

*Corresponding author

 Email address: gun@siit.tu.ac.th

Songklanakarin J. Sci. Technol.

43 (5), 1449-1455, Sep. - Oct. 2021

Original Article

Efficient method to compute search directions

of infeasible primal-dual path-following interior-point method

for large scale block diagonal quadratic programming

Duangpen Jetpipattanapong and Gun Srijuntongsiri*

School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology,

Thammasat University, Khlong Luang, Pathum Thani, 12120 Thailand

Received: 18 December 2019; Revised: 20 August 2020; Accepted: 30 November 2020

Abstract

Quadratic programming is an important optimization problem that has applications in many areas such as finance,

control, and management. Quadratic programs arisen in practice are often large but sparse, and they usually cannot be solved

efficiently without exploiting their structures. Since existing methods for quadratic programming deal with dense cases and do

not take advantage of any specific sparsity patterns in the problems, we propose a method to efficiently compute the search

directions for the primal-dual path-following interior-point method for the large-scale quadratic programs whose Hessian

matrices have block diagonal structures and whose constraint matrices are dense by exploiting the special sparsity pattern in the

problems to avoid unnecessary computations involving blocks of zeros. Examples of quadratic programs with such structure, to

which our method can be applied, are linear model predictive control in automatic control and portfolio optimization where

securities from different sectors are weakly correlated. The time complexity of our method is significantly smaller than that of

using a sparse linear solver. Additionally, the computational results show that our method is faster.

Keywords: large scale quadratic programming, block diagonal, interior-point method, primal-dual path following, optimization

1. Introduction

 Quadratic programming is a class of constrained

optimization with quadratic objective function and linear

constraints. It has applications in many areas such as

prediction, control, modeling, finance, engineering, and

management (Bartlett, Biegler, Backstrom, & Gopal, 2002;

Kim & Rassias, 2007; Kouzoupis et al., 2018; Liu, Wang, &

Rong, 2009; Mitsuia & Tabata, 2008; Zhang, Xu, Di, &

Thomson, 2002; Zhang, Zhong, Wu, & Liao, 2006;).

Moreover, quadratic programming is used as a part of

sequential quadratic programming (SQP) to solve nonlinear

programming problems, which has many applications such as

in the optimal power flow problem in DC grids (Montoya,

Gil-Gonzáles, & Garces, 2019). The basic idea of SQP is to

model nonlinear programs at a given approximate solution by

a quadratic programming subproblem, and then use the

solution of this subproblem to construct a better

approximation in the next iteration (Boggs & Tolle, 1995).

Most algorithms developed for quadratic

programming can be categorized into two classes: active set

methods and interior-point methods. Active set methods begin

by guessing the optimal active set of constraints, which are

constraints that hold with equality at the current point. The

methods repeatedly drop one index from the current active set

and add a new one until the optimal set is detected (Hüeber,

Mair, & Wohlmuth, 2005; Yu, Lin, & Hung, 2009). Interior-

point methods were developed from Karmarkar's algorithm

for linear programming (Karmarkar, 1984). They approach a

solution by traversing the interior of the feasible region

(Ternet & Biegler, 1999; Wright, 1992; Wang & Bai, 2009).

We focus on interior-point methods as their worst-case time

complexity is polynomial while that of active set methods is

exponential. Additionally, it is much easier to exploit the

sparsity pattern in interior-point methods than active set ones

(Potra & Wright, 2000).

1450 D. Jetpipattanapong & G. Srijuntongsiri / Songklanakarin J. Sci. Technol. 43 (5), 1449-1455, 2021

For large scale quadratic programs, the numbers of

variables are so large that they cannot be solved

straightforwardly in reasonable amount of time. Moreover,

storing such large amount of data is impractical. For these

reasons, many methods were proposed that exploit sparsity in

the problems to reduce computational time. For example,

Rosen and Pardalos (1986) proposed a method for large-scale

constrained concave quadratic programming problems, which

reduced a problem to an equivalent separable quadratic

program and then solved a multiple-cost-row linear program

with 2n cost rows, where n was the dimension of the variable.

If the solution was not a satisfactory approximation, a

guaranteed -approximate solution was obtained by solving a

single linear zero-one mixed integer programming problem.

Gill et al. (U.S. Systems Optimization Lab., Stanford

University, 1986) proposed a method based on the Schur

complement. Their method is suitable for the problem with

specialized factorization. Gould and Toint (Gould & Toint,

2002) proposed a method to solve large-scale nonconvex

quadratic programming problems by using a working-set

method. It is a two-level iterative method. The first level is to

select the working set of constraints. The second level uses

preconditioned conjugate gradient method to solve the

problem with the selected working set. Hui-Min Li and Ke-

Cun Zhang (Li & Zhang, 2006) decomposed the large-scale

quadratic problem into a series of small problems and then

solved these small problems serially to approximate the

solution.

In this article, we study the quadratic programs

whose Hessian matrix in the objective function is block

diagonal with dense linearly inequality constraint matrices.

For each iteration, an interior point method computes the

search direction that improves the approximate solution.

(Nocedal & Wright, 2006) However, computing the search

direction for large scale problems takes prohibitively

expensive computational time. To improve the efficiency

when the Hessian matrix has the specific sparsity pattern, we

propose an efficient method of compute the search direction

for such special cases. We note that the computed search

direction is the same one as in the traditional interior point

method. By exploiting the known sparsity pattern of the

problem, our method efficiently computes the search

directions of an interior-point method for such quadratic

programs without compromising the optimality of the method.

We begin by defining the block diagonal quadratic

programs and reviewing primal-dual path-following interior-

point methods in Section 2. Section 3 describes our method

for the block diagonal quadratic problems. Section 4 shows

the computational results. Section 5 shows the conclusion.

2. Block diagonal quadratic programs and primal-

 dual path-following interior-point method

Consider a block diagonal quadratic program with

linear inequality constraints

, (1)

where , , , , and

. The Hessian matrix is in the form

,

where (= 1, 2,...,) and is the number of

diagonal blocks in . Note that is symmetric positive

semidefinite if and only if 's are symmetric positive

semidefinite. Recall that . This Hessian structure

is called block diagonal matrix.

Primal-dual path-following interior-point methods

for quadratic programming use perturbed KKT conditions

 (2)

where , ,

, , ,

and is the number of constraints. Note that the variables

and are dual variables of (1).

Let be a starting point, not necessarily

feasible, such that . A primal-dual path-

following interior-point method iterates by solving

 (3)

for the search direction , where

, , and

, setting the next point to be

, (4)

where is the step length, and repeating until is

close to 0 (Nocedal & Wright, 2006). The step length is

typically chosen as the largest number to obtain

. Note that the “normal equations” form of

(3) is

 , (5)

which can be solved by means of a modified Cholesky

algorithm. Solving (5) for is efficient if the term

 is not too dense compared with . In the case of

D. Jetpipattanapong & G. Srijuntongsiri / Songklanakarin J. Sci. Technol. 43 (5), 1449-1455, 2021 1451

 being block diagonal, is generally

dense therefore we cannot take advantage of sparsity when

solving (5).

3. Derivation of our Method

Traditionally, the search direction for each step is

computed by solving (5) for using the large Hessian

matrix and then substituting it to compute and

from (3). Our method computes the same search direction but

from the smaller nonzero diagonal blocks . It divides the

other variables corresponding to the size of each . To take

advantage of block diagonal Hessian, write , , , and

as

where , , , and .

Our method computes the search direction using these smaller

variables. Rewrite (3) as

 (6)

 (7)

 (8)

where

 (9)

Next, we rewrite (6) and (8) as

 (10)

. (11)

Finally, substituting (10) and (11) into (7) yields

or, equivalently,

 (12)

Therefore, the search direction can be computed by

solving (12) for and obtain and from (10) and

(11), respectively. Algorithm 1 below describes the path-

following interior-point method that uses the proposed method

to compute the search direction.

Algorithm 1

1: Set

2: Let be a point with

3:

4: for do

5:

6: end for

7: for do

8: Set

9: Compute

10: Compute

11: Set

12: for do

13: Compute from (9)

14:

15: end for

16: Solve for

17:

18: for do

19: Solve for

20: end for

21:

22:

23: Select

24: Set

25:

26: end for

Remarks for the Algorithm 1

 We do not explicitly compute 's. Instead,

we precompute the Cholesky factors of 's

once and reuse them to compute , , and .

 The direction can be computed efficiently

because is diagonal.

 The parameter controls how far we

back off from the maximum step.

 Instead of computing directly, we compute

each from)9(.

1452 D. Jetpipattanapong & G. Srijuntongsiri / Songklanakarin J. Sci. Technol. 43 (5), 1449-1455, 2021

Algorithm 1 presents the interior point method using

our proposed method for computing the search direction.

Normally, for iteration , the interior point method computes

the search direction , determines the step

length , updates the solution , and

recomputes . The method repeats until converges to zero.

Instead of computing the search direction by solving (5) for

 and then substituting it to obtain and , our

method first computes once and use it in all

iteration. For each iteration, we compute from (12) and

then from (11). Finally, we compute each (= 1,

2,...,) from (10). These computation are shown on line 16 to

20 of Algorithm 1. Recall that is the number of diagonal

blocks in and is the number of constraints.Our algorithm

requires operations for the

preprocessing and operations

per iterate. As comparison, note that the conventional interior-

point method that solves (5) for search directions requires

 per iterate.

4. Computational Results

In this section we compare the computational time

of the following three methods for computing search

directions for block diagonal quadratic programs in MATLAB

R2011a: (i) solving (5) for and then substituting it to

compute and , (ii) solving (3) using MATLAB sparse

linear solver, and (iii) our method as described in Section 3.

Method (i) is the regular method to compute search direction

without consider the sparsity of matrix. Method (ii) stores the

variables in the sparse format and uses the sparse linear solver

to compute the search direction. As these three methods

compute the same solution but in different ways and the

solution is too large to report in the tables, we show only the

computational time in our experimental results. While there

are publically available datasets for quadratic programming, to

the best of our knowledge, there are none with block diagonal

Hessian matrices with linear constraints. Moreover, the

running time of our method does not depend on the values of

the input but on the number of diagonal blocks and the sizes

of each blocks. For this reason, we test the three methods on

randomly generated data with varying sizes. The experiment

was performed on different problem sizes varying from 100 to

2,500 variables on a computer with an Intel Pentium M 740

1.73 GHz processor and 2 GB RAM. For each problem size,

we compare average computation time per iterate of problems

with different numbers of equally-sized diagonal blocks. We

also vary the number of constraints for 20, 50, and 80 percent

of the number of variables. We use the same and

 for the three methods in our experiment. Although

the values of and can change the number of iterations

needed to converge, they do not affect the required

computation time in each iteration. Since the three methods

always use the same number of iterations to converge, the

chosen values do not affect the comparison between the

methods in any case as they differ only in their computation

time in each iteration. For each case, we test with ten different

instances. The results are shown in Tables 1-7. We show

average number of iterates () for each problems.

Columns , , and show average time per iterate for

methods (i), (ii), and (iii), respectively. Note that average time

per iterate in our experiment also includes preprocessing time.

Table 1. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 100

variable problems with different number of constraints

N ni

m = 20 m = 50 m = 80

iter.
t1

(ms)
t2

(ms)
t3

(ms)
iter.

t1
(ms)

t2
(ms)

t3
(ms)

iter.
t1

(ms)
t2

(ms)
t3

(ms)

2 50 19.8 0.983 3.783 0.457 20.2 1.595 11.021 0.705 21.5 2.195 12.746 1.130

5 20 19.7 1.016 2.710 0.619 20.7 1.521 6.555 0.874 21.8 2.135 11.115 1.288
10 10 19.7 0.983 2.501 0.990 20.7 1.523 5.335 1.240 21.8 2.075 9.718 1.684

20 5 19.5 0.988 2.077 1.707 21.0 1.570 5.094 1.969 21.6 2.140 9.472 2.396

50 2 19.5 0.984 2.087 3.917 20.6 1.527 4.820 4.205 21.7 2.054 9.459 4.693

Table 2. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 500

variable problems with different number of constraints

N ni

m = 100 m = 250 m = 400

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

2 250 20.0 32.24 88.61 9.86 21.6 54.94 174.40 19.43 23.0 97.63 494.15 52.52

5 100 20.3 32.24 56.93 4.17 21.7 54.98 185.82 14.19 23.2 97.71 389.89 43.78
10 50 20.6 32.47 52.57 4.23 21.9 55.02 149.12 14.01 23.1 97.68 338.65 42.24

20 25 20.2 32.90 47.16 4.63 21.6 55.02 141.52 14.46 23.4 97.70 311.20 43.55

25 20 20.2 33.57 39.74 4.89 21.3 55.05 137.02 15.01 23.3 97.79 315.73 44.14

50 10 20.4 33.65 39.10 6.81 21.8 54.86 138.17 17.26 23.4 97.67 313.92 48.28

100 5 20.5 33.78 37.86 10.62 21.6 55.04 134.20 21.16 22.8 97.72 309.68 56.39
250 2 20.4 33.05 38.24 22.28 21.6 55.05 132.01 34.17 23.3 97.65 307.25 80.44

D. Jetpipattanapong & G. Srijuntongsiri / Songklanakarin J. Sci. Technol. 43 (5), 1449-1455, 2021 1453

Table 3. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 1,000

variable problems with different number of constraints

N ni

m = 200 m = 500 m = 800

iter.
t1

(ms)
t2

(ms)
t3

(ms)
iter.

t1
(ms)

t2
(ms)

t3
(ms)

iter.
t1

(ms)
t2

(ms)
t3

(ms)

2 500 20.5 0.183 0.408 0.067 21.8 0.339 0.804 0.140 23.3 0.647 2.592 0.310
5 200 20.6 0.183 0.262 0.019 22.1 0.340 0.879 0.095 23.7 0.652 1.946 0.263

10 100 20.8 0.184 0.242 0.015 22.0 0.338 0.745 0.082 24.0 0.653 1.723 0.256

20 50 21.0 0.183 0.219 0.014 22.0 0.337 0.689 0.081 23.8 0.652 1.624 0.242
25 40 20.9 0.183 0.188 0.014 22.0 0.337 0.680 0.081 23.9 0.651 1.572 0.243

40 25 21.0 0.183 0.185 0.016 22.0 0.338 0.682 0.084 23.7 0.652 1.562 0.249

50 20 20.5 0.182 0.180 0.016 21.9 0.337 0.660 0.086 24.0 0.652 1.581 0.254

100 10 20.9 0.183 0.176 0.020 22.2 0.339 0.706 0.099 24.3 0.653 1.606 0.283

200 5 20.5 0.183 0.177 0.029 22.0 0.341 0.638 0.123 23.8 0.652 1.569 0.342

500 2 20.6 0.183 0.179 0.054 22.4 0.347 0.649 0.193 24.0 0.652 1.579 0.508

Table 4. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 1,500

variable problems with different number of constraints

N ni

m = 300 m = 750 m = 1200

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

2 750 20.5 0.502 0.983 0.157 22.1 0.996 1.974 0.361 23.8 2.010 7.208 0.887

5 300 20.8 0.503 0.632 0.082 22.2 1.001 2.264 0.281 24.4 2.005 5.406 0.819
10 150 20.8 0.503 0.585 0.037 22.5 1.002 1.818 0.243 24.0 2.013 4.740 0.784

20 75 20.9 0.503 0.516 0.039 22.2 1.001 1.696 0.224 24.2 2.015 4.308 0.782

25 60 21.0 0.503 0.446 0.035 22.3 1.002 1.724 0.217 24.3 2.015 4.257 0.783
30 50 21.0 0.502 0.438 0.036 22.4 1.001 1.684 0.219 24.1 2.016 4.295 0.745

50 30 20.9 0.503 0.432 0.038 22.1 1.003 1.656 0.226 24.3 2.017 4.264 0.763

60 25 20.9 0.503 0.428 0.039 22.4 1.003 1.671 0.231 24.1 2.016 4.253 0.777
75 20 21.1 0.504 0.423 0.040 22.5 1.003 1.644 0.238 24.4 2.016 4.154 0.792

150 10 20.9 0.503 0.416 0.050 22.5 1.002 1.644 0.278 24.1 2.016 4.117 0.880

300 5 20.8 0.503 0.418 0.069 22.2 1.003 1.619 0.362 24.2 2.015 4.188 1.061
750 2 20.7 0.503 0.423 0.124 22.5 1.001 1.599 0.601 24.2 2.001 4.227 1.587

Table 5. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 2,000

variable problems with different number of constraints

N ni

m = 400 m = 1000 m = 1600

iter.
t1

(ms)
t2

(ms)
t3

(ms)
iter.

t1
(ms)

t2
(ms)

t3
(ms)

iter.
t1

(ms)
t2

(ms)
t3

(ms)

2 1000 20.6 1.107 1.835 0.318 22.0 2.724 3.865 0.779 24.1 5.804 17.512 1.939
5 400 21.0 1.110 1.173 0.162 22.7 2.724 4.522 0.626 24.4 5.805 11.573 1.786

10 200 20.9 1.112 1.080 0.096 22.5 2.734 3.597 0.559 24.5 5.805 10.088 1.733

20 100 21.1 1.110 0.976 0.080 22.9 2.737 3.401 0.544 24.4 5.808 9.469 1.725
25 80 21.0 1.111 0.842 0.073 22.5 2.734 3.376 0.542 24.3 5.809 9.157 1.725

40 50 21.0 1.108 0.814 0.067 22.5 2.740 3.326 0.505 24.5 5.815 8.901 1.737

50 40 21.1 1.109 0.794 0.068 22.4 2.736 3.239 0.512 24.3 5.813 9.067 1.696
80 25 21.2 1.110 0.801 0.073 22.5 2.737 3.333 0.536 24.2 5.813 8.923 1.751

100 20 20.9 1.105 0.779 0.077 22.4 2.734 3.686 0.553 24.6 5.816 9.291 1.788

200 10 21.0 1.110 0.779 0.094 22.7 2.734 3.195 0.646 24.5 5.817 9.113 1.983
400 5 21.0 1.109 0.780 0.129 22.5 2.734 3.089 0.830 24.7 5.810 9.086 2.375

1000 2 21.0 1.109 0.798 0.234 22.6 2.723 3.211 1.365 24.6 5.805 9.290 3.553

Table 6. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 2,500
variable problems with different number of constraints

N ni

m = 300 m = 750 m = 1200

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

2 1250 21.0 1.948 3.002 0.486 22.4 4.743 6.394 1.249 24.5 11.202 34.712 3.539

5 500 21.1 1.982 1.903 0.275 22.7 4.655 7.647 1.034 24.4 11.403 21.441 3.326

10 250 21.0 2.014 1.777 0.177 22.3 4.693 6.078 0.941 24.6 11.384 19.382 3.242

1454 D. Jetpipattanapong & G. Srijuntongsiri / Songklanakarin J. Sci. Technol. 43 (5), 1449-1455, 2021

Table 6. Continued.

N ni

m = 300 m = 750 m = 1200

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

20 125 21.0 2.016 1.649 0.115 22.7 4.680 6.012 0.916 24.7 11.363 17.280 3.240

25 100 21.1 2.040 1.346 0.119 22.6 4.711 5.826 0.915 24.2 11.353 16.855 3.242
50 50 21.2 2.032 1.283 0.116 22.5 4.751 5.579 0.860 24.6 11.354 17.106 3.280

100 25 21.0 2.021 1.259 0.125 22.6 4.743 5.531 0.922 24.7 11.245 16.598 3.297

125 20 20.9 2.028 1.246 0.130 22.7 4.743 5.642 0.955 24.6 10.861 16.112 3.377
250 10 21.0 2.033 1.340 0.163 22.7 4.792 5.480 1.117 24.8 11.017 15.959 3.758

500 5 21.1 2.040 1.255 0.228 22.8 4.772 5.565 1.444 24.9 11.157 16.481 4.520

1250 2 21.1 2.021 1.276 0.432 22.6 4.790 5.398 2.458 24.8 11.289 16.293 6.773

Table 7. Average number of iterates and average time per iterate of interior-point, interior-point with sparse matrix and our method for 4,000

variable problems with different number of constraints

N ni

m = 300 m = 750 m = 1200

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

2 2000 21.0 7.093 9.173 1.547 22.7 16.780 - 4.207 24.9 40.524 - 11.873

5 800 21.1 7.050 5.691 0.825 22.9 17.068 - 3.435 25.3 40.825 - 11.121
10 400 21.2 7.047 5.139 0.594 22.8 16.856 - 3.252 25.0 41.462 - 10.837

20 200 21.1 7.032 4.568 0.450 23.0 16.538 - 3.155 25.0 41.965 - 10.780

25 160 21.1 7.029 3.903 0.444 23.1 16.670 - 3.137 25.2 41.406 - 10.793
50 80 21.2 7.025 3.737 0.353 23.0 16.701 - 3.151 25.1 40.909 - 10.930

80 50 21.3 7.020 3.758 0.363 23.0 16.684 - 3.205 25.1 40.563 - 11.096

160 25 21.4 7.016 3.615 0.401 23.0 16.639 - 3.250 25.2 40.657 - 11.571
200 20 21.0 7.019 3.620 0.478 23.0 16.646 - 3.424 25.5 40.993 - 11.549

400 10 21.0 7.024 3.616 0.623 23.0 16.618 - 4.197 25.1 40.821 - 13.035

800 5 21.4 7.023 3.623 0.838 23.0 16.559 - 5.526 25.2 41.137 - 16.017
2000 2 21.3 7.021 3.758 1.610 23.0 16.453 - 9.285 25.1 40.840 - 24.824

The results of experiment show that, for problems

with the same number of variables and constraints, average

time per iterate of method (i) does not depend on the number

of diagonal blocks, which is as expected since method (i) does

not take advantage of any sparsity in the data. Method (ii), on

the other hand, is more efficient for problems with many

smaller diagonal blocks than for problems with few larger

diagonal blocks. This is because a problem with few larger

diagonal blocks has more nonzero elements compared to a

problem with many smaller diagonal blocks. Finally, method

(iii) performs best when the number of diagonal blocks is

neither too large nor too small. In other words, it performs

best when the number of groups is about the same as the

number of variables in each group. This is because a larger

number of (small) blocks implies the linear systems that the

method has to solve are smaller. On the other hand, if the

number of blocks is too high, the method has to solve many

linear systems, which incur high overhead in MATLAB

causing higher computation time.

In our experiment, the constraint matrices are dense.

When the number of constraints is very high, method (ii) is

the slowest among the three methods. The reason is that

method (ii) stores the variables in the sparse format, which is

not suitable for large and dense matrix computation. On large

problems, such as those with 500 variables or more, method

(iii) is the fastest among the three. We note that for a small

number of constraints, the method (iii) is significantly faster

than the other two methods.

Note that we do not have results of method (ii) for

problems with 4,000 variables and 2,000 or more constraints.

This is because the matrix in (3) that is used by method (ii) is

too large and too dense to store in the main memory of our

system. However, method (i) and method (iii) do not have this

problem and can compute the search directions normally.

5. Conclusions

This article proposes an efficient method to compute

search directions of primal-dual interior-point method for

block diagonal quadratic programs. Our method separates

variables according to the diagonal blocks of the Hessian

matrix and uses the components to compute search directions.

Our method has better time complexity, and we show

experimentally that it uses less computational time than

conventional methods for computing search directions. It is

seen that our method is suitable for large scale problem with

either small or large numbers of constraints. In any case, the

advantage of our method is limited to the problems whose

Hessian matrices are block diagonal; the method cannot be

applied to quadratic programs with other sparsity patterns.

Acknowledgements

Authors gratefully acknowledge the financial

support provided by Thammasat University Research Fund

under the TU Research Scholar, Contract No. TP 2/24/2560.

D. Jetpipattanapong & G. Srijuntongsiri / Songklanakarin J. Sci. Technol. 43 (5), 1449-1455, 2021 1455

References

Bartlett, R. A., Biegler, L. T., Backstrom, J., & Gopal, V.

(2002). Quadratic programming algorithms for

large-scale model predictive control. Journal of

Process Control, 13(7), 775–795. doi:10.1016/

S0959-1524(02)00002-1

Boggs, P. T., & Tolle, J. W. (1995). Sequential quadratic

programming. Acta Numerica, 4, 1–51. doi:10.

1017/S0962492900002518

Gould, N. I. M., & Toint, P. L. (2002). An iterative working-

set method for large-scale nonconvex quadratic

programming. Applied Numerical Mathematics, 43

(1-2), 109–128. doi:10.1016/S0168-9274(02)00120-

4

Hüeber, S., Mair, M., & Wohlmuth, B. (2005). A priori error

estimates and an inexact primal-dual active set

strategy for linear and quadratic finite elements

applied to multibody contact problems. Applied

Numerical Mathematics, 54, 555–576. doi:10.1016/

j.apnum.2004.09.019

Karmarkar, N. (1984). A new polynomial-time algorithm for

linear programming. Combinatorica, 4(4), 373–395.

doi:10.1007/BF02579150

Kim, H., & Rassias, J. M. (2007). Generalization of Ulam

stability problem for Euler–Lagrange quadratic

mappings. Journal of Mathematical Analysis and

Applications, 336(1), 277–296. doi:10.1016/j.jmaa.

2007.02.075

Kouzoupis, D. (2018). Recent advances in quadratic

programming algorithms for nonlinear model

predictive control. Vietnam Journal of Mathematics,

46, 863–882. doi:10.1007/s10013-018-0311-1

Li, H., & Zhang, K. (2006). A decomposition algorithm for

solving large-scale quadratic programming

problems. Applied Mathematics and Computation,

173(1), 394–403. doi:10.1016/j.amc.2005.04.076

Liu, X., Wang, D., & Rong, J. (2009). Quadratic prediction

and quadratic sufficiency in finite populations.

Journal of Mathematical Analysis and Applications,

100(9), 1979–1988. doi:10.1016/j.jmva.2009.04.010

Mitsuia, K., & Tabata, Y. (2008). A stochastic linear–

quadratic problem with Lévy processes and its

application to finance. Stochastic Processes and

their Applications, 118(1), 120–152. doi:10.1016/j.

spa.2007.03.011

Montoya, O. D., Gil-Gonzáles, W., & Garces, A. (2019).

Sequential quadratic programming models for

solving the OPF problem in DC grids. Electric

Power Systems Research, 169, 18–23. doi:10.1016/j.

epsr.2018.12.008

Nocedal, J., & Wright, S. J. (2006). Numerical optimization.

Berlin, Germany: Springer.

Potra, F. A., & Wright, S. J. (2000). Interior-point methods.

Journal of Computational and Applied

Mathematics, 124(1-2), 281–302. doi:10.1016/

S0377-0427(00)00433-7

Rosen, J., & Pardalos, P. (1986). Global minimization of

large-scale constrained concave quadratic problems

by separable programming. Applied Mathematics

and Computation, 34, 163–174. doi:10.1007/

BF01580581

Ternet, D. J., & Biegler, L. T. (1999). Interior-point methods

for reduced Hessian successive quadratic program

ming. Computers and Chemical Engineering, 23,

859–873. doi:10.1016/S0098-1354(99)00013-7

U. S. Systems Optimization Lab., Stanford University. (1986).

A Schur-complement method for sparse quadratic

programming. (Report Number SOL-87-12)

Retrieved from http://www.ccom.ucsd.edu/~peg/

papers/schurQP.pdf

Wang, G., & Bai, Y. (2009). Primal-dual interior-point

algorithm for convex quadratic semi-definite

optimization. Nonlinear Analysis, 71, 3389–3402.

doi:10.1016/j.na.2009.01.241

Wright, M. (1992). Interior methods for constrained

optimization. Acta Numerica, 1, 341-407.

doi:10.1017/S0962492900002300

Yu, M., Lin, T., & Hung, C. (2009). Active-set sequential

quadratic programming method with compact

neighbourhood algorithm for the multi-polygon

mass production cutting-stock problem with

rotatable polygons. International Journal of

Production Economics, 121, 148–161. doi:10.

1016/j.ijpe.2009.01.014

Zhang, H., Zhong, W., Wu, C., & Liao, A. (2006). Some

advances and applications in quadratic

programming method for numerical modeling of

elastoplastic contact problems. International

Journal of Mechanical Sciences, 48(2), 176–189.

doi:10.1016/j.ijmecsci.2005.08.003

Zhang, H. W., Xu, W. L., Di, S. L., & Thomson, P. F. (2002).

Quadratic programming method in numerical

simulation of metal forming process. Computer

Methods in Applied Mechanics and Engineering,

191(49-50), 5555–5578. doi:10.1016/S0045-7825

(02)00462-0

