x Source: Chen (1995)

The CSMR has been based on the SMR and thus has similar problems. CSMR acknowledges the affect of slope height. It is the authors view that height should not be grouped with the rock mass rating (a defacto strength estimate) but should be addressed during the stability analysis where it will contribute to the stresses acting.

Cut slope

Japan Society of Engineering Geology (1992) stated that in order to design for the earthwork or tunnels, it is essential to probe ahead and to grasp geological conditions, soil and rock properties which make up the object of rock mass. But considering the complex and varied conditions of topographies and geologies in Japan, it is impossible to grasp all conditions at the stage of probing ahead. After the construction started pratically, problems which we have unexpected at the stage of probing ahead often rises. So original design, classified geological conditions strictly and designed each geological conditions minutely, often does not mean anything. For this reason, Japan Highway Public Corporation classifies familiar type of soil and geological conditions roughly, and tries to design or construct efficiently and rationally. Japan Society of Engineering Geology (1992) reported on the standard rock mass classification for the choice of cut slope gradient for earthwork design.

Bedro	ck soil	Cut Height	Gradient
Hard rock			1:0.3 - 1:0.8
Soft rock			1:0.5 - 1:1.2
Sand	Those not dense, not solid and of bad grade distribution		1:1.5 -
	Those that are dense and solid	less than 5 m	1:0.8 - 1:1.0
Sandr and I	and solid	5 - 10 m	1:1.0 - 1:1.2
Sandy soil	Those not dense, not solid	less than 5 m	1:1.0 - 1:1.2
	not solla	5 - 10 m	1:1.2 - 1:1.5
	Those that are dense	less than 10 m	1:0.8 - 1:1.0
Sandy soil mixed	and solid or of good grade distribution	10 - 15 m	1:1.0 - 1:1.2
with gravel or rock mass	Those not dense,	less than 10 m	1:1.0 - 1:1.2
	not solid or of bad grade distribution	10 - 15 m	1:1.2 - 1:1.5
Cohesive soil		0 - 10 m	1:0.8 - 1:1.2
Cohesive soil mixed		less than 5 m	1:1.0 - 1:1.2
with rock mass or cobblestone		5 - 10 m	1:1.2 - 1:1.5

Table 11 Range of standard cut slope gradients for bedrock soil

Note: 1) Silt is placed under cohesive soil. Individual consideration is given to soils not indicated in the table.

2) The gradient in the table is the gradient of a single slope not including the beam.

,

3) The indication of gradient 1:n= 1

Source: The Japan Highway Public Corporation (1992)

After construction starts, cut slope becomes weathered from surface as time goes by, and become unstable gradually. And generally speaking, natural ground is often complicated and ununiform. On this account, despite examining the cut slope stability for every individual geological condition in detail, the examination is often meaningless, regarding it as the whole road design. Generally, The Japan Highway Public Corporation (1992) adopted the value of cut slope gradient indicated in Table 11. It indicates the standard range of cut slope gradient produced by our experiences on the condition that the face of slope is protected from erosion to a certain degree.

However when engineering plane civil engineering design, it is necessary to consider the whole earthwork planning, and in filling section sometimes choosing gentle slope gradient to increase cumulative cut. In waste section, on the other hand, it is necessary to choose steep slope gradient protected stability by structure for decreasing cumulative cut to compare with standard slope gradient and many cutting. And in such places, large cut slope, slope in landslide area, or slopes with soil which may collapse, it is necessary to examine slope stability more minutely (The Japan Highway Public Corporation, 1992).

Logistic Regression

The Multiple Linear Regression Model

Multiple linear regression is in some ways a relatively straightforward extension of simple linear regression allowing for more than one independent variable. The objective of multiple regression is the same as that of simple regression; that is, we want to use the relationship between a response (dependent) variable and factor (independent) variables to predict or explain the behavior of the response variable. This chapter will illustrate the similarities and the differences between simple and multiple linear regression, as well as develop the methodology necessary to use the multiple regression model.

The multiple linear regression model is written as a straightforward extension of the simple linear model. The model is specified as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m + \varepsilon,$$

where

y is the dependent variable

 $x_i, j = 1, 2, ..., m$, represent *m* different independent variables

- β_0 is the intercept (value when all the independent variables are 0)
- $\beta_i, j = 1, 2, ..., m$, represent the corresponding *m* regression coefficients
- $\boldsymbol{\varepsilon}$ is the random error, usually assumed to be normally distributed with mean zero and variance α^2

Although the model formulation appears to be a simple generalization of the model with one independent variable, the inclusion of several independent variables creates a new concept in the interpretation of the regression coefficients. For example, if multiple regression is to be used in estimating weight gain of children, the effect of

each of the independent variables—dietary supplement, exercise, and behavior modification—depends on what is occurring with the other independent variables. In multiple regression we are interested in what happens when each variable is varied one at a time, while not changing values of any others. This is in contrast to performing several simple linear regressions, using each of these variables in turn, but where each regression ignores what may be occurring with the other variables. Therefore, in multiple regression, the coefficient attached with each independent variable should measure the average change in the response variable associated with changes in that independent variable, while all other independent variables remain fixed. This is the standard interpretation for a regression coefficient in a multiple regression model.

Multiple Logistic Regressions

The simple logistic regression model can easily be extended to two or more independent variables. Of course, the more variables, the harder it is to get multiple observations at all levels of all variables. Therefore, most logistic regressions with more than one independent variable are done using the maximum likelihood method. The extension from a single independent variable to m independent variables simply involves replacing $\beta_0 + \beta_1 x$ with $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_m x_m$ in the simple logistic regression equation given in Section 10.4. The corresponding logistic regression equation then becomes

$$\mu_{y/x} = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}$$

Making the same logit transformation as,

$$\mu_p = \log\left[\frac{\mu_{y/x}}{1 - \mu_{y/x}}\right],$$

we obtain the multiple linear regression model:

$$\mu_{p} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{m}x_{m}$$

General Information of Phuket province

The areas under study cover Phuket Island, about 900 km south of Bangkok on the west coast of peninsular Thailand. It is bound by latitudes 7° 52' 12" and 7° 57' 36" N and longitudes 9° 15' 24" and 9° 26' 48" E, encompassing an area of approximate 549 km². This includes three major districts, namely Amphoe Muang Phuket, Amphoe Thalang, and Amphoe Kathu. The mapped area covers the 1:50,000 topographic map of Changwat Phuket, sheet no 4624i, 4625ii.

The area studied covers approximately 549 km² in the Phuket Island. At least 60 percent of the area is granitic rocks of the Phuket Plutons. The ages of the granitices range from Cretaceous to Tertiary. The granites from composite plutons is elongated shape in the N-S direction. They have been divided, based upon field

observation, into 5 types: from the older to the younger as coarse-grained porphyritic biotite granites (G-1), fine-to medium-grained biotite granites (G-2), medium-to coarse-grained biotite granite slightly porphyritic (G-3), fine-to-medium-grained biotite-muscovite granites locally porphyritic (G-4), and fine-grained biotite-muscovite-tourmaline granites (G-5) (Charusiri, 1980).

The permo-Carboniferous sedimentary rocks of the Phuket Group are wholly clastic and composed mainly of mudstone, laminated mudstone, diamictite, siltstone and sandstone. The stratified rocks are slightly metamorphosed due to tectonic effects and granitic intrusions. The general strike of the Phuket Group is from N-S to NE-SW with gentle dip. Structurally, both granitic and sedimentary rocks are considered principally to be faulted, and fractured by the tectonic episode developed from late Palezoic to Tertiary and locally by igneous activities.

<u>Climate</u>

The Phuket-Island climate can be classified as tropical rainforest climate with fairly uniform high temperatures and heavy rainfall throughout the year without distinct dry-cold season. The statistics produced by the Royal Thai Meteorological Department for Phuket during 1995 to 2004 reveal that the highest and lowest temperatures are about 36.2 °C and 16.9 °C, respectively. There are at least 6 months of heavy rainfall which are predominated by southwest monsoon rather than northeast monsoon. The yearly average rainfall is about 2,379 mm. The two highest rainfall peaks develop during the periods of transitional directions of monsoons. Monthly precipitation averages for Phuket is given below:

year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTA L
1998	Т	0.0	0.0	5.0	121.1	295.7	212.0	453.4	494.3	388.6	399.6	67.3	2437.0
1999	64.2	90.5	111.0	265.4	152.1	229.8	224.3	337.9	381.6	426.3	242.1	25.1	2550.3
2000	59.1	104.4	112.7	183.9	234.0	240.9	65.3	367.7	290.5	416.9	167.9	127.7	2371.0
2001	69.2	36.2	189.9	75.9	164.1	267.9	222.1	225.8	495.3	224.6	112.6	118.8	2202.4
2002	9.1	0.0	59.2	86.8	202	223.5	201.6	239.3	361.9	223.3	178.1	114.4	1899.2
2003	13.3	0.0	147.2	72.3	92.6	230.7	356.7	393.0	352.3	658.6	112.3	36.0	2465.0
2004	21.3	2.7	10.1	51.8	195.1	338.8	350.7	266.8	173.9	387.8	127.1	66.7	1992.8
2005	1.2	3.8	8.2	84.2	311.7	158.3	72.4	138.3					773.1
1971- 2000	21.7	30.3	59.2	135.4	282.6	244.0	283.5	293.5	381.4	305.0	173.8	59.4	2269.8
		Raint	fall (mm.)) 1998-20	005 and re	eturn peri	od 30 ye	ar (1971	-2000) ("	T " = Tr	ace)		

Table 12 Rainfall (m.m.) in Muang Phuket

Source: The Meteorological Department (2006)

year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	MEAN
1998	68	67	67	68	73	80	82	83	83	85	84	79	77
1999	74	70	73	80	80	79	78	79	82	83	81	72	78
2000	73	71	75	81	79	81	77	79	80	82	79	80	78
2001	73	71	77	75	78	77	78	76	82	83	75	73	77
2002	67	64	68	73	76	78	75	76	81	81	79	77	75
2003	69	66	71	72	75	78	81	78	82	85	78	84	77
1971- 2000	69	67	68	73	79	78	79	78	81	81	78	73	75
	relative humidity (%) monthly 1998-2003 and return period 30 year (1971-2000)												

Table 13 Relative humidity (%) in Muang Phuket

Source: The Meteorological Department (2006)

year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Annual
1998	29.2	29.8	30.0	31.2	30.7	28.7	28.1	27.7	27.4	27.1	27.0	26.9	28.7
1999	27.7	28.3	28.9	28.1	28.1	27.8	28.0	27.8	27.3	27.1	27.0	26.9	27.8
2000	28.0	28.5	28.6	28.2	28.6	27.8	28.5	27.9	28.0	27.4	27.2	27.9	28.1
2001	28.1	28.6	28.3	29.7	28.9	29.1	28.4	29.3	27.4	27.5	27.8	28.5	28.5
2002	28.2	29.0	29.8	29.7	29.4	28.9	29.2	28.6	27.6	27.7	28.0	28.4	28.7
2003	28.5	29.4	29.6	29.7	29.3	28.6	27.7	28.4	27.6	26.8	28.3	27.8	28.48
2004	29.55	29.96	30.37	30.51	29.88	28.88	28.14	28.98	28.35	28.23	29.05	28.65	29.22
1961- 1990	27.9	28.7	29.3	29.5	28.4	28.3	27.8	27.9	27.3	27.4	27.5	27.6	28.1
		1	nean tem	perature	(°C) mo	nthly 199	8-2004 a	nd 30 y	ear (1961	-1990)			

<u>Table 14</u> Mean temperature (°C) in Muang Phuket

Source: The Meteorological Department (2006)

year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Annu al
1998	34.7	35.3	35.7	36.4	35.2	32.9	32.4	32.2	31.5	30.9	31.1	31.0	33.3
1999	32.3	32.9	33.6	32.3	32.4	32.1	31.9	32.0	32.0	31.3	31.6	31.5	32.2
2000	32.8	-	-	32.1	32.3	31.3	32.2	31.4	32.1	31.3	30.8	31.7	31.8
2001	31.9	32.7	32.2	33.5	32.8	32.1	32.3	32.4	31.2	31.5	31.6	32.1	32.2
2002	32.4	33.7	33.8	33.6	32.8	32.2	32.6	32.0	31.6	32.1	32.0	32.1	32.6
2003	32.7	34.3	34.3	34.1	33.0	32.6	31.5	31.9	30.9	30.2	32.3	31.6	32.45
2004	33.58	33.95	34.25	34.53	33.01	31.88	31.26	31.90	31.91	31.72	32.41	32.07	32.70
1961- 1990	31.8	32.9	33.5	33.4	32.0	31.6	31.2	31.2	30.7	30.9	31.0	31.2	31.8
	mean max. temperature (°C) monthly 1998-2004 and 30 year (1961-1990)												

<u>Table 15</u> Mean max. temperature (°C) in Muang Phuket

Source: The Meteorological Department (2006)

Table 16 Mean min. temperature	(°C) in Muang Phuket
--------------------------------	----------------------

year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Annu al
1998	25.7	26.3	26.2	27.7	27.6	25.9	25.4	25.1	24.8	24.9	24.6	24.5	25.7
1999	24.7	25.1	25.9	25.2	25.4	25.1	25.5	25.0	24.5	24.6	24.6	24.3	25.0
2000	24.9	25.0	25.4	25.4	25.9	25.2	25.7	25.4	25.2	24.9	25.0	25.1	25.3
2001	25.1	25.1	25.4	26.4	26.5	26.0	25.5	26.1	24.9	24.9	25.4	25.0	25.5
2002	25.1	25.4	26.2	26.6	26.3	26.1	26.3	26.4	25.0	24.7	25.3	25.8	25.8
2003	25.5	26.0	26.3	26.3	26.7	25.6	25.0	25.4	24.8	24.5	25.3	25.0	25.53
2004	25.75	25.97	26.49	26.49	26.74	25.87	25.02	26.06	24.79	24.73	25.69	25.22	25.74
1961- 1990	23.3	23.7	24.3	24.8	24.5	24.5	24.2	24.4	23.9	23.8	23.8	23.7	24.1
	mean min. temperature (°C) monthly 1998-2004 and 30 year (1961-1990)												

Population

The population census was carried out in 2005 and an effort was made to obtain Thumbon for Phuket province.

	MALE	FEMALE	TOTAL	HOUSE
Phuket Province	140,703	151,542	292,245	128,110
Amphur Mueang Phuket	50,088	53,473	103,561	53,671
Ко Каео	4,273	4,404	8,677	3,967
Ratsada	14,675	15,365	30,040	14,993
Vichit	17,571	19,034	36,605	18,817
Chalong	7,429	8,031	15,460	8,793
Rawai	6,140	6,639	12,779	7,101
Amphur Kathu	2,323	2,503	4,826	2,819
Kamala	2,323	2,503	4,826	2,819
Amphur Thalang	30,110	30,654	60,764	23,705
Thepkrasatri	5,719	5,727	11,446	4,038
Srisunthon	6,227	6,495	12,722	5,734
Choeng Thale	4,664	4,928	9,592	4,507
Pa Khlok	5,621	5,590	11,211	4,076
Mai Khao	5,812	5,779	11,591	3,697
Sakhu	2,067	2,135	4,202	1,653
Thepkrasatri Municipality	2,841	2,968	5,809	2,426
Thepkrasatri	2,841	2,968	5,809	2,426
Choeng Thale Municipality	1,613	1,745	3,358	1,648
Choeng Thale	1,613	1,745	3,358	1,648
Kathu Municipality	8,274	9,334	17,608	9,359
Kathu	8,274	9,334	17,608	9,359
Karon Municipality	3,107	3,283	6,390	4,779
Karon	3,107	3,283	6,390	4,779
Patong Municipality	7,784	7,937	15,721	10,020
Patong	7,784	7,937	15,721	10,020
Phuket Municipality	34,563	39,645	74,208	19,683
Talat Yai	23,919	27,045	50,964	12,424
Talat Nua	10,644	12,600	23,244	7,259

Table 17 Population Density

Source: Department of Provincial Administration (2006)

<u>Figure 4</u> Topographic map of Phuket province Source: Department of mineral resources (2006)

MATERIALS AND METHODOLOGY

Materials

- 1. Program spreadsheet (Microsoft Excel)
- 2. Book reference and thesis
- 3. Landslide location data
- 4. Soil strength parameter from parallel study
- 5. GIS program
- 6. GPS

7. Geologic investigation equipment (geology hammer, geology campus)

Methodology

This study emphasizes in producing landslide susceptibility map and landslide sensitive area for cut slope in Phuket. The study area is an island that has many development areas which satisfy for study area. This study deals with the application of relatively new tool in landslide hazard zonation: use of computerized system for handling of the geographical data, known as geographic information system (GIS). Eight factors were considered to be related to landslide including Geology (rock type, lineament), Landform (slope, elevation), Surface drainage zone, Land use, Soil characteristic, Engineering properties, Rainfall intensity and RMR or SMR. These factors are used for analyzing landslide hazard location.

The methodology adopted is illustrated on the flow diagram in figure 5. This study improved the accuracy of landslide susceptibility map by including RMR and SMR factors. The map of sensitive area for cut slope was produced by including SMR factors in the analysis which assume the cut slope on soft rock equal to 1:1.2 or 40° (Japan Society of Engineering Geology, 1992).

The methodology included the following:

- 1. Data collection (7 factors)
- 2. Weight factor analysis for landslide hazard area
- 3. Processing of landslide susceptibility and hazard map (7 factors)
- 4. Field investigation
- 5. Weighting factor analysis including RMR value
- 6. Processing landslide susceptibility and hazard map by considering RMR

value

- 7. Weighting factor analysis including SMR value
- 8. Processing natural landslide susceptibility map and hazard map by considering SMR value
 - 9. Collect slope condition data form field investigation
 - 10. Failure verification (RMR included)
- 11. Processing cut slope failure map and hazard map by considering RMR factor included
 - 12. Failure verification (SMR included)

Figure 5 Flow diagrams showing all the methodologies

13. Processing cut slope failure map and hazard map by considering SMR factor included

14. Logistic multiple regression analysis (RMR factors included)

15. Processing cut slope probability of failure map by considering RMR factor included

16. Logistic multiple regression analysis by considering SMR factor included

17. Processing cut slope probability of failure map by considering SMR factor included

Data collection

The collection of fundamental geographic information system (GIS) data was used for analysis of landslide susceptibility. The data used included geology, slope and elevation, surface drainage, soil texture, land cover, rainfall, engineering properties. Table 18 shows GIS data discussed above.

No	Coverage	Organize	Scale Map
1	Province	Topographic map: Royal Thai Survey Department	1:50,000
2	Amphoes	Topographic map: Royal Thai Survey Department	1:50,000
3	Transportation	Topographic map: Royal Thai Survey Department	1:50,000
4	Contour	Topographic map: Royal Thai Survey Department	1:50,000
5	Land used	Land Development Department	1:50,000
6	Geologic Structures	Geology map: Mineral Resource Department	1:50,000
7	Geology	Geology map: Mineral Resource Department	1:50,000
8	Elevation	Topographic map: Royal Thai Survey Department	1:50,000
9	Slope	Topographic map: Royal Thai Survey Department, GERD	1:50,000
10	Streams and rivers	Topographic map: Royal Thai Survey Department	1:50,000
11	Watershed	Environmental Quality Promotion Department	1:50,000
12	Soil series group	Land Development Department	1:50,000
13	Rainfall	Meteorological Department Of Thailand, Royal Irrigation Department, GERD	1:50,000
14	Engineering properties	GERD	1:50,000

Table 18 Data collection for the analysis of landslide sensitive area

Gerd: Geotechnical Engineering Research and Development Center, Kasetsart University.

Evaluation Natural landslide susceptibility map and hazard map

After the data collection of fundamental geographic information system (GIS) maps were complete, which consist of 8 factors map as geology map (rock type and lineament), land form (slope and elevation), surface drainage, soil characteristic, land use, rainfall cumulative intensity 3 days, engineering properties and RMR or SMR factors. These were used to divide grid cell 25x25 meters and were overlaid by using the GIS analysis functions of geoprocessing and analysis menu within ArcView GIS software. The overlay with intersection and union option has been used for GIS analysis and recorded data from all of factor maps. After that, the attributes of intersection from 8 factors was used to calculate score by weighting factor analysis.

The trend of the landslide occurrence was observed from the plotted data. Each of the grid cell had been defined 5 levels of landslide susceptibility, which consisted of very low to nil susceptibility, low susceptibility, moderate susceptibility, high susceptibility and very high susceptibility to landslide.

Field Investigation

Field investigation was used to prepare a slope condition of the cut slope. It was used to compare with susceptibility of landslide map for the cut slope. The prepared landslide distribution and bedrock map as well as other maps e.g. contour, land use, land form map will be verified during the field visit. The existing pattern of cut slope and its magnitude was observed. Eighty seven cut slopes have been surveyed and after completing the field survey, data file was input in GIS map. The study involved field investigation on the geological engineering aspects of rock slopes in Phuket Island, Thailand. Field investigation had been conducted on failure and non failure slopes in development area to understand their recent massive failures.

The methods of investigation for RMR and SMR factors follow as much as practical the methods suggested by the International Society of Rock Mechanics (ISRM, 1981). The collected data include slope geometry, joint condition and orientation, rock conditions, and groundwater condition. The results were used to evaluate rock mass quality for landslide factor on landslide susceptibility map and sensitive area map for slope development.

Rock Mass Rating (RMR) and Slope Mass Rating (SMR) Estimation

Geotechnical data could be easily collected during exploration stages of a new or existing construction project as an integrated approach with investigation data collection. Rock outcrop mapping carried out along all natural outcrops or man-made excavations such as resort projects, river and road-cuts etc. located in close proximity to the surveying site. A typical geotechnical mapping sheet for the collection of pertinent data is shown in Fig 6.

1981)
(ISRM, 1981
sheet
survey
or field sur
ns fc
cription
) des
(RMR) de
s rating (
tock mas
N N
Figure 6

					[
VALUE RATING							
VALUE							
	<1	<25	pocket knife	\otimes		4	0
	1	25	pocke	4		5	20
	2	50	single blow	9		9	30
	3	75	single	8		L	40
	4.5	110	reak	10		8	50
	5	125	nany blows by hammer to breal	11		10	09
	5.5	140	ny blows by l	12		14	02
	6.5	160	mai	13		20	08
	8	200	hipped by hammer	14		40	06
	10	250	Chipped b	15		>200	100
	PLST	UCS,Mpa	Field Est.	RATING		J Spacing	ROD %
		Intact rock	Strength				ROD
	_				-		

3	4	5
4	2	7
5	9	8
9	7	6
10	8	10
12	10	12
14	14	14
16	20	16
18	40	18
20	>200	20
RATING	Js, cm	RATING
	Joint	Spacing

	Set 1	Set 2	01
Orientation			

J Spacing												Sub-Total
	> 20m	0	5 - 10	0	Slices	0		>5mm	0	CW	0	
	10 - 20m	1	1 - 5	1	Smooth	1	Soft Infilling	<5mm	2	MH	1	
	3 - 10m	2	0.1-1.0	4	SL Rough	3	51	>5mm	3	MM	3	
	1- 3m	4	< 0.1 mm	5	Rough	5	lard infilling	<5mm	4	SW	5	
	< 1m	9	None	9	Vrough	9	F	None	9	FRESH	9	
	Persistence	RATING	Aperture	RATING	Roughness	RATING	Infilling		RATING	Weathering	RATING	
					Joint	Condition	-					

Groundwater 1/min/10m		< 10	C7 - NI	C71 - C7	<21<	
P A TING	Dry	Damp	Wet	Dripping	Flowing	
	15	10	L	4	0	
and the second s			DIP OF ADVERSE JOINT SET	INT SET		
Aujusunent tot John Ottents	auon	0 - 20	20 - 45		45 - 90	

Γ

	0 - 20	VERY POOR	5	30 minutes for 1	m span	<100 kPa	<150
45 - 90	20 - 40	POOR	4	10 hours for	2.5 m span	100-200 kPa	$15^{\circ}-25^{\circ}$
20 - 45	40 - 60	FAIR	3	1 week for 5 m	span	200-300 kPa	25°-35°
	60 - 80	GOOD	2	6 months for 8 m	span	300-400 kPa	35°-45°
0 - 20	80 - 100	VERY GOOD	1	10 years for	15 m span	> 400 kpa	> 45°
	RMR RATING	DESCRIPTION	ROCK CLASS	A viarage stand_iin fime	Average stand-up units	Cohesion of the rock mass	Friction angle of rock mass

A description of the pertinent geotechnical data to be included in a logging sheet is presented below. The minimum geotechnical information collected from the mapping of rock outcrops should comprise:

- Rock type description and alteration
- Weathering
- Discontinuity type, orientation, surface conditions, spacing and persistence
- Estimate of rock strength

Estimates of rock strength can be made based on the descriptions presented in Fig 6 and the use of either a pocket knife and/or geological hammer. An average rock strength should be selected per each identified rock type unless significant areas of rock of different strengths were presented within the natural outcrop of man-made excavation.

Photographs were taken of all natural outcrops and/or man-made excavations such as exploration audits or road cuttings in/upon which geotechnical data has been measured and recorded. Both far field and zoom photographs were taken to illustrated the variation of rock types, all joint sets, typical or important joint surfaces as well as joint spacing and persistence. Scales were always being included in each of the photographs.

During the field survey, the rock samples were colleted from each landslide and cut slope. These rock samples were identified for the rock type by geologist and were tested in the laboratory to observe the intact rock strength.

Assumption of estimating slope mass rating was the cut slope located in soft rock, slope direction parallel to slope of mountain and slope dip was 1:1.2 or 40° (Japan Society of Engineering Geology,1992).

Slope Condition data

The slope condition data was defined from field investigation data in which definition of slope conditions were a Fail and a No Fail. The Fail was the failure of the cut slope after excavation and before inspection. The No Fail was the non failure of the cut slope after excavation and during inspection.

Data verification for RMR and SMR factor

The RMR and SMR factors were defined in GIS map depending on rock type and watershed. Before and after weighting factor analysis, RMR and SMR factors were verified. The data verification for RMR and SMR rating before weighting factor analysis, had objective to classify the rang of rating and after that to classify the rang of total landslide susceptibility score. The cutoff score procedure was employed to classify each grid cell as landslide, apparently landslide, apparently non-landslide and non-landslide area. The cut of score point was defined as the boundary between a landslide, apparently landslide, apparently non-landslide and non-landslide area decision; for example a 89 cutoff score point means that the score of pixel being classified as landslide was equal to greater than 89, while the score less than 89 was classified as non-landslide.

Evaluation Sensitive Area for Cut slope

Evaluation of sensitive area and map production was divided into four steps. The first step produced landslide susceptibility map from 7 factors: geology, landform, surface drainage zone, land use and land cover, soil characteristics, rainfall intensity and engineering soil properties. And RMR factor or SMR factor was included in landslide susceptibility map. The second step produced landslide susceptibility map which depended on return period of rainfall. The third step produced sensitive area map for slope development. In assumption was 1:1.20 or 40° cut slope on soft rock. The fourth step produced probability sensitive area for slope development map from logistic regression modal. Flow chart in Fig 7 illustrates the process of evaluation of sensitive area and map production.

STEP 1 PRODUCTION LANDSLIDE SUSCEPTIBILITY MAP BY WEIGHTING METHOD

STEP 2 PRODUCTION LANDSLIDE SUSCEPTIBILITY MAP BY WEIGHTING METHOD IN RAINFALL 1, 5, 20, 50 AND 100 YEARS RETURN PERIOD

STEP 3 EVALUATING LANDSLIDE SENSITIVE AREA FOR CUT SLOPE BY WEIGHTING METHOD IN RAINFALL 1, 5, 20, 50 AND 100 YEARS RETURN PERIOD

STEP 4 EVALUATING LANDSLIDE SENSITIVE AREA FOR CUT SLOPE BY LOGISTIC REGRESSION IN RAINFALL 1, 5, 20, 50 AND 100 YEARS RETURN PERIOD

Figure 7 Evaluation sensitive areas for cut slope process

Logistic regression

Logistic regression allowed one to from a multivariate regression relation between a dependent variable and several independent variables. The advantage of the logistic regression was that, through the addition of an appropriate link function to the usual linear regression modal, the variables may be either continuous or categorical, or any combination of both types. In present situation, the dependent variable was a binary variable representing the presence or absence of landslides. Where the dependent variable was binary, the logistic link function was appropriate. The logistic regression allows one to form a multivariate regression relation between a dependent variable and several independent variables (Atkinson and Massari, 1998).

The evaluation sensitive of cut slope was developed from field survey data obtained from cut slope in Phuket. Eight independent variables used a multiple regression analysis by Microsoft excel program. The slope condition data (Fail or No Fail) was used to regression analysis for dependent parameter, which assumed of qualitative of slope condition was 2.95 and -2.95 for Fail and No Fail respectively. The assumption Fail or no Fail was the occurrence probability for specific attributes.

RESULTS AND DISCUSSION

Data Collection (7 factors)

The data collection consists of 7 factors, which were collected from several sources in GIS data form such as geology map (rock type and lineament), land form data (slope and elevation), surface drainage data, soil characteristic data, land use map, rainfall intensity data and engineering soil properties. These are illustrated in Fig 8-Fig 16 and the summation of the each factor is area shown in Table 19.

Factors	pixel	Area (km ²)	%
Rock type			
Granite rock	322,484	201.55	36.71
Shale/Mudstone	116,916	73.07	13.31
Sandstone/Siltstone	0	0.00	0.00
Quartzite, Sandstone and Siltstone	0	0.00	0.00
Limestone/Dolomite	0	0.00	0.00
Colluvial	439,017	274.39	49.98
Sum	878,417	549.01	100.00
Lineament zone			
Sum	12,459	7.79	100.00
Slope			
0	310,365	193.98	35.33
0 - 15%	580,857	363.04	66.13
15 - 30%	111,240	69.53	12.66
30 - 50%	131,575	82.23	14.98
50 - 70%	46,596	29.12	5.30
> 70%	8,149	5.09	0.93
Sum	878,417	549.01	100.00
Elevation			
0	46,195	28.87	5.26
0 - 100	686,455	429.03	78.15
100 - 200	105,822	66.14	12.05
200 - 300	53,434	33.40	6.08
300 - 400	24,564	15.35	2.80
> 400	8,142	5.09	0.93
Sum	878,417	549.01	100.00

Table 19 Plan area of 7 factors

Table 19	Plan	area	of 7	factors	(Continued)
----------	------	------	------	---------	-------------

Factors	pixel	Area (km ²)	%
Surface drainage			
Sum	33,477	20.92	100.00
Soil characteristics			
Gravel loam/Gravelly sand	1,894	1.18	0.22
Sand	20,439	12.77	2.33
Sandy loam	288,217	180.14	32.81
Clayey loam/loam	424,755	265.47	48.35
Clay, Mud	143,112	89.45	16.29
Sum	878,417	549.01	100.00
Land use			
Agriculture area	514,594	321.62	58.58
Urban and build-up area	192,923	120.58	21.96
Other deforestation	1,881	1.18	0.21
Forest area	169,019	105.64	19.24
Sum	878,417	549.01	100.00
Engineering soil properties			
Residual soil from Sandstone/Siltstone	0	0.00	0.00
Residual soil from Granite rock	322,484	201.55	36.71
Residual soil from Shale/Mudstone	116,916	73.07	13.31
Residual soil from Quartzite, Sandstone and	,		
Siltstone	0	0.00	0.00
Residual soil from Limestone/Dolomite	0	0.00	0.00
Colluvial	439,017	274.39	49.98
Sum	878,417	549.01	100.00
Rainfall cumulative intensity 3 days			
A. >203 mm.	0	0.00	0.00
B. 161-203 mm.	9,001	5.63	1.02
C. 119-161 mm.	822,385	513.99	93.62
D. 77-119 mm.	46,831	29.27	5.33
E. 35-76 mm.	0	0.00	0.00
Other	200	0.13	0.02
Sum	878,417	549.01	100.00

<u>Figure 8</u> Geology (Rock type) Source: Department of Mineral Resource (2006)

<u>Figure 9</u> Geology (Lineament zone) Source: Department of Mineral Resource (2006)

<u>Figure 10</u> Landform (Slope) Primary data: Royal Thai Survey Department (2006)

<u>Figure 11</u> Landform (Elevation) Primary data: Royal Thai Survey Department (2006)

<u>Figure 12</u> Surface drainage Primary data: Royal Thai Survey Department (2006)

<u>Figure 13</u> Land use and land cover Primary data: Department of Land Development (2006)

<u>Figure 14</u> Soil characteristics Primary data: Department of Land Development (2006)

<u>Figure 15</u> Rainfall intensity Primary data: Meteorological Department of Thailand, Royal Irrigation Department (2006)

<u>Figure 16</u> Engineering soil properties Source: Geotechnical Engineering Research and Development Center (2006)

Weighting Factor Analysis for Landslide Hazard Area

This research is part of the project owned by Department of Mineral Resources and studied by Geotechnical Engineering Research and Development Center, Kasetsart University. Weighting factor method was selected to analyze hazard area. The appropriate weight was assigned to landslide influencing factors by expert opinion. Each of influencing factor was subdivided into subclasses of minor factors and given score number. Each minor factor was assigned score ranging from 1 to 5 according to their increasing in landslide potential. The weighing factor method is appropriate for analyzing the GIS data which gives the result in terms of area based. More accurate result but not appropriate for area-based analysis may be done by geotechnical engineering method.

Major factors used for landslide susceptibility analysis by weighing factor method were

- 1. Geology (Rock type and Lineament zone)
- 2. Landform (Slope and Elevation)
- 3. Surface drainage zone
- 4. Land use and land cover
- 5. Soil characteristics
- 6. Rainfall intensity
- 7. Engineering soil properties

The detailed descriptions of different rating values of each parameter and subparameters as well as the weight value are summarized below.

1. Geology (Rock type and lineament zone)

Rock type is one of the main factors for landslide hazard analysis. Each rock type has different mechanism for landslide. Table 21 shows rock group and is dominate rock in the region. Based on rock group in 6 provinces in southern part of Thailand, rock type can be classified by its landslide potential (Table20).

Table 20 Landslide potential classification of rock type

Rock Type	Landslide Potential Class
Granite Rock	Very high potential
Shale/Mudstone	High potential
Sandstone/Siltstone	Medium potential
Quartzite, Sandstone and Siltstone	Low potential
Limestone/Dolomite	Very low potential

Potential landslide level	Satun	Phangnga	Krabi	Trang	Ranong	Phuket	Rock type
Very high	Kgr,Tr Jgr, Trgr	Kgr,Tgr, Jgr	Kgr	Trgr	Jgr,Trgr, Kgr	Kgr	Granite Rock
High	Cb,Ck, SD(C)	EP,CP	CP,Tr	CP,SD (C)	СР	СР	Shale/ Mudstone
Medium	E, SD	JK,DC	Mz,JK,T rJ, T	(S)DC ,JK,T, TrJ	SD		Sandstone/S iltstone
Low	С			С	С		Quartzite, Sandstone and Siltstone
Very low	O,P	Р	Р	Tr,O,P	Р		Limestone/ Dolomite

<u>Table 21</u> Potential landslide level of rock series in 6 provinces (By rock type)

Note: Tr trang - Dolomite mixed Shale and Gravel stone Tr Krabi –Shale mixed Clay stone and Siltstone

Source: Department of mineral resource (2006)

Lineament zone means fault, fracture and joint. Earth movements involve plastic folding and brittle fracture of rocks, as well as uplift and subsidence. These are tectonic features, caused by large scale movements of crustal plates. Under the high confining pressures at kilometers of depth, and over the long time scales of tectonic processes, most rock may show the plastic deformation, and fractures occur when and where the plastic limits are exceeded. Groundwater is attracted to a fault zone due to the greater conductivity of the fractured and loosened rock to be found in the fault zone. Faults can act as conduits for flow of water, which explains why rocks adjacent to them are often found to be hydro thermally altered. Replacement of original minerals by clays, zeolites, and silica or calcite, as well as precipitation of these minerals in void spaces, grossly changes the character of the rocks near the fault zones, as a result of which stability problems would ensue (Lee. 1995). Influencing of lineament zone is buffered 20 meters from center of lineament line (Thassanapak, 2001). Table 22 Landslide potential classification of lineament zone

Lineament Zone	Landslide Potential Class
Area inside lineament zone	Very high potential
Area outside lineament zone	Very low potential

2. Landform (Slope and elevation)

Slope is an important factor for landslide susceptibility. Therefore landform or geomorphic is various hill slope characteristics including the relief, steepness of slope, shape of the land surface, slope orientation and aspects, etc. However, only slope gradient and elevation are taken into consideration under the present study due to many limitations.

Table 23 Landslide potential classification of slope

Slope	Landslide Potential Class
Slope > 70%	Very high potential
Slope 50 – 70 %	High potential
Slope 30 – 50 %	Medium potential
Slope 15 – 30 %	Low potential
Slope 0 – 15 %	Very low potential

Elevation is landslide susceptibility factor. Pantanahiran (1994) reported that most of the landslide areas are located between elevation 400-600 meters on Phipun and Kririwong Nakronsrithammarat. Hathaitip (2004) divided elevation in Phuket for landslide hazard analysis as follows:

Table 24 Landslide potential classification of elevation

Elevation	Landslide Potential Class
Elevation > 401 meters	Very high potential
Elevation 301 - 400 meters	High potential
Elevation 201 - 300 meters	Medium potential
Elevation 101 - 200 meters	Low potential
Elevation 0 - 100 meters	Very low potential

3. Surface drainage zone

Surface drainage zone was considered by buffering 10 meters from center of river (Thassanapak, 2001). Groundwater or stream affects the stability of slopes by generating pore pressures, both positive and negative, which alter stress conditions, changing the bulk density of the material forming the slope, developing both internal and external erosions, changing the mineral constituents of the materials forming the slopes (Lee, 1995).

Table 25 Landslide potential classification of surface drainage zone

Surface Drainage Zone	Landslide Potential Class
Area inside Surface drainage zone	High potential
Area outside Surface drainage zone	Very low potential

4. Land used and land cover

Effect of vegetation on slope stability held reduction energy from rainfall. Root of large tree held slope stable. Other deforestation, urban area and agriculture area was cause of slope failure.

Table 26 Landslide potential classification of land used

Land Used	Landslide Potential Class
Agriculture area	High potential
Urban and built-up area	Medium potential
Other deforestation	Low potential
Forest area	Very low potential

5. Soil characteristic

Texture of soil refers to its surface appearance. Soil texture is influenced by the size of the individual particles present in it, divided into gravel, sand, silt, and clay. This study uses soil agricultures group to correlate with drainage (Department of Land Development, 2001).

Table 27 Landslide potential classification of soil characteristic

Soil Characteristic	Landslide Potential Class
Gravel loam/Gravelly sand	Very high potential
Sand	High potential
Sandy loam	Medium potential
Clayey loam/loam	Low potential
Clay, Mud	Very low potential

Table 28 Soil group (Department of Land Development, 2001)

Group	Soil characteristics	drainage	Landform (%Slope)
1	Clayey and mud	Poor	Flat (<1%)
2	Clayey and mud	Poor	Flat (<1%)
3	Clayey and mud	Poor	Flat (<1%)
4	Clayey and mud	Poor	Flat (<1%)

Group	Soil characteristics	drainage	Landform (%Slope)
5	Clayey and mud	Very poor	Flat (<1%)
6	Clayey and mud	Very poor	Flat (<2%)
8	Clayey and mud	Very poor	Flat (<1%)
9	Clayey and mud	Very poor	Coastal (<1%)
10	Clayey and mud	Very poor	Coastal (<1%)
11	Clayey and mud	Very poor	Coastal or Flat (<1%)
12	Clayey and mud	Very poor	Coastal to Flat (<1%)
13	Clayey and mud	Very poor	Coastal (<1%)
14	Clayey and mud	Very poor	Coastal (<1%)
15	Clayey loam and loam	Poor	Flat (<2%)
16	Sandy loam	Good	Flat (<2%)
17	Sandy loam	Poor	Flat (<2%)
18	Sandy loam	Very poor	Flat (<2%)
19	Sandy loam	Poor	Flat (<2%)
20	Sandy loam	Very poor	Flat (<2%)
21	Sandy loam	Fair to poor	River bank or Flat (<1%)
22	Sandy loam	Poor	Flat (<2%)
23	Sand	Very poor	Beach (<2%)
24	Sand	Fair to poor	Flat (<2%)
25	Gravel and gravelly loam	Poor	Flat (<2%)
26	Clayey loam and loam	Good	Plateau to Hill (2-35%)
27	Clayey loam and loam	Good	Plateau to Hill (2-20%)
28	Clayey and mud	Good	Plateau to Flat (<2%)
29	Clayey and mud	Good	Plateau to Hill (2-35%)
30	Clayey and mud	Good	Hill or Mountain (20-50%)
31	Clayey and mud	Fair	Plateau to Hill (2-20%)
32	Clayey loam and loam	Good	Plateau to Hillside (1-12%)

Table Soil group (Department of Land Development, 2001) (Continued)

Group	Soil characteristics	drainage	Landform (%Slope)
33	Sandy loam	Fair	Plateau to Hillside (1-12%)
34	Clayey loam and loam	Fair	Plateau to Steep Slope (2-20%)
35	Sandy loam	Fair	Plateau to Steep Slope (2-20%)
36	Clayey loam and loam	Good	Plateau to Steep Slope (2-20%)
37	Sandy loam	Fair	Plateau to Flat Slope (2-5%)
38	Sandy loam	Good	Plateau to Flat Slope (<2%)
39	Sandy loam	Good	Plateau to Steep Slope (2-20%)
40	Sandy loam	Good	Plateau to Steep Slope (2-20%)
41	Sand	Fair	Plateau to Flat Slope (1-12%)
42	Sand	Fair	Flat to Highland (1-5%)
43	Sand	Very Good	Beach or sand rise (1-5%) Some Hillside
44	Sand	Very Good	Highland to Hillside (2-20%)
45	Gravel and gravelly loam	Good	Highland to Hillside (2-20%)
46	Gravel and gravelly loam	Good	Highland to Steep Slope (2-12%)
47	Clayey loam and loam	Good	Highland to Hillside (5-34%)
48	Sandy loam	Good	Highland to Hillside (12-35%)
49	Sand	Fair	Highland to Flat Slope (2-12%)
50	Gravel and gravelly loam	Good	High land to Hill side (12-35%)
51	Gravel and gravelly loam	Good	Highland to Hillside (12-35%)
52	Clayey loam and loam	Good	Highland to Hillside (2-20%)

Table 28 Soil group (Department of Land Development, 2001) (Continued)
Group	Soil characteristics	drainage	Landform (%Slope)
53	Clayey loam and loam	Good	Plateau to Hillside (2-20%)
54	Clayey and mud	Fair	High land to Steep Slope (5-19%)
55	Clayey and mud	Fair	High land to Flat Slope (1-12%)
56	Clayey loam and loam	Good	Plateau to Hillside (5-34%)
57	Clayey and mud	Very poor	Flat (<1%)
58	Clayey and mud	Very poor	Flat (<1%)
59	Clayey and mud	Very poor	Flat in valley (<2%)
60	Sandy loam	Good	Highland to Flat Slope (1-12%)
61	Slope complex		Highland to Steep Slope (5-19%)
62	Slope complex		Steep Slope (>35%)

Table 29 Soil group (Department of Land Development, 2001) (Continued)

6. Rainfall intensity

The magnitude, intensity, and duration of storm all play role in determination whether a hill slope will fail. Excessive rainfall weakens earth materials by displacing air and increasing the pore water pressure along shear surface. This study used two kinds of rainfall intensity which are 3 days cumulative of 1 year return period rainfall and 3 days cumulative of 1, 5, 20, 50, 100 years return period rainfall.

<u>Table 29</u> Landslide potential classification of rainfall intensity (3 days cumulative rainfall for 1 year return period)

Rainfall Intensity	Landslide Potential Class
Rainfall intensity > 203 mm.	Very high potential
Rainfall intensity 161 - 203 mm.	High potential
Rainfall intensity 119 - 161 mm.	Medium potential
Rainfall intensity 77 - 119 mm.	Low potential
Rainfall intensity 35 – 77 mm.	Very low potential

<u>Table 30</u>	Landslide potential classification of rainfall intensity (3 days cumulat	ive
	rainfall for 1, 5, 20, 50, 100 years return period)	

Rainfall Intensity	Landslide Potential Class
Rainfall intensity > 857 mm.	Very high potential
Rainfall intensity 651.5 - 857 mm.	High potential
Rainfall intensity 446 – 651.5 mm.	Medium potential
Rainfall intensity 240.5 - 446 mm.	Low potential
Rainfall intensity 35 – 240.5 mm.	Very low potential

7. Engineering soil properties

Landside susceptibility factor from engineering soil properties was studied by using index of unstable soil. Appendix table 3 - 4 show a laboratory test of soil and weathered rock consisting of Undisturbed, Disturbed and Pocket Penetrometer Test. These were parallel study results which were used for divided landslide potential levels. The soil engineering properties were classified in term of parent rocks or residual soil. The engineering soil properties were different from rock type parameter. Residual soil from sandstone/siltstone has strength reduction when considered at natural water content with saturated condition more than residual soil from granite rock (Appendix table 4). But it was different from soil characteristics because the engineering soil properties were soil engineering and soil characteristics and soil textures in which primary data were collected from agricultural soil.

Table 31 Landslide potential classification of engineering soil properties

Engineering Soil Properties	Landslide Potential Class
Residual soil form Sandstone/Siltstone	Very high potential
Residual soil form Granite Rock	High potential
Residual soil form Shale/Mudstone	Medium potential
Residual soil form Quartzite,	Low potential
Sandstone and Siltstone	
Residual soil form Limestone/Dolomite	Very low potential

The 7 related factors were used for landslide hazard analysis by weighing factor method. The assigned weight system to parameters influencing the landslide in Phuket are summarized and presented in Table 32. Table 33 shows the landslide potential and the range of a total score for all return periods of rainfall.

	Weight Value		Rating Value		
Parameter	Parameter	Sub- parameter	Description		Rating (1-5)
1. Geology 1.1 Rock Type	5	3	A. Granite Rock B. Shale/Mudstone C. Sandstone/Siltstone D. Quartzite, Sandstone and Siltstone E. Limestone/Dolomite		5 4 3 2 1
1.2 Lineament zone		2	A. Area inside line B. Area outside lir		5 1
2. Landform 2.1 Slope (%)	4	3	A. >70% B. 50-70% C. 30-50% D. 15-30%		5 4 3 2 1
2.2 Elevation (meter)		1	E. 0-15% A. >400 m B. 300-400 m C. 200-300 m D. 100-200 m E. 0-100 m		5 4 3 2 1
3. Surface drainage	2		A. Area inside surface drainagezoneB. Area outside surface drainagezone		4
4. Soil characteristics	2		A. Gravel loam/Gravelly sand B. Sand C. Sandy loam D. Clayey loam/loam		5 4 3 2 1
5. Land use and land cover	3		E. Clay, Mud A. Agriculture area B. Urban and built-up area C. Other deforestation D. Forest area		4 3 2 1
6. Rainfall intensity	5		Return period 1 year A. >203 mm. B. 161-203 mm. C. 119-161 mm. D. 77-119 mm. E. 35-77 mm.	Return period 1,5,20,50,100 years >857 mm. 651-827 mm. 446-651 mm. 240-446 mm. 35-240 mm.	5 4 3 2 1
7. Engineering soil properties (in term of parent rocks)	4		 A. Weathered Sandstone/ Siltstone B. Weathered Granite Rock C. Weathered Shale/Mudstone D. Weathered Quartzite, Sandstone and Siltstone E. Weathered Limestone/ Dolomite 		5 4 3 2 1

<u>Table 32</u> The numerical weight assignment to the parameters influencing the landslide potential in Phuket

<u>Table 33</u> The landslide potential and the range of total score for all return periods of rainfall

Landslide Susceptibility Classes	Range of Score
Very high susceptibility to landslide	101-120
High susceptibility to landslide	82-101
Moderate susceptibility to landslide	63-82
Low susceptibility to landslide	44-63
Very low to nil susceptibility to landslide	25-44

Processing of landslide susceptibility and hazard map (7 factors)

In determining the numerical rating of altogether 7 parameters/sub-parameters responding to the landslide in Phuket, an area of 25x25 square meters grid cell has been employed for the analysis by GIS program. After that, the weight-rating values of each parameter/sub-parameters or each derivative map will be determined in each square grid cell. Finally, the scores of weight-rating in each 25x25 square meters grid cell will be obtained from the summation of weight-rating values of each derivative map. These means that the overall areas of Phuket are subdivided into a small 25x25 square grid cell. The landslide susceptibility factors are shown in Fig 8- Fig 16. Landslides susceptibility analysis was produced from difference factor for comparison of each map in Fig 17.

The results of processing of landslide susceptibility map considered by weighting factor analysis are shown in Fig 18. Plan area was classified by landslide susceptibility class shown in Table 34 and Fig 19.

Fig 20 – Fig 24 shows the results of processing of landslide hazard map considered by weighting factor analysis in terms of probability of return period of rainfall. Scores were classified by half of range between 25 to 120 which was 73 score. Fig 25 shows landslide hazard map in Phuket using 1, 5, 20, 50 and 100 years return period of rainfall considering 7 related factors. Predicted landslide hazard area for 5 return periods of rainfall considering 7 related factors is shown in Table 35 and Fig 26. The plan area of landslide hazard was 4.14%, 7.68%, 14.15%, 16.29% and 18.59% for 1, 5, 20, 50 and 100 years return period of rainfall respectively in which the plan area of landslide hazard for 1 year return period overlap with plan area of landslide hazard for 5, 20, 50 and 100 years return period.

<u>Figure 17</u> GIS layers of considered factors Source: Department of mineral resource (2006)

Figure 18 Landslide susceptibility map by weighting factor method considered 7 related factors

Score	Landslide Potentials Classes	pixel	Area (km ²)	%
101-120	Very high potential	1	0.00	0.00
82-101	High potential	49,234	30.77	5.60
63-82	Moderate potential	353,056	220.66	40.19
44-63	Low potential	101,342	63.34	11.54
25-44	Very low to nil potential	374,784	234.24	42.67
	Sum	878,417	549	100.00

Table 34 Predicted landslide susceptibility area considering 7 related factors

Figure 19 Predicted landslide susceptibility area considering 7 related factors

Figure 20 Landslide hazard map considering 1 year return period of rainfall

Figure 21 Landslide hazard map considering 5 years return period of rainfall

Figure 22 Landslide hazard map considering 20 years return period of rainfall

Figure 23 Landslide hazard map considering 50 years return period of rainfall

Figure 24 Landslide hazard map considering 100 years return period of rainfall

<u>Figure 25</u> Landslide hazard map in Phuket using 1, 5, 20, 50 and 100 years return period of rainfall considered 7 related factors

Return period of rainfall year	Landslide classify	pixel	Area (km ²)	%
1	Fail	36,329	22.71	4.14
	No fail	842,088	526.31	95.86
5	Fail	67,480	42.18	7.68
	No fail	810,937	506.84	92.32
20	Fail	124,302	77.69	14.15
	No fail	754,115	471.32	85.85
50	Fail	143,130	89.46	16.29
	No fail	735,287	459.55	83.71
100	Fail	163,268	102.04	18.59
	No fail	715,149	446.97	81.41

<u>Table 35</u> Predicted landslide hazard area for 5 return periods of rainfall considering 7 related factors

<u>Figure 26</u> Predicted landslide hazard area for 5 return periods of rainfall considering 7 related factors

	Landslide	Landslide	
Landslide Potentials Classes	susceptibility map	hazard map	
	(%)	(%)	
Very high	0.00	4.14	
High	5.60	7.68	
Moderate	40.19	14.15	
Low	11.54	16.29	
Very low	42.67	18.59	
Sum	100.00		

<u>Table 36</u> Comparison of landslide potential area and landslide hazard area considering 7 related factors

The comparison of predicted landslide susceptibility and landslide hazard area considered 7 related factors shows in Table 36 which was evaluated by same weighting factor method but the results were different. When considered annual probability in case of landslide susceptibility has no area in very high landslide potentials classes but landslide hazard has area in very high landslide potentials classes, the landslide potentials classes of landslide susceptibility mean in annual probability but landslide hazard mean 1.0, 0.2, 0.05, 0.02 and 0.01 annual probability for 1, 5, 20, 50 and 100 years return period of rainfall respectively.

Field Investigation

The physiographic setting of Phuket Island is underlying mostly the granitic mountain range approximately 40 percent of the total area, especially the western side of the island. The highest elevation of the hillslope are 541 m MSL at Khao Khun Wa and 515 m MSL at Khao Mai Tao Sip Song on the western part of the area and slope steepness more than 30 degrees (Thassanapak, 2001). Inventory map was produce by field investigation. Fig 27 shows field survey location in Phuket. Field survey consisted of 87 points, which are located in watershed map (Table 37 and Appendix table 1).

Most of field investigation was cut slope for development which had a little bit natural landslide. There are numerous failure slope developments in weathered granite which have caused damage to adjacent building (Fig 28). There are numerous road cuts across these granite hill slopes (Fig 29 and Fig 30). Hillside cuts required for highway construction often destabilize slope gradient of the hill slope. Most of these failures tend to be earth flow or earth slump (Fig 31). The slope failure revealed that the earth materials were the weathered granitic rock (Fig 32). An attempt to remedy and control these failures is seen along Highway no. 4233, especially the route between Kamala beach and Patong beach and along the distance from Patong beach to Karon beach (Fig 33). And cut slope for residential or commercial building is very close; some cases show failure (Fig 35), some cases still did not (Fig 34) depending on degree of weathering rock.

Note: PKxx is field survey location

<u>Figure 27</u> Location of field investigation Source: Department of mineral resource (2006)

Figure 28Station PK32 cut slope for borrow area in Patong Kathu, N 870435 E421425. The rock is granite (G2). Rock slump failure mode.

Figure 29 Station PK85 cut slope for highway construction number 0402 in Ratsada Muang, N 876928 E 430877. The rock is granite (G4). The slope is still stable.

Figure 30Station PK38 cut slope for road along Ao Na Khale in Kamala Kathu
(Khao Pak Bang), N 876700 E 419075. The rock is granite (G2). The slope
failed by soil.

Figure 31 Station PK39 cut slope for road along Ao Na Khale in Kamala Kathu (Khao Pak Bang), N 876570 E 419110. The rock is granite (G2). The slope failed by soil.

Figure 32Station PK40 cut slope for road along Ao Na Khale in Kamala Kathu
(Khao Pak Bang), N 876360 E 419400. The rock is granite (G4). The slope
failed by soil.

Figure 33 Station PK20 cut slope for highway construction number 4233 between Kamala-Patong beach, N878200 E420400. The rock is granite (G2). Conventional rotation failure.

Figure 34Station PK09 cut slope for highway construction number 0402 in RatsadaMuang, N 875000 E 430200. The rock is granite (G4). The slope is still
stable.

Figure 35Station PK35 cut slope for housing construction between road number4233 and 4028 in Karon Muang, N 863850 E 423400. The rock is granite(G2). The slope failed by soil.

Watershed Analysis

Result from field investigation evaluated by 24 watersheds. This study surveyed only 14 watersheds in Table 37 and Fig 36-37. Field surveys emphasized to collected fail or no fail of cut slope but in table natural landslide were included.

No.	Watershed	Area (km ²)	No. Observation	FAIL	NO FAIL
1	AO KUNG BASIN	21.57			
2	AO PO BASIN	31.58			
3	CHALONG BASIN	43.44	1	-	1
4	CHAT CHAI BASIN	28.81			
5	KAMALA BASIN	18.05	17	15	2
6	KARON BASIN	9.27	1	-	1
7	KATA BASIN	4.68	1	1	-
8	KATA NOI BASIN	2.20	1	1	-
9	KHAO KHAT BASIN	3.03			
10	KHOCHAO BASIN	1.31			
11	LAEM KHAEK BASIN	1.97	3	2	1
12	LAEM NGA BASIN	11.73	6	4	2
13	LEAM MAI NGANG BASIN	1.58			
14	LEAM YANG BASIN	4.42			
15	MUANG BASIN	90.13	21	2	19
16	MUM NAI BASIN	1.06			
17	MUM NOK BASIN	5.73			
18	NA KHALE BASIN	3.89	1	1	-
19	PATONG BASIN	18.85	20	11	9
20	RAWAI BASIN	6.94			
21	SAPAM BASIN	64.68	2	-	2
22	THA MAPHRAO BASIN	40.74	1	-	1
23	THALANG BASIN	85.41	6	1	5
24	THUNG NUNG BASIN	17.40	6	1	5
25	SMALL ISLANDS	23.24			
	SUMMATION	541.71	87	39	48

Table 37 Field investigation in 14 watersheds

<u>Figure 36</u> Watershed and surface water resources in Phuket Source: Department of Environmental Quality Promotion (2004)

Figure 37 Field survey locations, cut slope condition

Weight Factor Analysis Including RMR Value

Table 38 and Appendix table 1 show RMR rating estimation from field investigation data. Table 39 shows average rock mass rating classified by rock type.

	Parameter		In Field+Lab					
NO.		kalim	DTAC	sire'	patong 50 yrs	gabion 2		
1	point-load	2.46 MPa	2.94 Mpa	-	7.92 Mpa	1.19 Mpa		
2	RQD	73.47%	69%	0%	87%	20%		
3	spacing of discontinuities	200-300 mm	300-600 mm	100 mm	200-600 mm	200-300 mm		
4	condition of discontinuities							
	4.1 discontinuities length	> 20 m	> 20 m	> 20 m	> 20 m	> 20 m		
	4.2 separation	1-2 mm	1-2 mm	< 1 mm	0.1-1 mm	1-3 mm		
	4.3 roughness	Slightly rough	Slightly rough	Smoooth	Rough	Slightly rough		
	4.4 infilling	Soft < 5 mm	Soft < 5 mm	Soft < 5 mm	None	Soft < 5 mm		
	4.5 weathering	highly weathered	Moderately weathered	highly weathered	highly weathered	highly weathered		
5	general condition	Damp	Damp	Damp	Damp	Damp		
В	slope	Fair	Fair	Unfavourable	Fair	Very Unfavourable		

<u>Table 38</u> Field investigation data for RMR rating

Table 39 Average rock mass rating classified by rock type

Rock type	BASIN	Number	Avg. RMR
СР	CHALONG BASIN	1	55.00
	LAEM NGA BASIN	4	47.50
	MUANG BASIN	9	51.00
G2	KAMALA BASIN	14	35.50
	KARON BASIN	1	60.00
	KATA BASIN	1	47.00
	KATA NOI BASIN	1	32.00
	MUANG BASIN	4	60.75
	PATONG BASIN	13	46.07
	THA MAPHRAO BASIN	1	60.00
	THALANG BASIN	2	54.00
	THUNG NUNG BASIN	2	56.00
G3	THUNG NUNG BASIN	3	47.00
	THALANG BASIN	3	57.00
G4	LAEM KHAEK BASIN	3	34.67
	MUANG BASIN	5	59.80
	NA KHALE BASIN	1	45.00
	PATONG BASIN	6	42.33
	SAPAM BASIN	2	64.50

Fig 38 shows relationship between failure of cut slope and RMR value. Fig 39 shows relationship between non-failure of cut slope and RMR value.

Figure 38 Graph relationships between cut slope failures and RMR rating

Figure 39 Graph relationships between cut slope non failures and RMR rating

Fig 40 shows normal distribution curve RMR value classified by slope condition. Fig 41 shows cumulative frequency of RMR value classified by slope condition. Fig 42 shows landslide potential classified by RMR value. These could assign the numerical weight for the RMR factor influencing the landslide in Phuket (Table 40).

Figure 40 Normal distribution curve RMR value classified by slope condition

Figure 41 Cumulative frequency of RMR value classified by slope condition

Figure 42 Landslide potential classified by RMR value

<u>Table 40</u> The numerical weight assignment to the RMR factor influencing the landslide in Phuket.

	Weight Value		Rating Value		
Parameter	Parameter	Sub- parameter	Description	Landslide potential	Rating
RMR	5		A. 0 - 19	F	4
			B. 19 - 46	AF	3
			C. 46 - 77	ANF	2
			D. 77 - 100	NF	1

<u>Processing Landslide Susceptibility and Hazard Map by Considering RMR</u> <u>Value</u>

In this section, the processing of landslide susceptibility map determined the numerical rating of 7 related factors and RMR factor following weighting factor method (Table 40). The weight-rating values of each parameter determined in each 25x25 square meters grid cell, in which the summation of weight-rating values were classified range of score by landslide susceptibility classes (Table 33). The result are shown in Fig 43. Table 41 and Fig 44 show area of landslide classes considered by 7 related factors and RMR factor included.

This study performed comparison of landslide susceptibility map between RMR factor determination and non RMR factor determination in 1 year return period of rainfall intensity. The engineering soil properties factor and RMR factor were determined for landslide susceptibility factor because they are new factor in weighing factor method. Comparison of landslide susceptibility map between RMR factor determination and non RMR factor determination in 1 year return period of rainfall intensity is shown in Fig 45. The landslide susceptibility map for non RMR factor determination has higher landslide susceptibility in flat area than the landslide susceptibility map for engineering soil properties factor and RMR factor determination. Fig 46 shows comparison of landslide classes between considered by 7 related factors and considered by including 7 related factors and RMR factor which show the result of landslide high potential class in case RMR factor included had more area than no RMR factor included. So, the RMR factor was important factor to determine landslide susceptibility map.

Fig 47 (a) to (e) shows the results of processing of landslide hazard map considered by weighting factor analysis in term probability of return period of rainfall. Scores were classified by half of range between 25 to 120 which was 73 score. Fig 48 shows landslide hazard map in Phuket using 1, 5, 20, 50 and 100 years return period of rainfall considered 7 related factors and RMR factor included. Predicted landslide hazard area for 5 return periods of rainfall considered 7 related factors and RMR factor as shown in Table 41 and Fig 44. The plan area of landslide hazard was 2.20%, 4.79%, 10.01%, 11.10% and 13.30% for 1, 5, 20, 50 and 100 years return period of rainfall respectively in which the plan area of landslide hazard for 1 year return period overlap with plan area of landslide hazard for 5, 20, 50 and 100 year return period.

<u>Figure 43</u> Landslide susceptibility map by considering 7 related factors and RMR factor

Score	Landslide Susceptibility Classes	pixel	Area (km ²)	%
101-120	Very high potential	0	0.00	0.00
82-101	High potential	19,330	12.08	2.20
63-82	Moderate potential	374,654	234.16	42.65
44-63	Low potential	46,554	29.10	5.30
25-44	Very low potential	437,879	273.67	49.85
	Sum	878,417	549	100.00

Table 41 Area of landslide classes considered by including 7 related factors and RMR factor

Figure 44 Area of landslide classes considered by including 7 related factors and RMR factor

(a) 7 factors

(b) 7 factors and RMR factor

Figure 45 Comparison between the landslide susceptibility map by considering 7 related factors and considered by including 7 related factors and RMR factor

<u>Figure 46</u> Comparison of landslide classes between considered by 7 related factors and considered by including 7 related factors and RMR factor

<u>Figure 47</u> The landslide hazard map in Phuket shown by rainfall intensity return period of 1, 5, 20, 50 and 100 years respectively (RMR factor Included)

Figure 48The landslide hazard map in Phuket by rainfall intensity return period of 1,5, 20, 50 and 100 years respectively (RMR factor Included)

Return period of rainfall	Landslide classify	pixel	Area (km ²)	%
001	Fail	19,330	12.08	2.20
	No fail	859,087	536.93	97.80
005	Fail	42,094	26.31	4.79
	No fail	836,323	522.70	95.21
020	Fail	87,949	54.97	10.01
	No fail	790,468	494.04	89.99
050	Fail	97,544	60.97	11.10
	No fail	780,873	488.05	88.90
100	Fail	116,870	73.04	13.30
	No fail	761,547	475.97	86.70

Table 42 Predicted landslide hazard area for 5 return periods of rainfall including 7 related factors and RMR factor

Figure 49 Predicted landslide hazard area for 5 return periods of rainfall including 7 related factors and RMR factor

<u>Figure 50</u> Comparison between the landslide hazard map by considering 7 related factors and considered by including 7 related factors and RMR factor

Figure 51 Comparison of landslide hazard between considered by 7 related factors and considered by including 7 related factors and RMR factor
Weighting Factor Analysis Including SMR Value

Appendix table 2 shows SMR rating estimation from field investigation data. Table 43 shows example of SMR estimation from field investigation. Table 44 shows average slope mass rating classified by rock type and watershed.

	Direction	Dip	F1	F2	F3	F4	RMR	SMR
Slope	278	40						
Bedding	324	40	0.15	0.85	-25	0	27	23.81
J1	183	88	0.15	1	0	0	27	27.00
J2	73	69	0.15	1	0	0	27	27.00
J3	26	45	0.15	1	-6	0	27	26.10
J4	130	64	0.15	1	0	0	27	27.00
J5	215	18	0.15	0.15	-60	0	27	25.65

Table 43 Example of SMR estimation PK06

Table 44 Average slope mass rating classified by rock type

Rock type	BASIN	Number	Avg. SMR
СР	CHALONG BASIN	1	25.25
	LAEM NGA BASIN	4	40.06
	MUANG BASIN	9	50.75
G2	KAMALA BASIN	14	33.88
	KARON BASIN	1	60.00
	KATA BASIN	1	47.00
	KATA NOI BASIN	1	32.00
	MUANG BASIN	4	60.52
	PATONG BASIN	13	45.55
	THA MAPHRAO BASIN	1	59.10
	THALANG BASIN	2	54.00
	THUNG NUNG BASIN	2	56.00
G3	THUNG NUNG BASIN	3	47.00
	THALANG BASIN	3	57.00
G4	LAEM KHAEK BASIN	3	32.54
	MUANG BASIN	5	57.16
	NA KHALE BASIN	1	26.94
	PATONG BASIN	6	41.43
	SAPAM BASIN	2	60.90

Fig 52 shows relationship between failure of cut slope and SMR value. Fig 53 shows relationship between non-failure of cut slope and SMR value.

Figure 52 Graph relationships between cut slope failures and SMR rating

Figure 53 Graph relationships between cut slope non failures and SMR rating

Fig 54 shows normal distribution curve SMR value classified by slope condition. Fig 55 shows cumulative frequency of SMR value classified by slope condition. Fig 56 shows landslide potential classified by SMR value. These could assign the numerical weight for the SMR factor influencing the landslide in Phuket (Table 45).

Figure 54 Normal distribution curve SMR value classified by slope condition.

Figure 55 Cumulative frequency of SMR value classified by slope condition

Figure 56 Landslide potential classified by SMR value

<u>Table 45</u>	The numerical weight assignment to the SMR factor influencing the
	landslide in Phuket

	Weight Value		Rating Value			
Parameter	Parameter	Sub- parameter	Description	Landslide potential	Rating	
SMR	5		A. 0 - 19	F	4	
			B. 19 - 46	AF	3	
			C. 46 - 77	ANF	2	
			D. 77 - 100	NF	1	

<u>Processing Landslide Susceptibility and Hazard Map by Considering SMR</u> <u>Value</u>

In this section, the processing of landslide susceptibility map determined the numerical rating of 7 related factors and SMR factor following weighting factor method (Table 45). The weight-rating values of each parameter determined in each 25x25 square meter grid cell, in which the summation of weight-rating values were classified range of score by landslide susceptibility classes (Table 33). The result are shown in Fig 57. Table 46 and Fig 58 show area of landslide classes considered by 7 related factors and SMR factor included.

This study performed comparison of landslide susceptibility map between SMR factor determination and non SMR factor determination in 1 year return period of rainfall intensity. The engineering soil properties factor and SMR factor were determined for landslide susceptibility factor because they are new factor in weighing factor method. Comparison of landslide susceptibility map between SMR factor determination and non SMR factor determination in 1 year return period of rainfall intensity is shown in Fig 59. The landslide susceptibility map for non SMR factor determination has higher landslide susceptibility in flat area than the landslide susceptibility map for engineering soil properties factor and SMR factor determination. Fig 60 shows comparison of landslide classes between considered by 7 related factors and considered by including 7 related factors and SMR factor which show the result of landslide high potential class in case SMR factor included had more area than no SMR factor included. So, the SMR factor was important factor to determine landslide susceptibility map.

Fig 61 (a) to (e) shows the results of processing of landslide hazard map considered by weighting factor analysis in term probability of return period of rainfall. Scores were classified by half of range between 25 to 120 which was 73 score. Fig 62 shows landslide hazard map in Phuket using 1, 5, 20, 50 and 100 years return period of rainfall considered 7 related factors and RMR factor included. Predicted landslide hazard area for 5 return period of rainfall considered 7 related factors and RMR factor are shown in Table 38 and Fig 63. The plan area of landslide hazard was 5.93%, 9.01%, 14.67%, 18.12% and 13.50% for 1, 5, 20, 50 and 100 years return period of rainfall respectively in which the plan area of landslide hazard for 1 year return period.

Fig 64 and Fig 65 show comparison between the landslide hazard map which considered only 7 related factors, 7 related factors and RMR factor included and 7 related factors and SMR factor included. The results were slightly different.

Figure 57 Landslide susceptibility map by considering 7 related factors and SMR factor

Score	Landslide Susceptibility Classes	pixel	Area (km ²)	%
101-120	Very high potential	0	0.00	0.00
82-101	High potential	51,965	32.48	5.92
63-82	Moderate potential	355,369	222.11	40.46
44-63	Low potential	33,330	20.83	3.79
25-44	Very low potential	437,753	273.60	49.83
	Sum	878,417	549	100.00

Table 46 Area of landslide classes considered by including 7 related factors and SMR factor

Figure 58 Area of landslide classes considered by including 7 related factors and SMR factor

(a) 7 factors and RMR factor

(b) 7 factors and SMR factor

Figure 59 Comparison between the landslide susceptibility map

Figure 60 Comparison of landslide classes

<u>Figure 61</u> The landslide hazard map in Phuket shown by rainfall intensity return period of 1, 5, 20, 50 and 100 years respectively (SMR factor included)

Figure 62The landslide hazard map in Phuket by rainfall intensity return period of 1,5, 20, 50 and 100 years respectively (SMR factor included)

Return period of rainfall	Landslide classify	pixel	Area (km ²)	%
1	Fail	52,061	32.54	5.93
	No fail	826,356	516.47	94.07
5	Fail	79,189	49.49	9.01
	No fail	799,228	499.52	90.99
20	Fail	128,843	80.53	14.67
	No fail	749,574	468.48	85.33
50	Fail	159,130	99.46	18.12
	No fail	719,287	449.55	81.88
100	Fail	118,602	74.13	13.50
	No fail	759,815	474.88	86.50

Table 47Predicted landslide hazard area for 5 return periods of rainfall including7 related factors and SMR factor

(a) 7 factors and RMR factor

Figure 64 Comparison between the landslide hazard map

Figure 65 Comparison of landslide hazard

Collect Slope Condition Data from Field Investigation

Appendix table 2 shows slope condition data from field investigation. The slope condition was used for classification potential of cut slope failure.

Failure Verification (RMR included)

Fig 66 shows relationship between failure of cut slope and RMR factor. Fig 67 shows relationship between non failure of cut slope and RMR factor. Fig 68 shows normal distribution of total score considered 7 related factors and RMR factor to classify by slope condition.

Figure 66 Graph relationships between failure of cut slope and RMR factor

Figure 67 Graph Relationships between non failure of cut slope and RMR factor

<u>Figure 68</u> Normal distribution of total score (7 related factors and RMR factor) classified by slope condition

Fig 69 shows cumulative frequency of total score considered 7 related factors and RMR factor to classify by slope condition. Fig 70 shows cut slope failure potential classified by 7 related factors and RMR factor.

Table 48 shows the landslide potential and the range of total score considering RMR factor for all return periods of rainfall which considered from cumulative of failure and non-failure frequency (Fig 70).

Figure 70 Cut slope failure potential classified by 7 related factors and RMR factor

<u>Table 48</u> The landslide potential and the range of total score considering RMR factor for all return periods of rainfall

Cut slope failure classes	Range of score
Very high potential	107-140
High potential	89-107
Low potential	69-89
Very low potential	30-69

<u>Processing Cut Slope Failure and Hazard Map by Considering RMR Factor</u> <u>Included</u>

In this section, the processing of landslide hazard map due to cut slope determined the numerical rating of 7 related factors and RMR factor following weighting factor method (Table 40). The weight-rating values of each parameter determined in each 25x25 square meter grid cell, in which the summation of weight-rating values were classified range of score by cut slope failure classes (Table 48). The result are shown in Fig 71. Table 49 and Fig 72 show area of cut slope failure classes considered by 7 related factors and RMR factor included.

Fig 73 (a) to (e) shows the results of processing of landslide hazard map due to cut slope considered by weighting factor analysis in term probability of return period of rainfall. Scores were classified by cumulative of failure and non-failure frequency that was 89 score. Fig 73 shows landslide hazard map due to cut slope using 1, 5, 20, 50 and 100 years return period of rainfall considered 7 related factors and RMR factor included. Predicted landslide hazard area due to cut slope for 5 return period of rainfall considered 7 related factors and Fig 74. The plan area of landslide hazard due to cut slope was 0.71%, 2.03%, 4.44%, 5.01% and 7.06% for 1, 5, 20, 50 and 100 years return period of rainfall.

Figure 71 Area of failure cut slope classes considered by including 7 related factors and RMR factor

Score	Failure cut slope Classes	pixel	Area (km ²)	%
96 - 118	Fail	121	0.08	0.01
74 - 96	Apparently fail	119,134	74.46	13.56
69 - 74	Apparently no fail	321,283	200.80	36.58
30 - 69	No fail	437,879	273.67	49.85
	Sum	878,417	549.01	100.00

<u>Table 49</u> Area of failure cut slope classes considered by including 7 related factors and RMR factor

Figure 72 Area of failure cut slope classes considered by including 7 related factors and RMR factor

Figure 73 The failure cut slope of hazard map in Phuket showning rainfall intensity return period of 1, 5, 20, 50 and 100 years respectively (RMR factor included)

(e) 100 years

(d) 50 years

Return period of rainfall year	Landslide classify	pixel	Area (km ²)	%
1	Fail	6,264	3.92	0.71
	No fail	872,153	545.10	99.29
5	Fail	17,828	11.14	2.03
	No fail	860,589	537.87	97.97
20	Fail	38,968	24.36	4.44
	No fail	839,449	524.66	95.56
50	Fail	44,010	27.51	5.01
	No fail	834,407	521.50	94.99
100	Fail	62,019	38.76	7.06
	No fail	816,398	510.25	92.94

<u>Table 50</u> Predicted failure cut slope hazard area for 5 return periods of rainfall including 7 related factors and RMR factor

Figure 74 Predicted failure cut slope hazard area for 5 return periods of rainfall including 7 related factors and RMR factor

Failure Verification (SMR included)

Fig 75 shows relationship between failure of cut slope and SMR factor. Fig 76 shows relationship between non failure of cut slope and SMR factor. Fig 77 shows normal distribution of total score considered 7 related factors and SMR factor to classify by slope condition.

Figure 75 Graph relationships between cut slope failures and SMR factor

Figure 76 Graph relationships between cut slope non failures and SMR factor

<u>Figure 77</u> Normal distribution of total score (7 related factors and SMR factor) classified by slope condition

Fig 78 shows cumulative frequency of total score considered 7 related factors and SMR factor to classify by slope condition. Fig 79 shows cut slope failure potential classified by 7 related factors and SMR factor.

Table 51 shows the landslide potential and the range of total score considering RMR factor for all return periods of rainfall which considered from cumulative of failure and non-failure frequency (Fig 79).

Figure 79 Cut slope failure potential classified by 7 related factors and SMR factor

<u>Table 51</u> The landslide potential and the range of total score considering SMR factor for all rainfall return period.

Failure cut slope Classes	Range of Score
Very high potential	107-140
High potential	89-107
Low potential	69-89
Very low potential	30-69

<u>Processing Cut Slope Failure Map and Hazard Map by Considering SMR Factor</u> <u>Included</u>

In this section, the processing of landslide hazard map due to cut slope determined the numerical rating of 7 related factors and SMR factor following weighting factor method (Table 40). The weight-rating values of each parameter determined in each 25x25 square meter grid cell, in which the summation of weight-rating values were classified range of score by cut slope failure classes (Table 42). The result are shown in Fig 80. Table 52 and Fig 82 show area of cut slope failure classes considered by 7 related factors and SMR factor included.

Fig 84 (a) to (e) shows the results of processing of landslide hazard map due to cut slope considered by weighting factor analysis in term probability of return period of rainfall. Scores were classified by cumulative of failure and non-failure frequency which was 89 score. Fig 84 shows landslide hazard map due to cut slope using 1, 5, 20, 50 and 100 years return periods of rainfall considered 7 related factors and SMR factor included. Predicted landslide hazard area due to cut slope for 5 return periods of rainfall considered 7 related factors and SMR factor is shown in Table 53 and Fig 85. The plan area of landslide hazard due to cut slope was 2.09%, 4.05%, 8.75%, 10.64% and 12.71% for 1, 5, 20, 50 and 100 years return period of rainfall.

Figure 80 Area of failure cut slope classes considered by including 7 related factors and SMR factor

Score	Failure cut slope Classes	pixel	Area (km ²)	%
96 - 118	Fail	604	0.38	0.07
74 - 96	Apparently fail	169,851	106.16	19.34
69 - 74	Apparently no fail	270,209	168.88	30.76
30 - 69	No fail	437,753	273.60	49.83
	Sum	878,417	549.01	100.00

<u>Table 52</u> Area of failure cut slope classes considered by including 7 related factors and SMR factor

Figure 81 Area of failure cut slope classes considered by including 7 related factors and SMR factor

(a) 7 factors and RMR factor

(b) 7 factors and SMR factor

Figure 82 Comparing between the failure cut slope hazard map

Figure 83 Comparison of failure cut slope hazard classes

(d) 50 years

(e) 100 years

Figure 84 The failure cut slope of hazard map in Phuket showing rainfall intensity return period of 1, 5, 20, 50 and 100 years respectively (SMR factor included)

Return period of rainfall year	Landslide classify	pixel	Area (km ²)	%
1	Fail	18,360	11.48	2.09
	No fail	860,057	537.54	97.91
5	Fail	35,577	22.24	4.05
	No fail	842,840	526.78	95.95
20	Fail	76,879	48.05	8.75
	No fail	801,538	500.96	91.25
50	Fail	93,461	58.41	10.64
	No fail	784,956	490.60	89.36
100	Fail	111,674	69.80	12.71
	No fail	766,743	479.21	87.29

<u>Table 53</u> Predicted failure cut slope hazard area for 5 return periods of rainfall including 7 related factors and SMR factor

Figure 85 Predicted failure cut slope hazard area for 5 return periods of rainfall including 7 related factors and SMR factor

Figure 86 Comparison of landslide hazard

Fig 86 shows comparison between the landslide hazard map which considered only 7 related factors, 7 related factors and RMR factor included and 7 related factors and SMR factor included. The results were slightly different.

Logistic Multiple Regression Analysis (RMR factors included)

The linear logistic modal was represented by the equation:

For cumulative rainfall intensity 3 days

$$\begin{split} Y &= -4.86459 + (6.14587*[W_eng]) - (0.14011*[Rmr]) \\ &+ (0.001097*[Slope_val]) + (0.061088*[W_landuse]) \\ &- (0.26825*[W_drain]) - (0.00103*[Ele_value]) \\ &+ (0.101402*[W_linea]) + (0.068205*[Intensity]) \\ &- (0.04469*[W_soil]) - (4.45102*[W_rocktype]) \end{split}$$

For cumulative rainfall intensity 3 days (100 year return period)

$$\begin{split} Y &= 7.706127 + (6.1245*[W_eng]) - (0.14707*[Rmr]) - \\ (0.0097*[Slope_val]) &- (0.00849*[W_landuse]) - (0.3332*[W_drain]) - (0.0015*[Ele_value]) \\ &+ (0.07567*[W_linea]) - (0.00602*[Intensity]) - (0.21034*[W_soil]) \\ &- (4.30685*[W_rocktype]) \end{split}$$

and

P = 1/(1 + exp(-Y))

Is the estimated probability of failure of cut slope at a given cell.

When	W_rocktype	= weight factor index of rock type (discrete value)
	W_linea	= weight factor index of lineament zone (discrete value)
	Slope_val	= slope in degree (continues value)
	Ele_value	= elevation in meter (continues value)
	W_landuse	= weight factor index of land use (discrete value)
	W_drain	= weight factor index of drainage zone (discrete value)
	W_soil	= weight factor index of soil characteristic (discrete value)
	W_eng	= weight factor index of engineering properties (discrete value)
	Intensity	= rainfall intensity in mm. (continues value)
	Rmr	= rock mass rating value (continues value)
	Y	= slope condition
	Р	= probability

Factors		Fail			No Fail	
		Std.			Std.	
	Mean	Deviation	Ν	Mean	Deviation	Ν
DRAINAGE	1.536	1.170	28	2.114	1.471	35
ELEVATION	116.008	102.658	28	98.442	48.686	35
ENGINEERING	3.964	0.189	28	3.686	0.758	35
INTENSITY (1 year)	138.214	4.756	28	133.286	6.636	35
INTENSITY (100 year)	406.250	33.765	28	421.071	50.345	35
LAND USE	3.000	1.247	28	3.229	1.262	35
LINEAMENT	1.857	1.671	28	2.486	1.961	35
ROCKTYPE	4.964	0.189	28	4.657	0.906	35
SLOPE	20.750	6.709	28	21.749	6.546	35
SOILTEXTURE	2.857	0.356	28	2.571	0.698	35
RMR	35.250	9.724	28	55.171	9.913	35

Table 54 Variable means between failure and non-failure of cut slope

Table 55 Result of linear regression analysis for cumulative rainfall intensity 3 days (RMR factors included)

SUMMARY OUTPUT

RMR (Cumulative rainfall intensity 3 days)

Regression Statis	tics
Multiple R	0.7722
R Square	0.5962
Adjusted R Square	0.5186
Standard Error	2.0505
Observations	63

ANOVA

	df	SS	MS	F	Significance F
Regression	10	322.8620	32.28620	7.6792	2.20303E-07
Residual	52	218.6269	4.20436		
Total	62	541.4889			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-4.86459	8.04871	-0.60439	0.54821	-21.01550	11.28632
ENGINEERING	6.14587	4.91512	1.25040	0.21675	-3.71703	16.00877
RMR	-0.14011	0.02113	-6.63047	0.00000	-0.18252	-0.09771
SLOPE	0.00110	0.04339	0.02529	0.97992	-0.08596	0.08816
LANDUSE	0.06109	0.22690	0.26923	0.78882	-0.39422	0.51640
DRAINAGE	-0.26825	0.22376	-1.19882	0.23603	-0.71726	0.18076
ELEVATION	-0.00103	0.00389	-0.26380	0.79298	-0.00884	0.00679
LINEAMENT	0.10140	0.16195	0.62611	0.53398	-0.22358	0.42639
INTENSITY	0.06820	0.05159	1.32212	0.19191	-0.03531	0.17172
SOILTEXTURE	-0.04469	0.72928	-0.06128	0.95137	-1.50810	1.41872
ROCKTYPE	-4.45102	4.09832	-1.08606	0.28246	-12.67491	3.77286

<u>Table 56</u>	Results	of	enter	logistic	procedure
-----------------	---------	----	-------	----------	-----------

Variable Entered	Wald Chi square
DRAINAGE	1.742
ELEVATION	0.049
ENGINEERING	0.000
INTENSITY (1 year)	1.947
LANDUSE	0.023
LINEAMENT	1.987
RMR	12.478
ROCKTYPE	0.000
SOILTEXTURE	0.234
SLOPE	0.033

Table 57Result of linear regression analysis for cumulative rainfall intensity 3 days,
100 years return period (RMR factors included)

SUMMARY OUTPUT

RMR (100 Years return period of rainfall)

Regression Stati	stics
Multiple R	0.7673
R Square	0.5888
Adjusted R Square	0.5097
Standard Error	2.0694
Observations	63

ANOVA

	df	SS	MS	F	Significance F
Regression	10	318.8034	31.88034	7.4445	3.38983E-07
Residual	52	222.6855	4.28241		
Total	62	541.4889			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	7.70613	4.03613	1.90928	0.06175	-0.39297	15.80522
ENGINEERING	6.12450	5.12974	1.19392	0.23793	-4.16907	16.41807
RMR	-0.14707	0.02019	-7.28557	0.00000	-0.18758	-0.10656
SLOPE	-0.00970	0.04323	-0.22439	0.82333	-0.09645	0.07705
LANDUSE	-0.00849	0.22495	-0.03773	0.97005	-0.45988	0.44290
DRAINAGE	-0.33322	0.21886	-1.52255	0.13393	-0.77240	0.10595
ELEVATION	-0.00150	0.00393	-0.38155	0.70435	-0.00938	0.00638
LINEAMENT	0.07567	0.16162	0.46820	0.64160	-0.24864	0.39998
INTENSITY	-0.00602	0.00687	-0.87658	0.38475	-0.01981	0.00776
SOILTEXTURE	-0.21034	0.74511	-0.28229	0.77884	-1.70550	1.28483
ROCKTYPE	-4.30685	4.24387	-1.01484	0.31488	-12.82280	4.20910

Variable Entered	Wald Chi square
DRAINAGE	3.146
ELEVATION	0.580
ENGINEERING	0.000
INTENSITY (1 year)	0.199
LANDUSE	0.579
LINEAMENT	1.049
RMR	13.298
ROCKTYPE	0.000
SOILTEXTURE	0.001
SLOPE	0.205

Table 58 Results of enter logistic procedure

Table 54 shows variable means between failure and non-failure of cut slope. Table 55 shows result of linear regression analysis for cumulative rainfall intensity 3 days (RMR factors included). Table 57 shows result of linear regression analysis for cumulative rainfall intensity 3 days, 100 year return period (RMR factors included). Table 56 and Table 58 show results of enter logistic procedure in which RMR factor was 68.63 time higher than other variables. Therefore, RMR factor may overwhelm the effects of the other variables in predicting landslide of cut slope.

<u>Processing Cut Slope Probability of Failure Map by Considering RMR Factor</u> <u>Included</u>

Fig 87 shows probability of failure of sensitive area for cut slope for 1 year rainfall return period. Fig 88 shows probability of failure of sensitive area for cut slope for 100 year rainfall return period by considering RMR factor. Table 59 shows parameter means and distribution of predictive failure of cut slope (RMR included).

<u>Figure 87</u> Probability of failure of sensitive area for cut slope for 1 year rainfall return period (RMR factor included)

Figure 88 Probability of failure of sensitive area for cut slope for 100 years rainfall return period (RMR factor included)

<u>Table 59</u> Parameter means and distribution of predictive failure of cut slope (RMR included)

RMR cumulative rainfall intensity 3 days

KIMIK cumulative raintall intensity 5 days	LIVE FAIILIA	II INTERSI	ty 2 days																			
									Ч	Parameter												
Probability	1		2		Э		4		5		9		7		8		6		10	Y	Ъ	pixel
	mean	ь	mean	ь	mean	ь	mean	ь	mean	ь	mean	ь	mean	л р	mean	Г Ю	mean	л р	mean	р		
0-0.1	11.9	10.6	101.0	100.0	4.3	0.5	1.0	0.4	1.1	0.5	2.1	0.6	3.2	1.2	3.3	0.5	128.1	5.2	53.7	5.3 -2.7095	95 0.062	2 90,970
0.1 - 0.2	11.1	10.6	87.5	82.8	4.8	0.4	1.2	0.8	1.0	0.4	2.3	0.7	3.2	1.2	3.8	0.4	129.3	7.4	54.1	5.1 -1.8624	24 0.134	4 124,573
0.2 - 0.3	15.6	10.5	155.7	103.5	5.0	0.2	1.1	0.5	1.1	0.5	2.8	0.5	2.4	1.4	4.0	0.2	131.2	8.2	51.1	4.6 -1.1043	13 0.249	
0.3 - 0.4	14.5	10.3	129.4	108.5	5.0	0.0	1.1	0.7	1.1	0.6	2.6	0.5	3.4	1.2	4.0	0.0	128.4	4.9	47.8	1.2 -0.6836	36 0.335	
0.4 - 0.5	16.0	10.6	162.2	117.8	5.0	0.0	1.1	0.6	1.1	0.6	2.8	0.5	3.6	0.9	4.0	0.0	135.1	1.8	47.4	1.1 -0.2068	58 0.448	
0.5 - 0.6	15.3	9.7	158.9	93.3	5.0	0.0	1.3	1.0	1.0	0.1	2.9	0.3	3.1	1.3	4.0	0.0	140.2	5.0	47.0	1.3 0.2265		6 21,976
0.6 - 0.7	11.9	10.3	71.0	62.7	5.0	0.0	1.1	0.6	1.0	0.4	2.6	0.5	3.5	1.0	4.0	0.0	143.2	3.8	46.6	2.4 0.5713		
0.7-0.8	16.1	10.8	218.5	141.2	5.0	0.0	1.3	1.0	1.0	0.2	2.9	0.3	2.5	1.5	4.0	0.0	137.7	4.5	37.9	3.8 1.2202	0.772	
0.8-0.9	15.2	10.9	84.2	74.8	5.0	0.0	1.2	0.8	1.0	0.0	2.8	0.4	3.0	1.3	4.0	0.0	135.6	2.3	35.5	0.5 1.5753		
0.9-1.0	15.9	9.0	90.3	61.4	5.0	0.0	1.0	0.4	1.0	0.0	3.0	0.2	3.3	1.1	4.0	0.0	145.0	0.0	32.7	1.2 2.6046	16 0.93	_
1	1. SLOPE		6	2. ELEVATION	ATION	(1)	3. ROCKTYPE	TYPE	4	4. LINEAMENT	MENT	ъ.	5. DRAINAGE	AGE								
Ę	6. SOILTEXTURE	EXTURE		7. LANDUSE	USE	~	8. ENGIN	ENGINEERING		9. INTENSITY	SITY	1(10. RMR									
RMR cumulative rainfall intensity 3 days , 100 year return period	tive rainfa	ll intensi:	ty 3 days	, 100 yea	ư return p	eriod																
					1				d.	Parameter												
Probability	1		7		ю		4		5		9		7		%		6		10	Υ	Ч	pixel
	mean	d	mean	b	mean	b	mean	Q	mean	b	mean	d	mean	σ I	mean	σ 1	mean	σ I	mean	σ		
0-0.1	15.4	11.0	136.5	120.8	4.4	0.5	1.0	0.4	1.2	0.8	2.4	0.5	3.3	1.2	3.4	0.5	467.0	48.6	54.6	5.5 -2.5232		4 54,139
0.1 - 0.2	11.5	10.8	95.5	84.4	4.5	0.5	1.1	0.8	1.1	0.5	2.2	0.7	3.1	1.2	3.5	0.5	430.2	48.3	54.4	4.3 -1.7559	59 0.147	-
0.2 - 0.3	10.6	10.8	105.0	113.2	4.7	0.4	1.2	0.8	1.1	0.4	2.3	0.7	2.7	1.3	3.7	0.4	434.3	84.4	52.2	5.0 -1.1622	22 0.238	
0.3 - 0.4	14.3	10.8	127.9	98.9	5.0	0.1	1.1	0.5	1.1	0.6	2.7	0.5	3.0	1.3	4.0	0.1	480.2	53.6	49.2	3.5 -0.6974	_	
0.4 - 0.5	14.0	10.7	148.1	126.4	5.0	0.0	1.1	0.7	1.1	0.6	2.6	0.5	3.6	0.9	4.0	0.0	440.6	57.4	47.5	1.0 -0.2119	_	
0.5 - 0.6	15.9	9.4	135.6	82.4	5.0	0.0	1.1	0.6	1.0	0.3	2.8	0.5	3.3	1.2	4.0	0.0	375.0	35.7	47.3	1.2 0.2102	0.552	
0.6 - 0.7	9.2	8.7	62.4	62.7	5.0	0.0	1.1	0.8	1.0	0.2	2.5	0.6	3.4	1.0	4.0	0.0	359.3	29.3	46.8	2.1 0.6301		
0.7 - 0.8	11.8	11.8	146.3	146.6	5.0	0.0	1.1	0.8	1.1	0.5	2.7	0.5	3.2	1.2	4.0	0.0	404.1	46.2	40.5	4.8 1.0777	77 0.746	6 19,095
0.8-0.9	14.2	10.1	87.4	73.6	5.0	0.0	1.1	0.7	1.0	0.0	2.8	0.4	2.7	1.4	4.0	0.0	430.9	24.8	35.5	0.6 1.7287		
0.9 - 1.0	14.6	8.9	85.7	60.4	5.0	0.0	1.1	0.6	1.0	0.0	3.0	0.2	3.3	1.1	4.0	0.0	342.8	32.5	1.0	5.5 7.2847	47 0.999	

5. DRAINAGE 10. RMR

4. LINEAMENT 9. INTENSITY

3. ROCKTYPE 8. ENGINEERING

2. ELEVATION 7. LANDUSE

1. SLOPE 6. SOILTEXTURE

Logistic Multiple Regression Analysis by SMR Factor Included

The linear logistic modal was represented by the equation:

For cumulative rainfall intensity 3 days

$$\begin{split} Y &= -2.57172 + (8.51002*[W_eng]) - (0.1337*[Smr]) - (0.0132*[Slope_val]) \\ &- (0.05934*[W_landuse]) - (0.1908*[W_drain]) - (0.00177*[Ele_value]) \\ &+ (0.042322*[W_linea]) + (0.056058*[Intensity]) - (0.04864*[W_soil]) \\ &- (6.42077*[W_rocktype]) \end{split}$$

For cumulative rainfall intensity 3 days (100 year return period)

$$\begin{split} Y &= 6.892795 + (8.07922*[W_eng]) - (0.14059*[Smr]) \\ &- (0.0221*[Slope_val]) - (0.11774*[W_landuse]) - (0.24265*[W_drain]) \\ &- (0.00252*[Ele_value]) + (0.00734*[W_linea]) - (0.00282*[Intensity]) \\ &- (0.14739*[W_soil]) - (5.97485*[W_rocktype]) \end{split}$$

and

P = 1/(1 + exp(-Y))

Is the estimated probability of failure of cut slope at a given cell.

When	W_rocktype	= weight factor index of rock type (discrete value)				
	W_linea	= weight factor index of lineament zone (discrete value)				
	Slope_val	= slope in degree (continues value)				
	Ele_value	= elevation in meter (continues value)				
	W_landuse	= weight factor index of land use (discrete value)				
	W_drain	= weight factor index of drainage zone (discrete value)				
	W_soil	= weight factor index of soil characteristic (discrete value)				
	W_eng	= weight factor index of engineering properties (discrete value)				
	Intensity	= rainfall intensity in mm. (continues value)				
	Rmr	= rock mass rating value (continues value)				
	Y	= slope condition				
	Р	= probability				
	Intensity Rmr Y	 = rainfall intensity in mm. (continues value) = rock mass rating value (continues value) = slope condition 				
Factors		Fail			No Fail	
----------------------	---------	-----------	----	---------	-----------	----
		Std.			Std.	
	Mean	Deviation	Ν	Mean	Deviation	N
DRAINAGE	1.536	1.170	28	2.114	1.471	35
ELEVATION	116.008	102.658	28	98.442	48.686	35
ENGINEERING	3.964	0.189	28	3.686	0.758	35
INTENSITY (1 year)	138.214	4.756	28	133.286	6.636	35
INTENSITY (100 year)	406.250	33.765	28	421.071	50.345	35
LANDUSE	3.000	1.247	28	3.229	1.262	35
LINEAMENT	1.857	1.671	28	2.486	1.961	35
ROCKTYPE	4.964	0.189	28	4.657	0.906	35
SLOPE	20.750	6.709	28	21.749	6.546	35
SOILTEXTURE	2.857	0.356	28	2.571	0.698	35
SMR	33.227	9.723	28	53.451	10.879	35

Table 60 Variable means between failure and non-failure of cut slope

Table 61 Result of linear regression analysis for cumulative rainfall intensity 3 days (SMR factors included)

SUMMARY OUTPUT

SMR (Cumulative rainfall intensity 3 days)

Regression Statis	stics
Multiple R	0.7642
R Square	0.5840
Adjusted R Square	0.5040
Standard Error	2.0814
Observations	63

ANOVA

	df	SS	MS	F	Significance F
Regression	10	316.2238	31.62238	7.2997	4.43655E-07
Residual	52	225.2651	4.33202		
Total	62	541.4889			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-2.57172	8.36155	-0.30757	0.75964	-19.35038	14.20694
ENGINEERING	8.51002	4.97672	1.70996	0.09323	-1.47650	18.49654
SMR	-0.13370	0.02085	-6.41367	0.00000	-0.17553	-0.09187
SLOPE	-0.01320	0.04396	-0.30016	0.76525	-0.10141	0.07502
LANDUSE	-0.05934	0.23041	-0.25754	0.79778	-0.52168	0.40301
DRAINAGE	-0.19080	0.22673	-0.84155	0.40390	-0.64577	0.26416
ELEVATION	-0.00177	0.00399	-0.44303	0.65958	-0.00977	0.00623
LINEAMENT	0.04232	0.16487	0.25670	0.79842	-0.28851	0.37315
INTENSITY	0.05606	0.05324	1.05301	0.29721	-0.05077	0.16288
SOILTEXTURE	-0.04864	0.74049	-0.06569	0.94788	-1.53454	1.43726
ROCKTYPE	-6.42077	4.14554	-1.54884	0.12749	-14.73941	1.89787

Variable Entered	Wald Chi square
DRAINAGE	0.855
ELEVATION	0.355
ENGINEERING	0.000
INTENSITY (1 year)	0.661
LANDUSE	0.408
LINEAMENT	0.646
ROCKTYPE	0.000
SOILTEXTURE	0.144
SLOPE	0.188
SMR	11.700

Table 63Result of linear regression analysis for cumulative rainfall intensity 3 days,
100 years return period (SMR factors included)

SUMMARY OUTPUT

SMR (100 Years return period of rainfall)

Regression Stati	stics
Multiple R	0.7592
R Square	0.5764
Adjusted R Square	0.4950
Standard Error	2.1002
Observations	63

ANOVA

	$d\!f$	SS	MS	F	Significance F
Regression	10	312.1199	31.21199	7.0760	6.75662E-07
Residual	52	229.3690	4.41094		
Total	62	541.4889			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	6.89279	4.09276	1.68414	0.09815	-1.31992	15.10551
ENGINEERING	8.07922	5.20070	1.55349	0.12637	-2.35675	18.51519
INTENSITY	-0.00282	0.00708	-0.39824	0.69209	-0.01702	0.01138
LANDUSE	-0.11774	0.22689	-0.51892	0.60602	-0.57302	0.33755
DRAINAGE	-0.24265	0.22283	-1.08895	0.28120	-0.68979	0.20449
SMR	-0.14059	0.01988	-7.07232	0.00000	-0.18048	-0.10070
SLOPE	-0.02210	0.04368	-0.50588	0.61508	-0.10975	0.06555
ELEVATION	-0.00252	0.00402	-0.62659	0.53367	-0.01059	0.00555
LINEAMENT	0.00734	0.16392	0.04477	0.96446	-0.32160	0.33628
SOILTEXTURE	-0.14739	0.75579	-0.19501	0.84615	-1.66400	1.36922
ROCKTYPE	-5.97485	4.30110	-1.38915	0.17071	-14.60562	2.65593

Variable Entered	Wald Chi square
DRAINAGE	1.844
ELEVATION	1.051
ENGINEERING	0.000
INTENSITY (100 year)	0.161
LANDUSE	0.771
LINEAMENT	0.190
ROCKTYPE	0.000
SOILTEXTURE	0.299
SLOPE	0.295
SMR	11.838

Table 64 Results of enter logistic procedure

Table 60 shows variable means between failure and non-failure of cut slope. Table 61 shows result of linear regression analysis for cumulative rainfall intensity 3 days (SMR factors included). Table 63 shows result of linear regression analysis for cumulative rainfall intensity 3 days, 100 year return period (SMR factors included). Table 62 and Table 64 show results of enter logistic procedure in which SMR factor was 75.10 time higher than other variables. Therefore, SMR factor may overwhelm the effects of the other variables in predicting landslide of cut slope.

<u>Processing Cut Slope Probability of Failure Map by Considering SMR Factor</u> <u>Included</u>

Fig 89 shows probability of failure of sensitive area for cut slope for 1 year rainfall return period. Fig 90 shows probability of failure of sensitive area for cut slope for 100 year rainfall return period by considering SMR factor. Table 65 shows parameter means and distribution of predictive failure of cut slope (SMR included).

<u>Figure 89</u> Probability of failure of sensitive area for cut slope for 1 year rainfall return period (SMR factor included)

Figure 90 Probability of failure of sensitive area for cut slope for 100 years rainfall return period (SMR factor included)

(SMR included)
of cut slope
ictive failure o
of predictiv
is and distribution of pred
rameter mean
Table 65 Pa

SMR cumulative rainfall intensity 3 days

DIVITIN CUITINIAN VO TAIIILAIT IIIICIIDIUS J UASS	11 V- 1411	TIONIT IN	uy 2 augs																				
									<u>ц</u>	Parameter													
Probability	-		2		3		4		5		9		L		8		6		10	Y	Ч	pi	pixel
	mean	ь	mean	ь	mean	ь	mean	ь	mean	ь	mean	ь	mean	г Ю	mean	ь	mean	ь	mean	ь			
0-0.1	13.0	10.9	102.7	100.5	4.3	0.4	1.1	0.6	1.1	0.5	2.1	0.6	3.4	1.1	3.3	0.4	128.6	5.3	51.1	5.9 -2.5854		0.070 95	95,313
0.1 - 0.2	11.0	10.5	92.8	79.8	4.8	0.4	1.1	0.7	1.0	0.4	2.3	0.7	3.2	1.2	3.8	0.4	132.7	5.8	55.8	5.5 -1.8023	Ŭ	0.142 T	77,573
0.2 - 0.3	9.3	10.9	76.0	101.1	4.5	0.5	1.1	0.5	1.1	0.5	2.6	0.5	2.5	1.4	3.5	0.5	135.1	9.5	47.7	5.3 -1.1274	-		48,001
0.3 - 0.4	16.7	10.6	179.4	122.1	5.0	0.2	1.1	0.5	1.1	0.6	2.8	0.5	2.6	1.4	4.0	0.2	127.4	7.0	45.3	2.4 -0.6156	156 0.351		8,120
0.4 - 0.5	14.5	10.3	142.1	93.8	5.0	0.0	1.1	0.7	1.1	0.5	2.7	0.6	3.1	1.3	4.0	0.0	130.9	5.2	44.8	0.9 -0.2133	-		44,364
0.5 - 0.6	13.4	9.9	120.2	89.4	5.0	0.0	1.2	0.8	1.1	0.5	2.8	0.5	3.4	1.1	4.0	0.0	137.6	4.7	44.7	1.6 0.2102			6,053
0.6 - 0.7	14.1	9.9	102.5	83.4	5.0	0.1	1.1	0.7	1.1	0.4	2.8	0.5	3.2	1.2	4.0	0.1	142.5	4.3	43.8	3.3 0.6126		0.649 32	2,544
0.7 - 0.8	10.2	10.8	109.5	129.0	4.9	0.2	1.1	0.6	1.1	0.4	2.5	0.5	3.2	1.1	3.9	0.2	141.2	4.9	39.6	5.9 1.05	1.0557 0.7		0,345
0.8-0.9	15.0	10.1	108.7	85.5	5.0	0.1	1.1	0.6	1.1	0.5	2.8	0.4	3.0	1.3	4.0	0.1	139.2	4.9	33.7	2.0 1.75	1.7513 0.8	0.852 23	3,338
0.9 - 1.0	11.8	9.1	79.6	62.0	5.0	0.0	1.1	0.6	1.0	0.3	2.9	0.3	3.2	1.1	4.0	0.0	141.5	4.8	30.6	3.2 2.43	.4372 0.9		13,581
	1. SLOPE		61	2. ELEVATION	ATION	ω	3. ROCKTYPE	IYPE	4	4. LINEAMENT	MENT	5.	5. DRAINAGE	AGE									
-	6. SOILTEXTURE	EXTUR		7. LANDUSE	USE	æ	8. ENGIN	ENGINEERING		9. INTENSITY	SITY	1	10. RMR										
SMR cumulative rainfall intensity 3 days , 100 year return period	tive rainfa	Il intensi	ty 3 days	, 100 yea	r return pe	eriod																	
									P	Parameter													
Probability	-		2		33		4		5		9		L		8		6		10	Y	Ч	pi	pixel
	mean	р	mean	Ь	mean	р	mean	р	mean	٦ D	mean	d D	mean	g I	mean	d	mean	d	mean	g			
0-0.1	20.2	9.7	178.7	120.2	4.5	0.5	1.2	0.8	1.2	0.7	2.5	0.6	3.4	1.2	3.5	0.5	385.6	45.9	54.1	6.2 -2.4174	<u> </u>		46,982
0.1 - 0.2	10.0	10.0	83.1	78.7	4.4	0.5	1.1	0.6	1.0	0.3	2.2	0.7	3.3	1.2	3.4	0.5	405.7	41.4	52.1	5.5 -1.6939	Ŭ	0.155 100	00,560
0.2-0.3	7.1	9.9	61.3	92.9	4.6	0.5	1.1	0.6	1.1	0.4	2.4	0.7	2.7	1.3	3.6	0.5	354.0	58.7	51.3	6.4 -1.0016	-		52,601
0.3 - 0.4	15.3	12.6	167.7	135.7	4.9	0.3	1.1	0.6	1.1	0.6	2.6	0.5	3.0	1.2	3.9	0.3	399.8	53.6	47.2	5.3 -0.479			9,551
0.4 - 0.5	18.6	8.9	179.4	86.5	5.0	0.1	1.1	0.7	1.1	0.6	2.9	0.4	2.8	1.4	4.0	0.1	412.2	60.5	44.7	1.3 -0	-0.05 0.4		4,378
0.5 - 0.6	14.3	9.0	123.2	76.2	5.0	0.1	1.1	0.6	1.1	0.5	2.8	0.5	3.0	1.4	4.0	0.1	382.0	64.0	44.6	1.3 0.3263			7,606
0.6-0.7	9.9	9.2	79.8	84.5	5.0	0.1	1.1	0.5	1.0	0.4	2.6	0.6	3.1	1.3	4.0	0.1	365.8	55.8	43.9	2.9 0.7231		0.673 38	38,381
0.7-0.8	9.2	10.5	95.9	116.5	5.0	0.2	1.1	0.6	1.0	0.3	2.5	0.6	3.3	1.1	4.0	0.2	340.7	36.3	40.5	5.3 1.18	1.1828 0.7		2,263
0.8-0.9	15.4	9.5	102.7	75.4	4.9	0.3	1.1	0.6	1.1	0.5	2.8	0.4	3.0	1.3	3.9	0.3	357.6	38.3	33.0	2.6 1.8923		_	23,405
0.9-1.0	8.5	8.7	65.3	62.9	5.0	0.0	1.1	0.6	1.0	0.3	2.8	0.4	3.0	1.1	4.0	0.0	355.8	32.9	30.8	3.4 2.6471	_	0.934 13	13,503
					ĺ		ĺ																

136

5. DRAINAGE
 10. RMR

LINEAMENT
 INTENSITY

3. ROCKTYPE 8. ENGINEERING

2. ELEVATION 7. LANDUSE

1. SLOPE 6. SOILTEXTURE

CONCLUSIONS

Followings are conclusions on the research:

1. This study determines the sensitive areas of landslide and cut slope failure due to urban development in Phuket area. Weighting factor method was used through GIS application. Engineering soil properties were considered in weighting factor analyses and found to have great effect on landslide prediction. Furthermore, RMR and SMR were also considered in order to investigate the effect of rock mass quality and found to have effect to landslide prediction as well. However, verification needs to be done in the future.

2. The results of weighting factor method shows that RMR and SMR factors have slight effect on landslide hazard map.

3. Landslide potential classes done by cumulative frequency analysis gives more realistic result than using equal range of score concept.

4. RMR and SMR value show direct relation with the prediction of landslide for slope cutting.

5. As for rainfall intensity factor, the landslide potential map that considered 1 year return period of rainfall gives large difference compared to the map that used concept of 5 return periods of rainfall.

6. The cumulative frequency analysis of total score shows limited accuracy due to limited and slightly biased data.

7. RMR and SMR values have significant effect on landslide probability of failure when analyzed by logistic regression analysis.

8. Figure 91 and Figure 92 show the recommendation of landslide sensitive areas for cut slope by weighting factor method and logistic regression analysis respectively. The map is valid only for slope cutting that has angle of less than 1:1.2.

Figure 91 Recommendation of landslide sensitive area for cut slope by weighting factor analysis

Figure 92 Recommendation of landslide sensitive areas for cut slope by logistic regression analysis

RECOMMENDATIONS

Recommendation for future research can be summarized as follows:

1. Watershed and accumulation of residual soil need to be included in the future analysis of landslide prediction.

2. The produced map shows only areas that can generate landslide hazard. Flow modeling needs to be done to predict affected areas.

3. Lesser biased SMR data and slope condition need to be added to improve accuracy of the analyses.

LITERATURE CITED

- Akbar, T.A. 1998. Integration of GPS, GIS and Remote Sensing Technology for Landslide Hazard Analysis: A Case Study of Western Himalayan Kaghan Valley, Pakistan. M.S. thesis, Asian Institute of Technology, Bangkok, Thailand.
- Anbalagan, R. 1992. Terrain evaluation and Landslide Hazard Zonation for Environmental Regeneration and Land Use Planning in Mountainous Terrain,
 Proceeding of Sixth Symposium on Landslide. Christ Church.
- Atkinson, P.M. and R. Massari. 1998. Generalized Linear Modeling of Susceptibility to Landsliding in the Central Apennines. Italy.
- Auathaveepon, L. 1995. Risk Classification for Landslide at Amphoe Phipun Changwat Nakhon Si Thammarat by Using Remote Sensing. M.S. thesis, Kasetsart University.
- Barton, N., R. Lien and J. Luunde. 1974. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics, pp.189-236.
- Bieniawski, Z.T. 1976. Rock Mass Classifications in Rock Engineering. Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg pp. 97-107.
- <u>1989.</u> Engineering Rock Mass Classifications.
- Bishop, A.W. 1973. **The Stability of Tips and Spoil Heaps.** Quarterly Journal Engineering geology, pp. 335-376.
- Bromhead, E.N. 1978. Large Landslides in London Clay at Herne Bay, Kent. Quarterly Journal Engineering Geology, pp. 291-304.
- Carrara, A. 1983. Multivariate models for landslide hazard evaluation. **Mathematical Geol.**, v. 15, pp. 403-426.
- Chalermpong, P. 2002. Guidelines for Community Management in Landslide Risk Areas of East-Coast Gulf Watershed. M.S. thesis, Kasetsart University.
- Charusiri, P. 1980. **Igneous Complexes and Tin Mineralization in Phuket Island**, with Special Reference to Chao Fa and Tor Soong Mine. M.S. thesis, Chulalongkorn University, pp. 208.
- Chen, Z. 1995. Recent Developments in Slope Stability Analysis. ISRM International Congresson Rock Mechanics, (Herausgeber ed.) Tokyo, ISRM. Vol. 3, pp. 1041-1048.

- Collins, B.D. and D. Znidarcic. 2004. Stability Analyses of Rainfall Induced Landslides. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 4, April 1, pp. 362-372.
- Department of Mineral Resources. 2006. Study Landslide in 6 Province of Southern Area. Bangkok, Thailand.
- Einstein, H.H. 1988. Landslide Risk Assessment Procedure. **Proceeding of Fifth International Symposium on Landslide**. Lausanne. Pp. 1075-1090.
- Fauziah, A. et al. 2004. Slope Stability Analysis Using GIS Technique. Case histories of urban geo-informatics Edition 2004, pp. 20 24.
- 2004. Landslide Hazard Zonation Using GIS. Case histories of urban geo-informatics Edition 2004, pp. 25 29.
- 2004. Risk Assessment on Slope Failures in Penang Island
 Using GIS and Remote Sensing Interfacing Techniques. Case histories of urban geo-informatics Edition 2004, pp. 25 29.
- Geotechnical Engineering Research and Development Center (GERD), 2006. Studying for the Guideline of Protection and Mitigation Measure Against Landslide Hazards Project. Final report, Kasetsart University.
- Greenway, D.R. 1987. Vegetation and Slope Stability, **Slope Stability.** Anderson and Richards, John Wiley & Sons Ltd., Chichester New York, pp. 187-230.
- Hansen, A. 1984. Landslide Hazard Analysis. In Slope Instability. Brunsden, D. and Prior, D.B. (eds), Wiley-Interscience, Chichester, 523-602.
- Hartlen, J. and L. Viberg. 1988. General Report: Evaluation of Landslide Hazard. In Proseedings 5th International Symposium on Landslide, (C.Bonnrad, ed.), A.A.Balkema, Rotterdam The Netherlands, vol.2, pp.1037-1057.
- Hoek, E., P.K. Kaiser and W.F. Bawden. 1995. Support of Underground Excavations in Hard Rock. Rotterdam: A.A. Balkema.
- Hutchinson, J.N. and R.K. Bhandari. 1971. Undrained Loading, a Fundamental Mechanism of Mudflows and Other Mass Movements. Geotechnique, pp. 353-358.
- Ian, D. and S.P. Gupta. 1990. Technical Background paper, Disaster Mitigation in Asia and the Pacific, Manila.
- International Society of Rock Mechanics. 1981. Rock Characterization and Testing Suggested Methods. Ed. E.T. Brown.

- Japan Society of Engineering Geology. 1992. Rock Mass Classification in Japan. Engineering Geology, Special Issue.
- Junkhiaw, S. 2003. Flash Flood and Landslide Risk Area in Phuket Province Using Geographic Information System. M.S. thesis, Kasetsart University, 109 pages.
- Khantaprab, C. 1993. **Disaster: A Case Study of Southern Thailand.** M.S. thesis, Chulalongkorn University.
- Kunsuwan, B. 2005. Study of Behavior for Landslides on Upstream Areas in Mae Nam Chantaburi Basin. M.S. thesis, Kasetsart University.
- Lambe, T.W. and R.V. Whitman. 1969. Soil Mechanics. John Wiley& Sons, Inc., New York.
- Lambe, P. 1975. Slope Failure in Hong Kong. Quarterly Journal Engineering Geology, pp. 31-65.
- Lee, W., et al. 1995. Slope Stability and Stabilization Methods. John Wiley& Sons, Inc., New York.
- Linsley, K. Ray, et al. 1988. **Hydrology for Engineering**. Mc-Graw-Hill, Singapore. pp. 492
- Mairaing, W. 2003. Earth Dam Engineering. Library nine publishing, Bangkok, Thailand.
- Mehortra, G.S., S. Sarkar, and R. Dharmarajku. 1992. A Methodology to Prepare Landslide Hazard Zonation Map. Proceedings of the 6th International Symposium, University of Canterbury, New Zealand.
- Meteorological Department, 2006. Available Source: http://tmd.go.th.
- Naramngam, S. 1996. Application of GIS and Factor of Safety in Determining Landslide Risk Area in Tapi Watershed, Changwat Nakhon Si Thammarat. M.S. thesis, Kasetsart University.
- Pantanahiran, W. 1994. The use of Landset Imagery and Digital Terrain Models to Assess and Predict Landslide Activity in Tropical Areas. Ph.D. dissertation, Univ. of Rhode Island. U.S.A., 56 pages.
- Priest, S.D. and J.A. Hudson. 1976. Discontinuity Spacings in Rock. Int. J. Rock. Mech. & Min. Sci. & Geomech. Abstr. Vol. 13. pp. 135-148.

- Rahn, H.P. 1996. Engineering Geology: an Environmental Approach. Prentice Hall, New Jersey, U.S.A. pp. 657.
- Rajbhandari, P.C. 1995. Application of GIS and Remote Sensing for Landslide Hazard Zonation and Mapping Disaster Prone Area: A Case Study of The Kulekhani Watershed of Nepal. M.S. thesis, Asian Institute of Technology, Bangkok Thailand.
- Richard, H.M. 1998. Hydrologic Analysis and Design. Prentice Hall, New Jersey, U.S.A. pp. 814.
- Roberson, A.J. et al. 1988. **Hydraulic Engineering.** Houghton Mifflin company Boston. U.S.A. pp. 662.
- Romana, M. 1985. New Adjustment Ratings for Application of Bieniawski Classification to Slopes. International Symposium on the Role of Rock Mechanics, Zacatecas, ISRM. pp. 49-53.
- Samran, S. 1984. Rainfall Erosivity Factor in Universal Soil Loss Equation for Mountainous Areas of Northern Thailand. M.S. thesis, Kasetsart University.
- Skempton, A.W. and J.N. Hutchinson. 1969. Stability of Natural Slopes and Embankment Foundations. Proceedings Seventh International Conference Soil Mechanics and Foundation Engineering, Mexico City, State-of-the-Art Volume, pp. 291-340.
- Soeters, R. and C.J. Van Westen. 1996. Slope Instability Recognition, Analysis, and Zonation. In: Turner KA, Schuster RL (eds) Landslides, investigation and mitigation. Special Report 247, Transportation Research Board, National Research Council, Washington, DC, pp 131-137.
- Soralump, S. 2002. Estimating Probability of Earthquake-Induced Failure of Earth Dams. Ph.D. thesis, Utah State University, Logan, Utah U.S.A.
- Summerfield, M.A. 1991. Global Geomorphology: An Introduction to the Study of Landform. Longman Group ltd., Burnt Mill, Harlow, England.
- Thaijeamaree, N. 2003. Stability of Slopes in Nam Kor Watershed Area from Soil Engineering Properties. M.S. thesis, Kasatsart University, 196 pages.
- Thassanapak, H. 2001. **Potential Landslide Assessment of Changwat Phuket.** M.S. thesis, Chulalongkorn University, Thailand.
- Turner, A. Keith. 1941. Landslides Investigation and Mitigation. In Special Report 247: National Research Council, Washington, D.C.

- Van Westen, C.J. 1994. Application of Geographic Information Systems to Deterministic Landslide Hazard Zonation. In: Boletin de Vias, universidad nacional de Colombia, Sede Manizales : revista de Vias transportes Geotecnia, pp. 11-141.
- _____, D.G. Price. and N. Rengers. 1993. Application of geographic information systems to landslide hazard zonation. Enschede, ITC, 1993. ITC Publication 15, ITC Dissertation 13, 245 pages.
- Varnes, D.J. 1978. Slope Movement Types and Processes. In Special Report 29: Landslides and Engineering Practice (E.B. Eckel, ed.) HRB, National Research Council, Washington, D.C., pp. 20-47
- Varnes, D.J. 1984. Landslide Hazard Zoning. A review of principles and Practice, UNESCO.
- Waltham, A.C. 1994. Foundations of Engineering Geology. Blackie A&P, London, pp. 88.
- Zaruba, Q. and V. Mencel. 1967. Landslides and Their Control, Elsevier, Academia, Publishing House of the Czechoslovak Academy of Sciences Prague.

APPENDIX

Ground Water Condition	Wet	Wet	Damp	Dry	Dry	Wet	Dry	Dry	Dry	Dry	N/A	Damp	Damp	Wet	Wet	Wet	Damp
Weathering	МW	МН	ΜH	SW	Fresh	MW	МW	SW	SW	SW	N/A	MM	MW	МW	MW	MM	MW
Joint Spacing (cm)	4	4	4	9	8	Q	8	8	8	9		4	4	4	4	4	6
Field Estimate Rock Strength	single blow	nail	nail	single blow	many blows	pocket knife	nail	nail	many blows	single blow	N/A	pocket knife	pocket knife	pocket knife	nail	nail	nail
FRACTUR E	00/000	000/00	025/45	N/A	00/000	183/88 073/69 026/45 130/64 215/18	N/A	N/A	N/A	N/A	N/A	135/60 100/45 317/55	270/35 017/87 256/87	00/000	00/000	00/000	00/000
BEDDIN G	00/000	080/88	00/000	N/A	00/000	324/40	\mathbf{N}/\mathbf{A}	N/A	\mathbf{N}/\mathbf{A}	N/A	N/A	00/000	00/000	00/000	00/000	00/000	00/000
FAULT	00/000	067/55	00/000	N/A	00/000	00/000	\mathbf{N}/\mathbf{A}	N/A	\mathbf{N}/\mathbf{A}	N/A	N/A	00/000	00/000	00/000	00/000	00/000	00/000
SOIL DEPTH (m)	3.00	0.50	0.50	0.50	0.00	2.00	0.00	0.00	N/A	N/A	N/A	1.00	2.00	0.50	0.00	0.50	0.50
SLOPE (m)	30	12	20	17	25	20	15	20	18	10	N/A	20	6	10	30	5	20
SLOPE	65	60	60	75	75	65	30	5	65	60	30	30	50	55	60	75	65
DESCRIPTIO N	Natural/Fail	Natural/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Natural/Fail	Natura/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Natural/Fail
ROCK	Granite	Granite& Mud Stone	Granite	Granite	Mud Stone	Mud Stone	Mud Stone	Mud Stone	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
Е	433250	434100	434050	434350	437044	437468	437598	437773	430200	422450	421990	421400	422650	422670	422900	423125	423380
N	873500	873450	873200	873800	872042	872597	874313	873985	875000	881850	881043	880650	880450	880425	880350	880075	880000
STATION	PK01	PK02	PK03	PK04	PK05	PK06	PK07	PK08	PK09	PK10	PK11	PK12	PK13	PK14	PK15	PK16	PK17
No.	1	2	ю	4	5	9	L	8	6	10	11	12	13	14	15	16	17

Appendix Table 1 Slope characteristics obtained from field investigation

Appendix Table 1 Slope characteristics obtained from field investigation (Continued)

Ground Water Condition	Flowing	Wet	Damp	Dry	Dry	Dry	Dry	Flowing	W/N	Damp	Dry	Flowing	Damp	Dry
Weathering	MW	MM	MM	SW	MM	Fresh	MM	Fresh	N/A	SW	Fresh	MM	SW	SW
Joint Spacing (cm)	6	4	8	8	4	∞	8	10	V/N	8	8	3	8	9
Field Estimate Rock Strength	pocket knife	single blow	pocket knife	single blow	single blow	single blow	single blow	many blows	N/A	many blows	many blows	many blows	many blows	nail
FRACTURE	248/73 175/35	268/38 063/79	00/000	225/63 310/87	N/A	056/45 106/89 225/46 312/64	289/87 053/25 251/49 176/90	050/60 065/88 125/75 225/60	N/A	005/85 025/60 070/85 105/78	N/A	213/50 337/70 125/70	N/A	00/000
BEDDING	00/00	00/000	00/000	00/00	N/A	025/20	00/000	000/00	\mathbf{N}/\mathbf{A}	000/00	N/A	000/00	N/A	00/000
FAULT	00/000	072/73	00/000	00/000	N/A	00/000	00/000	000/00	N/A	225/50	N/A	00/000	N/A	00/000
SOIL DEPTH (m)	0.50	10.00	2.00	1.00	1.00	2.70	1.00	0.00	N/A	2.00	1.00	1.20	0.00	0.00
SLOPE (m) (m)	60	18	30	10	50	20	6	8	N/A	70	30	25	20	35
SLOPE	38	45	45	70	22	70	80	45	80	75	02	30	60	85
DESCRIPTION	Natural/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Natural/Non	Cut Slope/Non
ROCK	Granite	Granite	Granite	Granite	Granite	Mud Stone	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
ы	422400	422120	420400	420250	420100	429523	422806	425520	425780	425050	425570	421300	428200	423090
z	879450	879450	878200	878250	878700	878223	875276	877230	875330	874750	874070	875320	871970	870880
STATION	PK18	PK19	PK20	PK21	PK22	PK23	PK24	PK25	PK26	PK27	PK28	PK29	PK30	PK31
No.	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Ground Water Condition	Damp	Damp	Damp	Wet	Damp	Damp	Damp	Damp	Damp	Dripping	Damp	Damp	Damp	Damp	Damp
Weathering	MW	MM	SW	MM	MM	CW	MM	MM	MM	MM	MM	MM	SW	SW	SW
Joint Spacing (cm)	5	8	8	8	4	4	4	4	8	Q	Ś	8	6	8	8
Field Estimate Rock Strength	single blow	pocket knife	many blows	many blows	nail	pocket knife	many blows	many blows	single blow	single blow	single blow	pocket knife	pocket knife	many blows	single blow
FRACTURE	228/53 145/90 358/58	270/72	N/A	N/A	00/000	00/000	00/000	00/000	195/40	020/68 133/50 035/80 190/90 080/80 135/80	160/45 135/90 190/90 225/70 280/85	06/060	00/000	088/48	073/75
BEDDING	00/000	00/000	N/A	N/A	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000
FAULT	00/000	00/000	N/A	N/A	00/000	00/000	00/000	00/000	00/000	00/000	00/000	150/50	00/000	00/000	00/000
SOIL DEPTH (m)	4.00	0.00	0.00	2.00	1.00	1.00	1.00	1.00	1.00	2.00	3.00	3.00	0.00	2.50	3.50
SLOPE HTGTH (m)	45	25	40	25	5	9	12	10	6	×	15	15	15	17	30
SLOPE	60	09	02	65	02	65	02	02	65	65	55	65	30	45	75
DESCRIPTION	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Natura/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non					
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
ы	421425	421600	423000	423400	419200	418860	419075	419110	419400	423380	424125	423700	423400	424903	424687
N	870435	870350	866420	863850	878400	877210	876700	876570	876360	870800	872800	870850	870650	894409	894618
STATION	PK32	PK33	PK34	PK35	PK36	PK37	PK38	PK39	PK40	PK41	PK42	PK43	PK44	PK45	PK46
No.	32	33	34	35	36	37	38	39	40	41	42	43	4	45	46

Appendix Table 1 Slope characteristics obtained from field investigation (Continued)

						1				1			
Ground Water Condition	Damp	Damp	Damp	Damp	Damp	Damp	Dry	Dry	Damp	Flowing	Damp	Flowing	Damp
Weathering	MW	SW	MW	MW	MW	МW	MW	MW	МW	Fresh	Fresh	MW	SW
Joint Spacing (cm)	8	8	8	8	8	8	5	4	4	5	8	4	9
Field Estimate Rock Strength	single blow	many blows	single blow	single blow	single blow	single blow	many blows	many blows	nail	many blows	many blows	single blow	single blow
FRACTURE	00/000	00/000	00/000	00/000	00/000	00/000	225/50 342/73 088/65	00/000	00/000	024/71 316/68 285/80 348/65 192/50 232/37	00/000	005/35 274/40 135/85 327/89 341/85	227/20 247/20 300/90 005/55
BEDDING	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000
FAULT	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000
SOIL DEPTH (m)	2.00	2.00	2.00	1.50	2.00	2.00	1.50	2.00	2.00	2.50	0.00	4.00	2.00
SLOPE HEIGTH (m)	5	6	4	5	4	9	8	4.5	9	L	15	20	12
SLOPE	50	45	65	50	45	40	50	45	45	45	45	35	65
DESCRIPTION	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
ы	421253	421160	420900	420533	420500	420650	419685	419670	419667	423150	422660	421058	422171
z	871622	871534	871500	871459	871650	871552	872021	871959	871881	876400	875681	869876	877455
STATION	PK47	PK48	PK49	PK50	PK51	PK52	PK53	PK54	PK55	PK56	PK57	PK58	PK59
No.	47	48	49	50	51	52	53	54	55	56	57	58	59

e 1 Slope characteristics obtained from field investigation (Continued))
pendix Table	

Ground Water Condition	Damp	Damp	Damp	Dry	Damp	Damp	Damp	Damp	Dry	Damp	Damp	Dry	Damp	Damp
Weathering	SW	SW	МW	Fresh	SW	SW	Fresh	MW	МW	MW	МW	MW	SW	SW
Joint Spacing (cm)	×	8	8	6	8	8	4	4	8	8	8	6	9	9
Field Estimate Rock Strength	single blow	single blow	single blow	pocket knife	pocket knife	pocket knife	many blows	pocket knife	single blow	single blow	single blow	single blow	single blow	single blow
FRACTURE	037/62 285/80 000/70 247/80 140/70	00/000	N/A	115/90 218/83 255/85	N/A	N/A	125/70 183/90 259/42 109/50 043/78	250/77 193/70 245/60	00/000	00/000	00/000	220/90 180/80	N/A	245/63 345/75
BEDDING	00/000	00/000	N/A	108/15	N/A	N/A	225/35	00/000	00/000	00/000	00/000	172/50	N/A	00/000
FAULT	028/70 135/75 208/87	00/000	\mathbf{N}/\mathbf{A}	xxx/145	N/A	N/A	00/000	00/000	00/000	00/000	00/000	258/63 049/90 011/90 084/90	N/A	00/000
SOIL DEPTH (m)	7.00	2.50	N/A	2.50	N/A	N/A	1.50	1.00	3.50	3.00	3.00	3.00	N/A	0.00
(m) ELOPE (m)	20	18	35	25	10	35	23	15	30	8	10	20	10	20
SLOPE	70	55	45	75	65	09	75	60	65	65	65	65	22	70
DESCRIPTION	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non
ROCK	Granite	Granite	Granite	Mud Stone	Mud Stone	Mud Stone	Mud Stone	Granite	Granite	Granite	Granite	Mud Stone	Mud Stone	Mud Stone
E	423650	421650	423100	432300	433650	434650	432500	422344	426640	427027	427044	427424	427584	428056
z	893550	892210	891193	866700	864200	863250	863900	861459	877600	877477	877431	877018	877208	877246
STATION	PK60	PK61	PK62	PK63	PK64	PK65	PK66	PK67	PK68	PK69	PK70	PK71	PK72	PK73
No.	60	61	62	63	64	65	99	67	68	69	70	71	72	73

<u>Appendix Table 1</u> Slope characteristics obtained from field investigation (Continued)

Ground Water Condition	Damp	Flowing	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Dry
Weathering	MW	MM	SW	SW	SW	SW	SW	SW	SW	SW	MS
Joint Spacing (cm)	4	4	4	9	6	8	8	8	8	∞	8
Field Estimate Rock Strength	single blow	many blows	many blows	single blow	single blow	single blow	single blow	single blow	many blows	many blows	many blows
FRACTURE	143/60 068/60 225/45 055/45	00/000	285/77 185/50 230/20	055/70 142/80 080/90 240/70 285/85	055/70 142/80 080/90 240/70 285/85	00/000	00/000	N/A	N/A	063/90 095/88 045/75 035/25 190/50 005/50	00/000
BEDDING	000/00	00/000	00/000	00/000	000/00	00/000	00/000	N/A	N/A	000/00	00/000
FAULT	00/000	00/000	010/20 232/75	00/000	00/000	00/000	00/000	N/A	N/A	00/000	00/000
SOIL DEPTH (m)	2.50	3.00	4.50	4.00	3.00	3.00	2.50	N/A	N/A	2.00	3.50
SLOPE HEIGTH (m)	6	15	20	45	20	13	10	38	40	6	9
SLOPE	65	55	50	75	75	75	75	45	45	30	75
DESCRIPTION	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
ы	422964	423631	423685	421419	421488	420550	420594	422597	423160	432044	431184
Z	874421	872366	872480	891543	891364	889448	889178	889746	887936	878459	877093
STATION	PK74	PK75	PK76	PK77	PK78	PK79	PK80	PK81	PK82	PK83	PK84
No.	74	75	76	L	78	6 <i>L</i>	80	81	82	83	84

<u>Appendix Table 1</u> Slope characteristics obtained from field investigation (Continued)

-			
Ground Water Condition	Damp	Damp	Damp
Weathering	MS	MS	SW
Joint Spacing (cm)	8	8	9
Field Estimate Rock Strength	many blows	many blows	many blows
FRACTURE	080/15 000/80 142/80	080/15 000/80 142/80	210/80 266/80 357/75 100/20 170/65 325/50
BEDDING	00/000	00/000	00/000
FAULT	00/000	00/000	090/86 1 <i>65/6</i> 0
SOIL DEPTH (m)	5.00	3.50	2.00
(m) HEIGTH (m)	15	10	29
SLOPE	75	65	85
DESCRIPTION	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non
ROCK	Granite	Granite	Mud Stone
ы	431043	430878	875161 430289
N	876928	876634	875161
STATION	PK85	PK86	PK87
No.	85	86	87

SMR	29.0	16.0	18.1	56.0	72.0	23.8	43.0	48.0	77.0	53.0	N/A	30.1	24.6	26.0	25.0
RMR	29	16	19	56	72	27	43	48	77	53	\mathbf{N}/\mathbf{A}	31	31	26	25
Ground Water Condition	Wet	Wet	Damp	Dry	Dry	Wet	Dry	Dry	Dry	Dry	N/A	Damp	Damp	Wet	Wet
Weathering	MW	МН	MH	SW	Fresh	MW	MW	SW	SW	SW	N/A	MW	MW	MW	MW
Joint Spacing (cm)	4	4	4	9	8	6	8	8	8	9		4	4	4	4
Field Estimate Rock Strength	single blow	nail	nail	single blow	many blows	pocket knife	nail	nail	many blows	single blow	V/N	pocket knife	pocket knife	pocket knife	nail
FRACTURE	00/000	000/00	025/45	N/A	00/000	183/88 073/69 026/45 130/64 215/18	N/A	N/A	N/A	N/A	N/A	135/60 100/45 317/55	270/35 017/87 256/87	00/000	00/00
BEDDING	00/000	080/88	00/000	N/A	00/000	324/40	N/A	N/A	N/A	N/A	N/A	00/000	00/000	00/000	00/000
FAULT	00/000	067/55	00/000	N/A	00/000	00/000	N/A	N/A	N/A	N/A	N/A	00/000	00/000	00/000	00/000
DESCRIPTION	Natural/ Fail	Natural/ Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Natural/Fail	Natural/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail
ROCK	Granite	Granite& Mud Stone	Granite	Granite	Mud Stone	Mud Stone	Mud Stone	Mud Stone	Granite	Granite	Granite	Granite	Granite	Granite	Granite
STATION	PK01	PK02	PK03	PK04	PK05	PK06	PK07	PK08	PK09	PK10	PK11	PK12	PK13	PK14	PK15
No.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15

SMR	25.0	31.0	16.6	26.6	34.0	60.0	40.0	56.4	47.8	61.0	N/A	59.1	70.0
RMR	25	31	23	33	34	60	40	60	52	61	\mathbf{N}/\mathbf{A}	60	02
Ground Water Condition	Wet	Damp	Flowing	Wet	Damp	Dry	Dry	Dry	Dry	Flowing	N/A	Damp	Dry
Weathering	MW	MW	MW	MW	MW	SW	MM	Fresh	MM	Fresh	N/A	SW	Fresh
Joint Spacing (cm)	4	9	9	4	8	8	4	∞	8	10	N/A	8	8
Field Estimate Rock Strength	nail	nail	pocket knife	single blow	pocket knife	single blow	single blow	single blow	single blow	many blows	N/A	many blows	many blows
FRACTURE	00/000	00/000	248/73 175/35	268/38 063/79	00/000	225/63 310/87	N/A	056/45 106/89 225/46 312/64	289/87 053/25 251/49 176/90	050/60 065/88 125/75 225/60	N/A	005/85 025/60 070/85 105/78	N/A
BEDDING	00/000	00/000	00/000	00/000	00/000	00/000	N/A	025/20	00/000	00/000	N/A	00/000	N/A
FAULT	00/000	00/000	00/000	072/73	00/000	00/000	N/A	00/000	00/000	00/000	N/A	225/50	N/A
DESCRIPTION	Cut Slope/Fail	Natural/Fail	Natural/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Mud Stone	Granite	Granite	Granite	Granite	Granite
STATION	PK16	PK17	PK18	PK19	PK20	PK21	PK22	PK23	PK24	PK25	PK26	PK27	PK28
No.	16	17	18	19	20	21	22	23	24	25	26	27	28

1		1												
	SMR	30.1	60.0	46.0	37.0	42.0	60.0	47.0	28.0	22.0	37.0	37.0	26.9	31.1
	RMR	31	60	46	37	42	60	47	28	22	37	37	45	32
	Ground Water Condition	Flowing	Damp	Dry	Damp	Damp	Damp	Wet	Damp	Damp	Damp	Damp	Damp	Dripping
	Weathering	MW	SW	SW	MW	MM	SW	MW	MM	CW	MW	MM	MM	MW
	Joint Spacing (cm)	3	8	9	5	8	8	8	4	4	4	4	8	9
	Field Estimate Rock Strength	many blows	many blows	nail	single blow	pocket knife	many blows	many blows	nail	pocket knife	many blows	many blows	single blow	single blow
	FRACTURE	213/50 337/70 125/70	N/A	00/000	228/53 145/90 358/58	270/72	N/A	N/A	00/000	00/000	00/000	00/000	195/40	020/68 133/50 035/80 190/90 080/80 135/80
	BEDDING	00/000	N/A	00/000	00/000	00/000	N/A	N/A	00/000	00/000	00/000	00/000	00/000	00/000
	FAULT	00/000	N/A	00/000	00/000	00/000	N/A	N/A	00/000	00/000	00/000	00/000	00/000	00/000
	DESCRIPTION	Cut Slope/Fail	Natural/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non
	ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
	STATION	PK29	PK30	PK31	PK32	PK33	PK34	PK35	PK36	PK37	PK38	PK39	PK40	PK41
	No.	29	30	31	32	33	34	35	36	37	38	68	40	41

SMR	37.1	41.1	50.0	59.1	55.0	45.0	60.0	45.0	50.0	45.0	50.0	47.1	53.0	28.0
RMR	38	42	50	09	22	45	09	45	50	45	20	48	23	28
Ground Water Condition	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Dry	Dry	Damp
Weathering	MW	MM	SW	SW	SW	MM	SW	MW	MW	MW	MM	MW	MM	MW
Joint Spacing (cm)	v	8	6	8	8	8	8	8	8	8	8	5	4	4
Field Estimate Rock Strength	single blow	pocket knife	pocket knife	many blows	single blow	single blow	many blows	single blow	single blow	single blow	single blow	many blows	many blows	nail
FRACTURE	160/45 135/90 190/90 225/70 280/85	06/060	00/000	088/48	073/75	00/000	000/00	00/000	00/000	00/000	00/000	225/50 342/73 088/65	00/000	00/000
BEDDING	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000
FAULT	00/000	150/50	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000	00/000
DESCRIPTION	Natural/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
STATION	PK42	PK43	PK44	PK45	PK46	PK47	PK48	PK49	PK50	PK51	PK52	PK53	PK54	PK55
No.	42	43	44	45	46	47	48	49	50	51	52	53	54	55

				1						
SMR	44.6	68.0	18.6	44.4	57.0	50.0	45.0	53.7	47.0	47.0
RMR	51	89	25	48	57	50	45	55	47	47
Ground Water Condition	Flowing	Damp	Flowing	Damp	Damp	Damp	Damp	Dry	Damp	Damp
Weathering	Fresh	Fresh	MW	SW	SW	SW	MM	Fresh	SW	SW
Joint Spacing (cm)	Ń	8	4	6	8	8	8	6	8	8
Field Estimate Rock Strength	many blows	many blows	single blow	single blow	single blow	single blow	single blow	pocket knife	pocket knife	pocket knife
FRACTURE	024/71 316/68 285/80 348/65 192/50 232/37	00/000	005/35 274/40 135/85 327/89 341/85	227/20 247/20 300/90 005/55	037/62 285/80 000/70 247/80 140/70	00/000	N/A	115/90 218/83 255/85	N/A	N/A
BEDDING	00/000	00/000	00/000	00/000	00/000	00/000	N/A	108/15	N/A	N/A
FAULT	00/000	00/000	00/000	00/000	028/70 135/75 208/87	00/000	N/A	xxx/145	N/A	N/A
DESCRIPTION	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Mud Stone	Mud Stone	Mud Stone
STATION	PK56	PK57	PK58	PK59	PK60	PK61	PK62	PK63	PK64	PK65
No.	56	27	58	59	60	61	62	63	64	65

			1						-		-
SMR	25.3	32.0	52.0	47.0	47.0	42.1	48.0	48.0	31.1	30.0	42.4
RMR	55	32	52	47	47	43	48	48	32	30	46
Ground Water Condition	Damp	Damp	Dry	Damp	Damp	Dry	Damp	Damp	Damp	Flowing	Damp
Weathering	Fresh	MM	MW	MW	MM	MW	SW	SW	MW	MW	SW
Joint Spacing (cm)	4	4	8	8	8	6	9	9	4	4	4
Field Estimate Rock Strength	many blows	pocket knife	single blow	single blow	single blow	single blow	single blow	single blow	single blow	many blows	many blows
FRACTURE	125/70 183/90 259/42 109/50 043/78	250/77 193/70 245/60	00/000	00/000	00/000	220/90 180/80	N/A	245/63 345/75	143/60 068/60 225/45 055/45	00/000	285/77 185/50 230/20
BEDDING	225/35	00/000	00/000	00/000	00/000	172/50	N/A	00/000	00/000	00/000	00/000
FAULT	00/000	00/00	00/000	00/000	00/000	258/63 049/90 011/90 084/90	N/A	00/000	000/00	00/000	010/20 232/75
DESCRIPTION	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Fail	Cut Slope/Fail	Cut Slope/Fail
ROCK	Mud Stone	Granite	Granite	Granite	Granite	Mud Stone	Mud Stone	Mud Stone	Granite	Granite	Granite
STATION	PK66	PK67	PK68	69Xd	PK70	PK71	PK72	PK73	PK74	5779	PK76
No.	66	67	68	69	70	71	72	73	74	75	76

	_	_	_	_	_	_		_	
SMR	48.0	48.0	57.0	57.0	57.0	55.0	65.4	77.0	70.7
RMR	48	48	27	57	27	55	69	LL	72
Ground Water Condition	Damp	Damp	Damp	Damp	Damp	Damp	Damp	Dry	Damp
Weathering	SW	SW	SW	SW	SW	SW	SW	SW	SW
Joint Spacing (cm)	Q	Q	8	8	8	8	8	8	×
Field Estimate Rock Strength	single blow	single blow	single blow	single blow	single blow	many blows	many blows	many blows	many blows
FRACTURE	055/70 142/80 080/90 240/70 285/85	055/70 142/80 080/90 240/70 285/85	00/000	00/000	N/A	N/A	063/90 095/88 045/75 035/25 190/50 005/50	00/000	080/15 000/80 142/80
BEDDING	00/000	00/000	00/000	00/000	N/A	N/A	00/000	00/000	00/000
FAULT	00/000	00/000	00/000	00/000	N/A	N/A	00/000	00/000	00/000
DESCRIPTION	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non	Cut Slope/Non
ROCK	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite
STATION	PK77	PK78	PK79	PK80	PK81	PK82	PK83	PK84	PK85
No.	77	78	6 <i>L</i>	80	81	82	83	84	85

SMR	66.7	4
	9	53.4
RMR	68	63
Ground Water Condition	Damp	Damp
Weathering	SW	SW
Joint Spacing (cm)	×	9
Field Estimate Rock Strength	many blows	many blows
FRACTURE	080/15 000/80 142/80	210/80 266/80 357/75 100/20 170/65 325/50
BEDDING	00/000	00/000
FAULT	00/000	090/86 165/60
DESCRIPTION	Cut Slope/Non	Mud Stone Cut Slope/Non
ROCK	Granite	Mud Stone
STATION	PK86	PK87
No.	86	87

Appendix Figure 1 Raingage station

Contour Interval : 10 mm.

<u>Appendix Figure 2</u> Cumulative rainfall intensity 3 days contour return period 1 years

Appendix Figure 3 Cumulative rainfall intensity 3 days contour return period 5 years

Appendix Figure 4 Cumulative rainfall intensity 3 days contour return period 20 years

<u>Appendix Figure 5</u> Cumulative rainfall intensity 3 days contour return period 50 years

<u>Appendix Figure 6</u> Cumulative rainfall intensity 3 days contour return period 100 years

<u>Appendix Table 3</u> Conclusion of result USCS, Aterberg's limits, sieve analysis and direct shear test, Phuket Source: Department of mineral resource (2006)

Position No.	Boring No.	nscs	LL At	Atterberg's Test	est PI	3/8"	#4	8#	#10	IJSIS LEST #30	#50	#100	#200	Initial water content	Wet Soil	ļ	% Reduction of Shear strength
														Max. Shear Stress	Max. Shear Stress	SRI	τl
Phuket	SPK 2		26.60	17.29	9.31									Noc.	No.		
•	SPK 02		24.69	15.80	8.89						Ī						
	SPK 03	ML	40.50	32.77	7.73	100.00	79.27	74.41	73.58	68.20	64.84	60.03	55.29	0.592	0.418	1.416	29
	SPK 03		42.17	20.49	21.68												
	SPK 03			ЧN													
	SPK 03		44.24	32.89	11.35												
4	SPK 3				ſ	100.00	92.44	71.22	66.03	41.95	31.76	24.42	19.51				
	SPK 04			dИ	ĺ				ĺ		ĺ						
	SDK 04			e di							I						
					ĺ	I	ĺ	ĺ	Î		Î						
	SPK 04			ЧZ													
	SPK 06	SM		ď		100.00	99.65	98.74	97.84	88.01	82.65	74.88	68.26				
	SPK 07	SM		ЧN		100.00	98.20	83.07	77.44	46.88	35.71	25.79	18.67				
	SPK 00	SM		ЦN		100 00	88 44	74.18	60.05	42 1G	33 22	75 08	20.75	0 658	0.460	1 430	30
	00 1 10	E NO			Ī	100.001		05.04	00.00	64.60	100	10.00	25 40	0.504	0.150	4 947	6
		0				00.001	30.10	10.00	00.00	04.03	00.40	10.01	01.00	0.004	-01.0	1.0.1	⁷
	SPK 13	NN NN		ЧN		100.00	96.13	/9.86	/6./0	65.33	60.34	54.35	48.99				
	SPK 14					100.00	88.50	70.16	66.33	49.69	43.52	37.49	32.28				
	SPK 18	sc	45.09	25.98	19.10	100.00	81.42	57.00	53.79	47.33	48.70	47.57	44.18	0.456	0.317	1.438	31
	SPK 20	MH	58.51	47.60	10.91	100 00	95.32	82.22	77 84	54.85	47 77	42.95	40.24		8		
		c	10100	10.01	10.64	100.001	1000	00.70	0.0 5.7	00.02	0.4.15	40.40	22.04				
		5	04.00	12.01	10.04	00.001	30.00	31.02	90.07	00.17	01.10	400	40.7.0				
	SPK 20	NN NN		ЧZ		100.00	98.00	88.13	83.96	52.47	38.21	21.91	20.92				
	SPK 20	SM		ď		100.00	97.96	96.56	96.00	72.79	51.73	38.13	30.25				
•	SPK 20					100.00	99.94	99.00	98.64	83.02	70.31	62.26	55.81				
	SPK 20					100.00	89.68	72.78	67.62	39.19	30.73	25.64	22.64				
4	SDK 24	CM				100.001	20.00	00.00	20.02	10.04	01.00	0.02	10.00	0.422	0.200	1 007	0
		100			Î	00.001	20.00	20.32	13.51	10.24	24.02	06.22	13.00	0.120	0.303	1.007	0
	SPK 23	SM		ЧN		100.00	35.45	27.97	26.77	20.87	18.60	16.78	14.74	0.819	0.512	1.600	37
	SPK 24	SM		ЧN		100.00	100.00	99.82	99.66	88.13	60.43	38.74	26.66	0.391	0.619	0.632	37
<u> </u>	SPK 27	SM		ЧN		100.00	98.08	83.52	78.31	53.79	44.87	37.92	32.63				
	SPK 27	WS		dИ	Î	100.00	80.87	72 35	66.81	34 96	24 41	17.76	13.85				
1	20102	20		2		100.000	100.00	20.00	10.00	00.10	25 74	01.10	10.00				
					Î	00.001	20.20	00.00	++. / /	10.00		20.13	10.01	0,00	100.0	1 010	
	SPK 28	NN		ł		100.00	GB.95	93.14	89.04	65.32	97.7G	50.13	43.87	0.643	0.385	1.6/0	40
	SPK 29	SM		٩		100.00	99.46	97.67	96.16	69.98	49.79	34.61	25.87				
	SPK 32	SM		ЧN		100.00	99.19	93.64	89.13	48.05	32.67	22.28	16.47				
	SPK 32	Ċ	37.41	21 45	15 96	100 00	99 45	93.61	88 11	63 95	56.16	48.45	42.87				
1		1			0000	00.000	01.00			00.000	0.000	2					
	2120 710	ō	00.00	141	00.01	00.001	00000		00.00	0010	00 10		10.01				
	SPK 32	cL	33.98	21.35	12.63	100.00	100.00	99.51	98.98	84.80	67.66	55.95	49.61				
	SPK 33	SM		ЧN		100.00	97.78	85.76	79.00	39.67	29.17	22.18	17.62				
	SPK 35													0.433	0.353	1.227	18
	SPK 40	C V	36.23	L	11 00	100 00	04 36	70 50	75 38	52 R1	A2 0.4	35.00	20 00	0 505	0.312	1 610	38
		0	04.00		0000	100.000	00.00	00.00	54.70	0.400	10.70	00.00	10.00	0.000	410:0	2001	3
	14 2 2 0	N0				00.00	02.33	00.00	04.14	04.00	10.12	24.43	0.03				
	SPK 42			ЧN		100.00	98.41	86.27	81.72	54.21	43.02	32.70	25.99				
	SPK 55	SM		ЧN		100.00	97.00	81.08	76.43	55.34	48.64	44.10	41.18	0.480	0.131	3.664	73
	SPK 58	CL	41.72	20.69	21.03	100.00	100.00	99.87	99.72	85.50	69.30	58.11	52.31	0.595	0.320	1.859	46
	SPK 60	MS.		ЧN		100 00	95.83	81.50	76.36	45.61	34.41	29.27	23.90				
	CDK 63		30 GE	22.10	E 17	100.001	07 96	05.01	05.21	00.70	05 A0	75.67	6717	0.406	0.460	1 060	G
			00000	2	t o	00.001	00.00	00.00	10.00	40.00	21.00	0.0		0:130	0.100	000-	>
		0		L I		00.001	10.03	41.23	42.01	13.20	14.7	20.0	0.00				
	SPK /U			ЧN		100.00	94.14	82.52	/9.48	61.94	53.11	44.19	36.24				
	SPK 71	SM		ď		100.00	99.80	97.69	96.43	77.36	63.12	49.65	39.14	0.550	0.437	1.259	21
	SPK 74		31.76	21.64	10.11												
	SPK 74	ML	44.61	25.84	18.77	100.00	95.38	89.08	87.48	71.18	60.57	53.67	48.65				
<u>.</u>	SPK 74	ML	26.96	23.51	3.45	100.00	99.76	99.28	98.84	86.56	64.66	48.39	38.85				
	SPK 74	W	25 36	22.00	3 27	100.00	08.47	06.14	05.67	77 20	53.07	38.42	3174				
			20.07	0.44	0.11	100.00	100	10000	20.00	10.00	20.00	26.40	10000				
	0 L L L L L	NO		Ż		100.001	88.60	98.89	38.02	80.31	40.00	30.12	23.81				
	SPK 74			ЧN													
	SPK 76	SM		ЧN		100.00	99.58	92.19	87.44	57.56	46.42	37.93	31.95				
	SPK 76	SM		ЧN		100.00	93.95	86.74	84.10	62.36	50.87	41.72	35.56				
	2KD 76				Î	100.001	00 00	03.65		57 58	36.07	26.43	10.67				
-	2KD 76				T	100.00	0.00 10 00	02.00	50.00 11 11	55 A1	11 00	21.75	10.01				
					T	100.00	20.41	00.13	04.41	00.4 -	41.33	01.10	24.40	1010	100 0		00
	SPK 77													0.491	0.301	1.631	39

Rang	Rock Type	PI	Wet Sieve	USCS	% Strength Reduction
Consistent			Analysis		
1	Sandstone	NP	Uniform grade	SM	>50%
2	Granite	NP	Well grade	SM	<50%
3	Mudstone	NP&PI>6	Gap grade	SM&CL	20%-70%
4	Shale	PI>6	Gap grade	ML	20%-40%

<u>Appendix Table 4</u> Consistency index of soil following parent rock type

Source: Department of mineral resource (2006)

SMR		18.10	23.81	24.63	26.00	25.00	25.00	26.63	34.00	30.10	37.00	28.00	22.00	37.00	37.00	26.94	45.00	45.00	50.00	45.00	53.00	28.00	44.63	18.63	44.40	32.00	31.10	30.00	42.40
RMR		19	27	31	26	25	25	33	34	31	37	28	22	37	37	45	45	45	50	45	53	28	51	25	48	32	32	30	46
INTENSITY_100	mm.	387.5	362.5	462.5	462.5	462.5	462.5	437.5	437.5	412.5	362.5	437.5	412.5	412.5	412.5	412.5	387.5	387.5	387.5	387.5	387.5	387.5	412.5	362.5	437.5	337.5	387.5	387.5	387.5
INTENSITY_001	mm.	135	135	135	135	135	135	135	135	135	145	135	135	135	135	135	145	145	145	145	145	145	135	145	135	145	135	135	135
ENGINEERING		4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
SOILTEXTURE		3	2	3	3	3	3	3	3	3	3	2	3	3	3	3	2	3	3	3	3	2	3	3	3	3	3	3	3
LANDUSE		3	4	3	3	1	1	4	4	1	3	4	1	4	4	4	4	1	4	4	3	3	4	3	1	4	1	4	4
DRAINAGE		1	4	1	1	1	4	1	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	4	1	1
ELEVATION	m.	72.93	61.51	277.14	270.49	339.69	389.57	90.92	41.96	89.82	64.01	57.30	116.64	161.43	144.66	39.90	49.23	86.85	64.22	43.45	31.18	30.29	300.00	32.80	20.00	99.47	138.76	68.98	65.05
SLOPE	(degree)	28	27	18	15	27	14	24	27	22	29	27	23	23	16	14	18	12	6	7	24	25	29	13	28	24	25	15	21
LINEAMENT		1	1	1	1	1	1	1	5	1	1	1	1	1	1	5	1	1	1	1	1	1	5	1	5	1	1	5	5
ROCKTYPE		5	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
CONDITION		Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail
STATION		PK03	PK06	PK13	PK14	PK15	PK16	PK19	PK20	PK29	PK32	PK36	PK37	PK38	PK39	PK40	PK47	PK49	PK50	PK51	PK54	PK55	PK56	PK58	PK59	PK67	PK74	PK75	PK76
No.		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

ression analysis
Data failure slope condition for regression analysi
illure slope co
<u>5</u> Data fai
Appendix Table

•	analysıs
	egression
	<u>11X Table 6</u> Data non-tailure slope condition for regression analysis
-	re slope co
:	Data non-failu
	Table 6 Dat
:	Appendix

SMR		72.00	60.00	56.40	47.80	61.00	59.10	46.00	42.00	31.10	41.10	50.00	59.10	55.00	60.00	50.00	47.10	68.00	57.00	50.00	53.65	25.25	52.00	47.00	47.00	42.10	48.00	48.00	48.00
RMR		72	60	60	52	61	60	46	42	32	42	50	60	55	60	50	48	68	57	50	55	55	52	47	47	43	48	48	48
INTENSITY_100	mm.	337.5	437.5	437.5	412.5	437.5	387.5	362.5	362.5	362.5	362.5	362.5	487.5	487.5	387.5	387.5	387.5	412.5	487.5	487.5	337.5	312.5	437.5	437.5	437.5	437.5	437.5	487.5	487.5
INTENSITY_001	mm.	135	135	125	135	135	135	135	145	135	135	135	125	125	145	145	145	135	125	125	135	145	135	135	135	135	135	125	125
ENGINEERING		3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	0	3	3	4	3	3	3	3	4	4
SOILTEXTURE		2	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	0	2	2	3	2	2	2	2	3	3
LANDUSE		3	4	4	1	1	1	4	4	4	4	4	4	1	1	1	3	4	4	4	3	4	4	1	1	4	4	4	4
DRAINAGE		1	1	1	1	1	4	4	1	4	4	1	4	1	1	1	1	4	4	1	4	1	1	1	4	4	4	1	1
ELEVATION	m.	34.72	112.33	109.37	229.65	168.97	201.84	95.74	66.54	140.00	181.73	140.54	61.83	71.57	62.55	60.00	20.20	162.61	40.00	109.64	43.59	102.78	100.00	108.09	101.34	60.00	94.62	121.50	117.78
SLOPE	(degree)	33	25	28	37	19	19	16	25	11	20	20	13	23	23	16	20	17	18	22	22	30	23	31	25	9	17	22	19
LINEAMENT		1	1	5	1	5	1	1	1	5	1	1	1	1	1	1	1	1	5	5	5	1	1	5	5	5	5	5	1
ROCKTYPE		4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	0	4	4	5	4	4	4	4	5	5
CONDITION		No Fail																											
STATION		PK05	PK21	PK23	PK24	PK25	PK27	PK31	PK33	PK41	PK43	PK44	PK45	PK46	PK48	PK52	PK53	PK57	PK60	PK61	PK63	PK66	PK68	PK69	PK70	PK71	PK73	PK77	PK78
No.		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

٨R		57.00	57.00	65.40	77.00	70.65	66.65	53.40
R SMR								
RM		57	57	69	77	72	68	63
INTENSITY_100	mm.	487.5	487.5	437.5	437.5	437.5	437.5	412.5
ENGINEERING INTENSITY_001 INTENSITY_100 RMR	mm.	135	135	125	125	125	125	135
ENGINEERING		4	4	4	4	4	4	4
SOILTEXTURE		2	2	1	3	3	3	3
LANDUSE		4	4	4	4	4	4	4
DRAINAGE LANDUSE		1	4	4	1	1	1	1
ELEVATION	m.	73.63	44.62	38.31	74.98	99.50	102.70	92.24
SLOPE	(degree)	20	23	10	30	20	22	34
LINEAMENT		1	1	5	1	1	1	5
ROCKTYPE		5	5	5	5	5	5	5
CONDITION		No Fail						
STATION		PK79	PK80	PK83	PK84	PK85	PK86	PK87
No.		29	30	31	32	33	34	35

Appendix Table 6 Data non-failure slope condition for regression analysis (Continued)

CURRICULUM VITAE

NAME	: Mr. Damrong Pungsuwan		
BIRTH DATE	: July 9, 1976		
BIRTH PLACE	: Chiang mai, Thailand		
EDUCATION	: <u>YEAR</u>	INSTITUTION	DEGREE/DIPLOMA
	1999	Chiang mai Univ.	B.S. Eng. (Civil)
	2003	Sukhothai thammathirat Univ.	B.B.A. (Construction
			Management)
POSITION/TITL		: Civil Engineer	
WORK PLACE		: Engineering Design Consultant Co.Ltd.	