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Abstract 
 

Quadratic programming is an important optimization problem that has applications in many areas such as finance, 

control, and management. Quadratic programs arisen in practice are often large but sparse, and they usually cannot be solved 

efficiently without exploiting their structures. Since existing methods for quadratic programming deal with dense cases and do 

not take advantage of any specific sparsity patterns in the problems, we propose a method to efficiently compute the search 

directions for the primal-dual path-following interior-point method for the large-scale quadratic programs whose Hessian 

matrices have block diagonal structures and whose constraint matrices are dense by exploiting the special sparsity pattern in the 

problems to avoid unnecessary computations involving blocks of zeros. Examples of quadratic programs with such structure, to 

which our method can be applied, are linear model predictive control in automatic control and portfolio optimization where 

securities from different sectors are weakly correlated. The time complexity of our method is significantly smaller than that of 

using a sparse linear solver. Additionally, the computational results show that our method is faster. 
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1. Introduction 
 

 Quadratic programming is a class of constrained 

optimization with quadratic objective function and linear 

constraints. It has applications in many areas such as 

prediction, control, modeling, finance, engineering, and 

management (Bartlett, Biegler, Backstrom, & Gopal, 2002; 

Kim & Rassias, 2007; Kouzoupis et al., 2018; Liu, Wang, & 

Rong, 2009; Mitsuia & Tabata, 2008; Zhang, Xu, Di, & 

Thomson, 2002; Zhang, Zhong, Wu, & Liao, 2006;). 

Moreover, quadratic programming is used as a part of 

sequential quadratic programming (SQP) to solve nonlinear 

programming problems, which has many applications such as 

in the optimal power flow problem in DC grids (Montoya, 

Gil-Gonzáles, & Garces, 2019). The basic idea of SQP is to 

model nonlinear programs at a given approximate solution by 

 
a quadratic programming subproblem, and then use the 

solution of this subproblem to construct a better 

approximation in the next iteration (Boggs & Tolle, 1995). 

Most algorithms developed for quadratic 

programming can be categorized into two classes: active set 

methods and interior-point methods. Active set methods begin 

by guessing the optimal active set of constraints, which are 

constraints that hold with equality at the current point. The 

methods repeatedly drop one index from the current active set 

and add a new one until the optimal set is detected (Hüeber, 

Mair, & Wohlmuth, 2005; Yu, Lin, & Hung, 2009). Interior-

point methods were developed from Karmarkar's algorithm 

for linear programming (Karmarkar, 1984). They approach a 

solution by traversing the interior of the feasible region 

(Ternet & Biegler, 1999; Wright, 1992; Wang & Bai, 2009).  

We focus on interior-point methods as their worst-case time 

complexity is polynomial while that of active set methods is 

exponential. Additionally, it is much easier to exploit the 

sparsity pattern in interior-point methods than active set ones 

(Potra & Wright, 2000).   
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For large scale quadratic programs, the numbers of 

variables are so large that they cannot be solved 

straightforwardly in reasonable amount of time. Moreover, 

storing such large amount of data is impractical. For these 

reasons, many methods were proposed that exploit sparsity in 

the problems to reduce computational time. For example, 

Rosen and Pardalos (1986) proposed a method for large-scale 

constrained concave quadratic programming problems, which 

reduced a problem to an equivalent separable quadratic 

program and then solved a multiple-cost-row linear program 

with 2n cost rows, where n was the dimension of the variable. 

If the solution was not a satisfactory approximation, a 

guaranteed -approximate solution was obtained by solving a 

single linear zero-one mixed integer programming problem. 

Gill et al. (U.S. Systems Optimization Lab., Stanford 

University, 1986) proposed a method based on the Schur 

complement. Their method is suitable for the problem with 

specialized factorization. Gould and Toint (Gould & Toint, 

2002) proposed a method to solve large-scale nonconvex 

quadratic programming problems by using a working-set 

method. It is a two-level iterative method. The first level is to 

select the working set of constraints. The second level uses 

preconditioned conjugate gradient method to solve the 

problem with the selected working set. Hui-Min Li and Ke-

Cun Zhang (Li & Zhang, 2006) decomposed the large-scale 

quadratic problem into a series of small problems and then 

solved these small problems serially to approximate the 

solution.  

In this article, we study the quadratic programs 

whose Hessian matrix in the objective function is block 

diagonal with dense linearly inequality constraint matrices. 

For each iteration, an interior point method computes the 

search direction that improves the approximate solution. 

(Nocedal & Wright, 2006) However, computing the search 

direction for large scale problems takes prohibitively 

expensive computational time. To improve the efficiency 

when the Hessian matrix has the specific sparsity pattern, we 

propose an efficient method of compute the search direction 

for such special cases. We note that the computed search 

direction is the same one as in the traditional interior point 

method. By exploiting the known sparsity pattern of the 

problem, our method efficiently computes the search 

directions of an interior-point method for such quadratic 

programs without compromising the optimality of the method. 

We begin by defining the block diagonal quadratic 

programs and reviewing primal-dual path-following interior-

point methods in Section 2. Section 3 describes our method 

for the block diagonal quadratic problems. Section 4 shows 

the computational results. Section 5 shows the conclusion. 

 

2. Block diagonal quadratic programs and primal- 

    dual path-following interior-point method 

 

Consider a block diagonal quadratic program with 

linear inequality constraints 

 

,                                            (1) 

where , , , , and 

. The Hessian matrix  is in the form 

 

, 

 

where  (  = 1, 2,..., ) and  is the number of 

diagonal blocks in . Note that  is symmetric positive 

semidefinite if and only if 's are symmetric positive 

semidefinite. Recall that . This Hessian structure 

is called block diagonal matrix. 

Primal-dual path-following interior-point methods 

for quadratic programming use perturbed KKT conditions 

 

                    (2) 

 

where , , 

, , , 

and  is the number of constraints. Note that the variables  

and  are dual variables of (1). 

Let  be a starting point, not necessarily 

feasible, such that . A primal-dual path-

following interior-point method iterates by solving 

 

                                        (3) 

 

for the search direction , where 

, , and 

, setting the next point to be 

 

,                         (4) 

 

where  is the step length, and repeating until  is 

close to 0 (Nocedal & Wright, 2006). The step length is 

typically chosen as the largest number to obtain 

. Note that the “normal equations” form of 

(3) is 

 

 ,         (5) 

 

which can be solved by means of a modified Cholesky 

algorithm. Solving (5) for  is efficient if the term 

 is not too dense compared with . In the case of 
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 being block diagonal,  is generally 

dense therefore we cannot take advantage of sparsity when 

solving (5). 

 

3. Derivation of our Method 
 

Traditionally, the search direction for each step is 

computed by solving (5) for  using the large Hessian 

matrix  and then substituting it to compute  and  

from (3). Our method computes the same search direction but 

from the smaller nonzero diagonal blocks .  It divides the 

other variables corresponding to the size of each . To take 

advantage of block diagonal Hessian, write , , , and  

as 

 

 
 

where , , , and . 

Our method computes the search direction using these smaller 

variables. Rewrite (3) as 

 

                            (6) 

 

                                             (7) 

 

                                                               (8) 

 

where 

 

                     (9) 

 

Next, we rewrite (6) and (8) as  

 

               (10) 

 

.                                                      (11) 

 

Finally, substituting (10) and (11) into (7) yields 

 

 
 

or, equivalently, 

 

         (12) 

 

Therefore, the search direction can be computed by 

solving (12) for  and obtain  and  from (10) and 

(11), respectively. Algorithm 1 below describes the path-

following interior-point method that uses the proposed method 

to compute the search direction. 

 

Algorithm 1 

 

1: Set  

2: Let  be a point with  

3:  

4: for  do 

5:  

6: end for 

7: for  do 

8: Set  

9: Compute   

10: Compute  

11: Set  

12: for  do 

13:  Compute  from (9) 

14:   

15: end for 

16: Solve  for  

17:  

18: for  do 

19:  Solve  for  

20: end for 

21:  

22:  

23: Select  

24: Set  

  
25:  

26: end for 

 

Remarks for the Algorithm 1 

 

 We do not explicitly compute 's. Instead, 

we precompute the Cholesky factors of 's 

once and reuse them to compute , , and . 

 The direction  can be computed efficiently 

because  is diagonal. 

 The parameter  controls how far we 

back off from the maximum step. 

 Instead of computing  directly, we compute 

each  from )9(. 
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Algorithm 1 presents the interior point method using 

our proposed method for computing the search direction. 

Normally, for iteration , the interior point method computes 

the search direction , determines the step 

length , updates the solution , and 

recomputes . The method repeats until  converges to zero. 

Instead of computing the search direction by solving (5) for 

 and then substituting it to obtain  and , our 

method first computes  once and use it in all 

iteration. For each iteration, we compute  from (12) and 

then  from (11). Finally, we compute each  (  = 1, 

2,..., ) from (10). These computation are shown on line 16 to 

20 of Algorithm 1. Recall that  is the number of diagonal 

blocks in  and  is the number of constraints.Our algorithm 

requires  operations for the 

preprocessing and  operations 

per iterate. As comparison, note that the conventional interior-

point method that solves (5) for search directions requires 

 per iterate. 

 

4. Computational Results 
 

In this section we compare the computational time 

of the following three methods for computing search 

directions for block diagonal quadratic programs in MATLAB 

R2011a: (i) solving (5) for  and then substituting it to 

compute  and , (ii) solving (3) using MATLAB sparse 

linear solver, and (iii) our method as described in Section 3. 

Method (i) is the regular method to compute search direction 

without consider the sparsity of matrix. Method (ii) stores the 

variables in the sparse format and uses the sparse linear solver 

to compute the search direction. As these three methods 

compute the same solution but in different ways and the 

solution is too large to report in the tables, we show only the 

computational time in our experimental results. While there 

are publically available datasets for quadratic programming, to 

the best of our knowledge, there are none with block diagonal 

Hessian matrices with linear constraints. Moreover, the 

running time of our method does not depend on the values of 

the input but on the number of diagonal blocks and the sizes 

of each blocks. For this reason, we test the three methods on 

randomly generated data with varying sizes. The experiment 

was performed on different problem sizes varying from 100 to 

2,500 variables on a computer with an Intel Pentium M 740 

1.73 GHz processor and 2 GB RAM. For each problem size, 

we compare average computation time per iterate of problems 

with different numbers of equally-sized diagonal blocks. We 

also vary the number of constraints for 20, 50, and 80 percent 

of the number of variables. We use the same   and 

 for the three methods in our experiment. Although 

the values of  and  can change the number of iterations 

needed to converge, they do not affect the required 

computation time in each iteration. Since the three methods 

always use the same number of iterations to converge, the 

chosen values do not affect the comparison between the 

methods in any case as they differ only in their computation 

time in each iteration. For each case, we test with ten different 

instances. The results are shown in Tables 1-7. We show 

average number of iterates ( ) for each problems. 

Columns , , and  show average time per iterate for 

methods (i), (ii), and (iii), respectively. Note that average time 

per iterate in our experiment also includes preprocessing time.  

 
Table 1. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 100 

variable problems with different number of constraints 
 

N ni 

m = 20 m = 50 m = 80 

iter. 
t1 

(ms) 
t2 

(ms) 
t3 

(ms) 
iter. 

t1 
(ms) 

t2 
(ms) 

t3 
(ms) 

iter. 
t1 

(ms) 
t2 

(ms) 
t3 

(ms) 
              

2 50 19.8 0.983 3.783 0.457 20.2 1.595 11.021 0.705 21.5 2.195 12.746 1.130 

5 20 19.7 1.016 2.710 0.619 20.7 1.521 6.555 0.874 21.8 2.135 11.115 1.288 
10 10 19.7 0.983 2.501 0.990 20.7 1.523 5.335 1.240 21.8 2.075 9.718 1.684 

20 5 19.5 0.988 2.077 1.707 21.0 1.570 5.094 1.969 21.6 2.140 9.472 2.396 

50 2 19.5 0.984 2.087 3.917 20.6 1.527 4.820 4.205 21.7 2.054 9.459 4.693 
              

 
Table 2. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 500 

variable problems with different number of constraints 
 

N ni 

m = 100 m = 250 m = 400 

iter. 
t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
              

2 250 20.0 32.24 88.61 9.86 21.6 54.94 174.40 19.43 23.0 97.63 494.15 52.52 

5 100 20.3 32.24 56.93 4.17 21.7 54.98 185.82 14.19 23.2 97.71 389.89 43.78 
10 50 20.6 32.47 52.57 4.23 21.9 55.02 149.12 14.01 23.1 97.68 338.65 42.24 

20 25 20.2 32.90 47.16 4.63 21.6 55.02 141.52 14.46 23.4 97.70 311.20 43.55 

25 20 20.2 33.57 39.74 4.89 21.3 55.05 137.02 15.01 23.3 97.79 315.73 44.14 

50 10 20.4 33.65 39.10 6.81 21.8 54.86 138.17 17.26 23.4 97.67 313.92 48.28 

100 5 20.5 33.78 37.86 10.62 21.6 55.04 134.20 21.16 22.8 97.72 309.68 56.39 
250 2 20.4 33.05 38.24 22.28 21.6 55.05 132.01 34.17 23.3 97.65 307.25 80.44 
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Table 3. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 1,000 

variable problems with different number of constraints 
 

N ni 

m = 200 m = 500 m = 800 

iter. 
t1 

(ms) 
t2 

(ms) 
t3 

(ms) 
iter. 

t1 
(ms) 

t2 
(ms) 

t3 
(ms) 

iter. 
t1 

(ms) 
t2 

(ms) 
t3 

(ms) 
              

2 500 20.5 0.183 0.408 0.067 21.8 0.339 0.804 0.140 23.3 0.647 2.592 0.310 
5 200 20.6 0.183 0.262 0.019 22.1 0.340 0.879 0.095 23.7 0.652 1.946 0.263 

10 100 20.8 0.184 0.242 0.015 22.0 0.338 0.745 0.082 24.0 0.653 1.723 0.256 

20 50 21.0 0.183 0.219 0.014 22.0 0.337 0.689 0.081 23.8 0.652 1.624 0.242 
25 40 20.9 0.183 0.188 0.014 22.0 0.337 0.680 0.081 23.9 0.651 1.572 0.243 

40 25 21.0 0.183 0.185 0.016 22.0 0.338 0.682 0.084 23.7 0.652 1.562 0.249 

50 20 20.5 0.182 0.180 0.016 21.9 0.337 0.660 0.086 24.0 0.652 1.581 0.254 

100 10 20.9 0.183 0.176 0.020 22.2 0.339 0.706 0.099 24.3 0.653 1.606 0.283 

200 5 20.5 0.183 0.177 0.029 22.0 0.341 0.638 0.123 23.8 0.652 1.569 0.342 

500 2 20.6 0.183 0.179 0.054 22.4 0.347 0.649 0.193 24.0 0.652 1.579 0.508 
              

 
Table 4. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 1,500 

variable problems with different number of constraints 
 

N ni 

m = 300 m = 750 m = 1200 

iter. 
t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
              

2 750 20.5 0.502 0.983 0.157 22.1 0.996 1.974 0.361 23.8 2.010 7.208 0.887 

5 300 20.8 0.503 0.632 0.082 22.2 1.001 2.264 0.281 24.4 2.005 5.406 0.819 
10 150 20.8 0.503 0.585 0.037 22.5 1.002 1.818 0.243 24.0 2.013 4.740 0.784 

20 75 20.9 0.503 0.516 0.039 22.2 1.001 1.696 0.224 24.2 2.015 4.308 0.782 

25 60 21.0 0.503 0.446 0.035 22.3 1.002 1.724 0.217 24.3 2.015 4.257 0.783 
30 50 21.0 0.502 0.438 0.036 22.4 1.001 1.684 0.219 24.1 2.016 4.295 0.745 

50 30 20.9 0.503 0.432 0.038 22.1 1.003 1.656 0.226 24.3 2.017 4.264 0.763 

60 25 20.9 0.503 0.428 0.039 22.4 1.003 1.671 0.231 24.1 2.016 4.253 0.777 
75 20 21.1 0.504 0.423 0.040 22.5 1.003 1.644 0.238 24.4 2.016 4.154 0.792 

150 10 20.9 0.503 0.416 0.050 22.5 1.002 1.644 0.278 24.1 2.016 4.117 0.880 

300 5 20.8 0.503 0.418 0.069 22.2 1.003 1.619 0.362 24.2 2.015 4.188 1.061 
750 2 20.7 0.503 0.423 0.124 22.5 1.001 1.599 0.601 24.2 2.001 4.227 1.587 

              

 

Table 5. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 2,000 

variable problems with different number of constraints 
 

N ni 

m = 400 m = 1000 m = 1600 

iter. 
t1 

(ms) 
t2 

(ms) 
t3 

(ms) 
iter. 

t1 
(ms) 

t2 
(ms) 

t3 
(ms) 

iter. 
t1 

(ms) 
t2 

(ms) 
t3 

(ms) 
              

2 1000 20.6 1.107 1.835 0.318 22.0 2.724 3.865 0.779 24.1 5.804 17.512 1.939 
5 400 21.0 1.110 1.173 0.162 22.7 2.724 4.522 0.626 24.4 5.805 11.573 1.786 

10 200 20.9 1.112 1.080 0.096 22.5 2.734 3.597 0.559 24.5 5.805 10.088 1.733 

20 100 21.1 1.110 0.976 0.080 22.9 2.737 3.401 0.544 24.4 5.808 9.469 1.725 
25 80 21.0 1.111 0.842 0.073 22.5 2.734 3.376 0.542 24.3 5.809 9.157 1.725 

40 50 21.0 1.108 0.814 0.067 22.5 2.740 3.326 0.505 24.5 5.815 8.901 1.737 

50 40 21.1 1.109 0.794 0.068 22.4 2.736 3.239 0.512 24.3 5.813 9.067 1.696 
80 25 21.2 1.110 0.801 0.073 22.5 2.737 3.333 0.536 24.2 5.813 8.923 1.751 

100 20 20.9 1.105 0.779 0.077 22.4 2.734 3.686 0.553 24.6 5.816 9.291 1.788 

200 10 21.0 1.110 0.779 0.094 22.7 2.734 3.195 0.646 24.5 5.817 9.113 1.983 
400 5 21.0 1.109 0.780 0.129 22.5 2.734 3.089 0.830 24.7 5.810 9.086 2.375 

1000 2 21.0 1.109 0.798 0.234 22.6 2.723 3.211 1.365 24.6 5.805 9.290 3.553 
              

 

Table 6. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 2,500 
variable problems with different number of constraints 

 

N ni 

m = 300 m = 750 m = 1200 

iter. 
t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
              

2 1250 21.0 1.948 3.002 0.486 22.4 4.743 6.394 1.249 24.5 11.202 34.712 3.539 

5 500 21.1 1.982 1.903 0.275 22.7 4.655 7.647 1.034 24.4 11.403 21.441 3.326 

10 250 21.0 2.014 1.777 0.177 22.3 4.693 6.078 0.941 24.6 11.384 19.382 3.242 
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Table 6. Continued. 
 

N ni 

m = 300 m = 750 m = 1200 

iter. 
t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
              

20 125 21.0 2.016 1.649 0.115 22.7 4.680 6.012 0.916 24.7 11.363 17.280 3.240 

25 100 21.1 2.040 1.346 0.119 22.6 4.711 5.826 0.915 24.2 11.353 16.855 3.242 
50 50 21.2 2.032 1.283 0.116 22.5 4.751 5.579 0.860 24.6 11.354 17.106 3.280 

100 25 21.0 2.021 1.259 0.125 22.6 4.743 5.531 0.922 24.7 11.245 16.598 3.297 

125 20 20.9 2.028 1.246 0.130 22.7 4.743 5.642 0.955 24.6 10.861 16.112 3.377 
250 10 21.0 2.033 1.340 0.163 22.7 4.792 5.480 1.117 24.8 11.017 15.959 3.758 

500 5 21.1 2.040 1.255 0.228 22.8 4.772 5.565 1.444 24.9 11.157 16.481 4.520 

1250 2 21.1 2.021 1.276 0.432 22.6 4.790 5.398 2.458 24.8 11.289 16.293 6.773 
              

 
Table 7. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 4,000 

variable problems with different number of constraints 
 

N ni 

m = 300 m = 750 m = 1200 

iter. 
t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
iter. 

t1 

(ms) 

t2 

(ms) 

t3 

(ms) 
              

2 2000 21.0 7.093 9.173 1.547 22.7 16.780 - 4.207 24.9 40.524 - 11.873 

5 800 21.1 7.050 5.691 0.825 22.9 17.068 - 3.435 25.3 40.825 - 11.121 
10 400 21.2 7.047 5.139 0.594 22.8 16.856 - 3.252 25.0 41.462 - 10.837 

20 200 21.1 7.032 4.568 0.450 23.0 16.538 - 3.155 25.0 41.965 - 10.780 

25 160 21.1 7.029 3.903 0.444 23.1 16.670 - 3.137 25.2 41.406 - 10.793 
50 80 21.2 7.025 3.737 0.353 23.0 16.701 - 3.151 25.1 40.909 - 10.930 

80 50 21.3 7.020 3.758 0.363 23.0 16.684 - 3.205 25.1 40.563 - 11.096 

160 25 21.4 7.016 3.615 0.401 23.0 16.639 - 3.250 25.2 40.657 - 11.571 
200 20 21.0 7.019 3.620 0.478 23.0 16.646 - 3.424 25.5 40.993 - 11.549 

400 10 21.0 7.024 3.616 0.623 23.0 16.618 - 4.197 25.1 40.821 - 13.035 

800 5 21.4 7.023 3.623 0.838 23.0 16.559 - 5.526 25.2 41.137 - 16.017 
2000 2 21.3 7.021 3.758 1.610 23.0 16.453 - 9.285 25.1 40.840 - 24.824 

              

 

The results of experiment show that, for problems 

with the same number of variables and constraints, average 

time per iterate of method (i) does not depend on the number 

of diagonal blocks, which is as expected since method (i) does 

not take advantage of any sparsity in the data. Method (ii), on 

the other hand, is more efficient for problems with many 

smaller diagonal blocks than for problems with few larger 

diagonal blocks. This is because a problem with few larger 

diagonal blocks has more nonzero elements compared to a 

problem with many smaller diagonal blocks. Finally, method 

(iii) performs best when the number of diagonal blocks is 

neither too large nor too small. In other words, it performs 

best when the number of groups is about the same as the 

number of variables in each group. This is because a larger 

number of (small) blocks implies the linear systems that the 

method has to solve are smaller.  On the other hand, if the 

number of blocks is too high, the method has to solve many 

linear systems, which incur high overhead in MATLAB 

causing higher computation time. 

In our experiment, the constraint matrices are dense. 

When the number of constraints is very high, method (ii) is 

the slowest among the three methods.  The reason is that 

method (ii) stores the variables in the sparse format, which is 

not suitable for large and dense matrix computation. On large 

problems, such as those with 500 variables or more, method 

(iii) is the fastest among the three. We note that for a small 

number of constraints, the method (iii) is significantly faster 

than the other two methods.  

Note that we do not have results of method (ii) for 

problems with 4,000 variables and 2,000 or more constraints. 

This is because the matrix in (3) that is used by method (ii) is 

too large and too dense to store in the main memory of our 

system. However, method (i) and method (iii) do not have this 

problem and can compute the search directions normally. 

 

5. Conclusions 
 

This article proposes an efficient method to compute 

search directions of primal-dual interior-point method for 

block diagonal quadratic programs. Our method separates 

variables according to the diagonal blocks of the Hessian 

matrix and uses the components to compute search directions. 

Our method has better time complexity, and we show 

experimentally that it uses less computational time than 

conventional methods for computing search directions. It is 

seen that our method is suitable for large scale problem with 

either small or large numbers of constraints. In any case, the 

advantage of our method is limited to the problems whose 

Hessian matrices are block diagonal; the method cannot be 

applied to quadratic programs with other sparsity patterns. 
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