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ABSTRACT

An increasing number of distributed generations (DGs)
being connected to the utility grid has raised the need for
new and more rigorous standards for power quality, safety
operation and islanding protection of the grid
interconnection. This paper focuses on the fauit
contribution of a distributed generation, specifically PV
grid-connected system in the event of an unintentional
islanding. An experimental setup is created using an off-
the-shelf grid-connected inverter to emulate the event of a
fault occurred on a distribution feeder. An extreme case
scenario, according to the IEEE standard, that will result in
the highest fault contribution of the PV grid-connected
system is considered for conservative results. The
experimental results have shown that, without violating the
specified criteria in the standard, the grid-connected
inverter takes times to detect an islanding condition and
stop energizing. The experimental results are used to
investigate the fault contribution in a distribution system.
This study has shown that higher penetration level of the
PV grid-connected systems results in higher fault current
which unavoidably has effects on the protective devices.
This observation introduces the possibility of selecting
and/or upgrading protective devices in a distribution
system.

INTRODUCTION

A fundamental imbalance between supply and
demand defines energy crisis. Renewable and altemative
fuels offer hope for the energy future. Photovoltaic (PV)
systems have been a prominent candidate among other
renewable energy sources. It is a versatile means to
produce electricity for a wide variety of applications, from
small (milliwatts) to very large (megawatts). It does so by
using the inexhaustible energy of the sun, thus protecting
consumers from volatile fossil fuel markets. Majority of the
systems installed worldwide are grid-connected [1]. This is
due to the inherent benefits of using PV systems as
distributed generators (DGs) to the electric utilities. The
major advantage of PV generator is from its close location
to customers which significantly reduces transmission and
distribution costs [2]. As the PV costs are decreasing,
many more installations of such a system are predicted [1].
They can also be used to level the system load curve,
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improve the volitage profile and reduce line losses as well
as transformer's loading. Utilites economically benefit
from deferment of the investment for transformer and
transmission lines upgrades and maintenance cost
reduction. To achieve the mentioned benefits, the PV
generators must be of appropriate penetration level and at
suitable locations [3].

During fault, the DG current is being injected into the
utility grid until the fault is isolated. Then the inverter
successfully identifies the islanding condition and stops
energizing. This inevitably increases the fault current from
its originally designated level under no DG installation and
may affect the protective equipment settings or even
ratings. However, according to the IEEE1547 [4], all grid-
connected inverters must successfully detect the islanding
condition and stop energizing within a given time limit for
the purposes of personnel safety and equipment
protection. Historically, the effects of the PV generators on
the fault currents are not of major concern. Past research
efforts have concentrated on the effects of rotating
machine types of DGs [5). The effects of power electronic
converter interface types of DGs such as PV grid-
connected systems are considered minimal because of its
relatively small system size and the injected current to the
grid is limited to the inverter rating [6] and does not exhibit
subtransient and transient behaviors as seen in rotating
machines. However, as the penetration level of the DGs
into the distribution system is substantially increasing, its
effects may no longer be considered minimal. In [7], the
impact of installation of DGs, both synchronous and
inverter types, on coordination of protection devices has
been studied through simulation.

This paper focuses on the fault contribution of a DG,
specifically PV grid-connected system in the event of an
unintentional islanding. A real hardware setup is created
using an off-the-shetf PV grid-connected inverter to study
the system behavior during islanding condition. An
extreme case scenario, according to [4, 8), that will resuit
in the highest level and longest period of fault contribution
of the PV grid-connected system is considered for
conservative results. The experimental results are then
used In fault current calculations of a test distribution
system for the purpose of comparison with the case where
no PV grid-connected systems are installed.
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Fig.1. PV grid-connected system installation

FAULT CONTRIBUTION OF A PV GENERATOR

A typical configuration of a PV grid-connected system
installed on a radial distribution system is shown in Fig. 1.
The PV modules are connected to the wutility grid through
an inverter. The main purpose of the inverter is to convert
the dc power from the PV modules into ac power which
will be injected into the grid. When a fault occurs, the PV

synchronous machine, a typical short crcun curent
waveform is shown in Fig. 2. The fault current depends on
the prefaul vollage, and the machine’s subtransient and
transient reactances. The subtransient pedod has the
largest magnitude and lasts around 2 cycles while the
transient period is smaller and in the order of 1 second (9.
it shouid be noted that the short circult capacity that Is
used 0 determine the bus bar dimension and the
interrupting capacity of a circuit breaker, are obtained from
the subtransient component.

Modem inverter technology used in PV grid-
connected systems typically involves advanced sensing
and control strategies, and specialized power electronic
circuits. Unlike rotating machines, the inverter current
supplied to the grid depends on the rating of the
semiconductor switches, control aigorithm and the source
of the inverter including iradiance and PV amay
configurations. From this point of view, an inverter that can
detect islanding condition and stop energizing within 2
seconds (l.e. complied with IEEE1547) clearly has
contributed to the fault current from the from the moment
the fault occurred. This inevitably results in higher fault
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current in both subtransient and transient periods which in
tum will affect the selection of circuit breaker pickup
current and the comesponding relay settings of the
distribution system.

EXPERIMENTAL STUDY

Hardware setup

To study the system behavior during islanding
condition, a sophisticated hardware setup is needed to
adequately demonstrate all operating regimes of the test
system. One way to address these challenges is to
develop a grid-connected iwerter with well-established
islanding detection algorithm.

Short-circuit current
1|
e
=]
I

Fig. 2 Short-circuit current waveform

This approach is common among researchers in studying
system behaviors of interest. it can lead to a sophisticated
unit that can perfoorm advanced istanding detection
algorithms. The obvious drawback is the loss of generality
to use the behavior of the developed Inverter as a
representative of readily installed inverters with grid-tied
capability. An altemative is 10 adopt an off-the-she¥f PV
grid-connected inverter. A single-phase equivalent
distribution-level setup used in this work is depicted in Fig.
3. The utility grid is a direct feed from the Metropolitan
Electricty Authority of Thalland at 230Vms. A dC power
supply with current- and voitage-controlled capabiiities is
used in place of the PV amay. This enables us to adjust
the input power to the inverter to the desired level.
Focusing on anti-islanding operation, the inverter is a 1.7
kWp commercially avsilable grid-connecied inverter. The
swilch imitates an operation of a circuit breaker after a
protective relay has sent out a trip command. The local



load is a generic combination of resistive, inductive and
capacitive loads. The load Is set to 1.7 kW to match the
output real power from the inverter with qualify factor of
1.0. The reduction of quality factor requirement from 2.5 in
[10] to 1.0 is to allow manufacturers to implement
detection schemes that will minimally affect the power
quality. However, this condition is still an extreme case
considering that the inverter output real power is of the
same amount as the load. This means that there is
essentially no difference in output real power from the
inverter before and after an islanding has occurred.

Experimental results

The switch S in Fig. 3 is closed initially. It is open at the
beginning of the test to create an island. Then, the grid
current (lgna), inverter current (k) and voltage (Viw)
waveforms are recorded. The measured waveforms are
shown in Fig. 4. It is seen that once the switch S is open,
the lyig becomes zero and the inverter continues to supply
current to local load for 84.8 millisecond which is well
within the allowable window of 2 seconds (4, 10). The Viny
which is measured across the load continues to oscillate
even though there is no current from the inverter. However,
the oscillation is rapidly damped out.

s W=
Wﬁ A1
Distribution Utilty Inverter
transformer orid L::;l

PV

Fig. 3 Configuration of the experimental system

Fig. 4 Measured voltage and currents
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Fig. 5 System model: a) current and b) voitage sources

We note that during islanding operation, both liy, and Viny
exhibit the same behaviors as in nomal operation. No
change in magnitudes of both signals and no discontinuity
is observed.

MODELING ISSUES

To properly incorporate the mentioned behaviors into a
distribution feeder, the modeling issues must be
addressed. The measured current and voltage waveforms
in the previous section have shown the same magnitude
before and during Islanding operation. Thus, the PV grid-
connected system can be modeled as either a constant ac
voltage source or current source. We note that the
damped-oscillating behavior after the inverter stops
energizing is not in the scope of this paper since our
concentration is on the so-called subtransient period in Fig.
2 and the damped oscillation occurs long after that. The
PV system modeling is depicted in Fig. 5. This simple
modeling concept allows the integration of the PV systems
to study its fault contribution. In addition, it is used to
investigate the fault contribution in a power distribution
system. It is worth noting that the operation of circuit
breaker is to isolate the fault from other parts of the
system. This generally means that the fault contribution
must be considered starting at the moment the fault occurs
until the operation of the circuit breaker. However, for a
radial distribution system, this may not be the case
because a circuit breaker or a fuse is typically located



upstream. Once a fault is isolated by the upstream circuit
breaker, the inverter still supply current to the fault until it
successfully indentifies islanding operastion and stop
energizing.

- FAULT CONTRIBUTION ANALYSIS

The experimental results from the previous section are
used o investigate the fault contribution in a power

distribution system under different levels of PV penetration.

Due to severe impact of power system disturbances and
PV grid-connected systems, a power system model at
distribution level is selected. The test system is a radial,
medium-voltage network with 51 buses and 11 branches
rated st 22 kV 10 MVA as shown in Fig. 8. The totsl load is
of 2.48 MVA. The model of the test system is developed
and run in Matiab Simulink [11]). To simulate effects on
different penetration level and modeling, the PV grid-
connected system rating s scaled up to various
percentage of the feeder total load demand. PV
generators are arbitrarily assigned to be st buses 21, 30,
32, 42 and 51 with total power rating of 100% of the totsl
demand. The fault is assumed (0 be a three-phase to
ground fault and occurs at bus 26 at t = 0.20 second and
is isolated 3 cycles later.

First, the PV systems are modeled as a voltage
source. The simulated short circuit currents are compared
between a case with no PV installation and with PV
penetration at 100% of total demand, as shown in Figs. 7
and 8.

000
. 200
<
n
g 0
=
3 2000 ;
000
No PV
WRh PV @100% of load

0.04 0.08

Time(s)

0.08 01

Fig. 7 Fault current comparison (PV as voitage sourcs)
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Fig. 6 Test system

It is seen that there is a noticeable difference in fault
current where the case with PV generators installed
results in 7% higher fault current compared (o the case
with no PV system. Next, we model the PV systems as a
constant current source. The fauk current comparison and
its magnified version are shown in Figs. 9 and 10,
respectively. Under 100% and 150% penetration levels,
there is a very small increase of 0.5 and 0.7%,
respectivety, in fauk curent compared to that of no PV
installation.

Fault currents (A)

ARRE R EEE

o
B

; No PV
With PV @100% of load
004 005 008 o007
Time(s)

003

Fig. 8 A magnified version of Fig. 7

82



4000
2000
<
]
g o
3
g-zooo
-4000 No PV
Wih PV @100% of losd
With PV @150% of load
<8000 .
0 002 004 008 0.08 01

Time(s)
Fig. 9 Fault current comparison (PV as current source)

Typically, protective devices are designed and set to
accompeny the original system configuration by system
opersators. With an increasing level of penetration of the
PV systems on the distribution feeder, the fault
contribution of PV generators must be seriously taken into
consideration. Especially, the short-circuit capacity at a
bus which is a common measure of the strength of a bus
defined as a product of the magnitudes of the rated bus
voltage and the fault cument, commonly used for
determination of a bus bar and the interrupting capacity of
a circuit breaker.

CONCLUSIONS

This study has shown that higher penetration level of the
PV grid-connected systems results in higher fault current
compared with the case without PV installed. It
unavoidably has effects on the protective devices such as
relay settings and ratings of bus bars and circuit breakers.
This observation introduces the possibility of designing
and selecting, and/or upgrading protective devices in a
distribution system that allows penetration of PV systems.
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Effects on Short Circuit Level of PV Grid-Connected Systems under
Unintentional Islanding

Samatcha Phuttapanmok, Anawach Sangswang, Member, IEEE, and Krissanapong Kirtikara

Abstract— Most distribution metworks are designed to
operate in radial mode without havimg distributed generation
(DG) penetration into the networks. The imcreasing DG
peactration has resulted in bi-directional power flow that
affects the operation of conventional feeder protection. This
paper focuses ou the fault contribution of a distributed
generation, specifically PV grid-connected system in an event of
unintentional islanding. An experimental setup is created using
a 6kW off-the-shelf gridcomnected inverter to emulste the
event of a fault occurred oa a distributien feeder. A hardware
setup is prepared accerding to the IEEE standard for realistic
results. The expertmental results have shown that, without
violating the specified criteria in the standard, the grid-
connected inverter takes thmes to detect an islanding condition
and stop emergizing. Based on the obtained results, a simple
mode is adopted to capture and explained the system behavior
ender unintentional istanding. While different models can
sdequately explain dhe system behaviors, they results in
different short circuit levels when incorporated inte a power
flow study. This observaton introduces the pessibility of
selecting and/or upgrading protective devices in a distribution
system.

1. INTRODUCTION

the photovoltaic (PV) costs are decreasing, many
installations of such a system are predicted [1].

They can be used to level the system load curve, improve the
voltage profile and reduce line losses as well as
transformer’s loading. Uulities economically benefit from
deferment of the investment for transformer and
transnussion lines upgrades and maintenance cost reduction.
To achieve the mentioned benefits, the PV generators must
be of appropriate penetration level and at suitable locations
[2-3). Duning fault, the DG current 1s bemng ingected mto the
utility grid until the fault is isolated. Then the inverter
successfully identifies the islanding condition and stops
energizing. This mevitably increases the fault current from
its oniginally designated level under no DG installation and
may affect the protective equipment settings mchuding relay
coordination. According to the IEEE1547 [4]. all grid-
connected inverters must successfully detect the islanding
condition and stop energizing within a given time limit for
This work was supported by the Thailand Research Pund under Grant
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the purposes of personnel safety and equipment protection.
Past research efforts have concentrated on the effects of
rotating machine types of DGs [5]. Historically, the effects
of the PV generators on the fault currents are not of major
concemn. The effects of power electronic converter interface
types of DGs such as PV gndconnected systems are
considered mimmal because of its relatively small system
size and the injected current to the gnd is limited to the
inverter rating [6] and does not exhibit subtransient and
transient behaviors as seen in rotating machines. However,
as the penetration level of the DGs into the distnburion
system 1s substantially increasmng, its effects may no longer
be considered minimal In (7], the impact of installation of
DGs, both synchronous and inverter types, on coordination
of protection devices has been studied through simulation.
This paper focuses on the fault contnbution of a DG,
specifically PV grid-connected system in the event of an
unmtentional islanding. A real hardware setup is created
using an off-the-shelf PV grid-connected inverter to study
the system behavior duning islanding condition A realistic
operating condition according to [4, 8] that has been
reported is considered. The expenmental results are then
used 1n fault current calculatioas of a test distribution system
for the purpose of companson with the case with no PV
wstallation. This paper is organized as follows. Section II
discusses the importance of the short circuit level from a PV
mverter adding to the conventional synchronous machine. In
section III, an expenmental study of the system dunng
unmtentional islanding is performed. A modeling concept is
developed m section IV to captuge the PV inverter behawior
observed from the experiment. In section V, the effects on
short circuit level of the system are analyzed. Section VI
provides concluding remark

II. FAULT CONTRIBUTION OF A PV GENERATOR

In a typical PV gridconnected configuration. the PV
modules are connected to the utility grid through an inverter.
The main purpose of the mverter is to convert the dc power
from the PV modules into ac power which will be injected
into the grid. When a fault occurs, the PV inverter contmues
to supply power to the grid umtil islanding operation is
detected. The inverter must be able to identify such a
condition and successfully stop enerpizing withm 2 seconds
4
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It should be noted that the mverter supphes power to the
system from the moment thar the fault occurs until the
islanding condstion 1s detected. In the case of a conventional
rotating machine, namely synchronous machine, a typical
short circut current waveform is shown m Fig. 1. The fault
current depends on the prefault voltage, and the machine's
subtransient and transient reactances. The subtransient
penod has the largest magmtude and lasts around 2 cycles
while the transient penod is smaller and in the order of 1
second [9]. It should be noted that the short circuit capacity
that 18 used to determune the bus bar dimension and the
interrupting capacity of a ciroust breaker, are obtained fram
the subtransient component. Unlike rotating machines, the
inverter cumrent supplied to the gnd depends on the rating of
the semiconductor switches, coatrol algorithm and the
source of the inverter mchiding irradiance and PV array
configurations. From this point of view, an inverter that can
detect islanding condition and stop ing withm 2
seconds (i.e. complied with IEEE1547) clearly has
contributed to the short circuit level from the moment the
fault occurred. This inevitably results in higher short circuit
level in both subtransient and transient periods which m tum
will affect the selection of circuit breaker pickup current and
the corresponding relay settings of the distribution system.
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1. EXPERIMENTAL STUDY

A Hardware Setup

To study the system behavior dunng islanding condition.
a realistic hadware setup is needed to adequately
demonstrate all operating regimes of the system of interest.
A single-phase equivalent distnbution-level setup used m
this work is depicted in Fig. 2. The utility grid is a drect
feed from the Metropolitan Electricity Authority of Thailand
(MEA). A dc power supply with current- and voltage-
controlled capabilities ts used in place of the PV amay. Thus
enables us to adjust the input power to the inverter to the
desired level. Focusing on anti-islanding operation, the
inverter is a 6 kW commercially available grid-connected
inverter. The switch immtates an operation of a circuit
breaker after a protective relay has sent out a trip command

The local load 1s a combination of generic resistive,
inductive and capacitive loads. The load 1s set to 6 kW to
match the output real power from the mverter with qualify
factor of 1.0. The reduction of quality factor requirement
from 25 in [10] o 10 is to allow mamfacrurers to
implement detection schemes that will nummally affect the
power quality. However, this condition 1s still an extreme
case considering that the mverter output real power is of the
same amount as the 10ad. This means that there is essentially
no difference mn output real power before and during
islanding conditions.

M\r—ﬂ
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Fig. 4 Meanued casvents and voltage at 100% of rated output

929

85



B. Experimental Results

The swatch S in Fig. 2 is closed initially. It is open at the
beginning of the test to create an island. Then, the grid
current (Igy), inverter cument (Iey) and voltage (Vi)
waveforms are recorded. The measured waveforms shown in
Fig. 3 are obtained at 33% of rated power of the inverter. It
is seen that once the switch S is open, the Iyg becomes zero
and the inverter continues to supply cumrent to local load
under islanding condition for 376.9 millisecond which is
well within the allowable window of 2 seconds [4, 10]. The
Ve which is measured across the load oscillates slightly
longer than the inverter current. The oscillation is then
rapidly damped out. Fig. 4 shows a faster islanding detection
at the inverter’s rated power than those in Fig. 3. The
inverter stops energizing the grid within 95 millisecond.
From the obtained waveforms in Figs. 3 and 4, during
islanding operation, both Iy, and Vi, exhibit the same
behaviors as in normal operation. No change in magnitudes
of both signals is observed. The inverter current and voltage
remain essentially constant until the mverter shuts down. In
addition, no discontinuity is observed. It it worth noting that
the inverter’s current and voltage exhibit constant magnitude
that last well beyond the mentioned subtransient period.

IV. MODELING ISSUES

To properly incorporate the system behaviors into a
distribution feeder, the modeling issues must be addressed.
From the measured cument and voltage waveforms in the
previous section, the PV grid-comnected system can be
modeled as either a constant ac voltage source or current
source. Though, the inverter voltage remains constant
through the islanding operation, it is unrealistic from the
viewpoint of short circuit study to model the inverter as a
constant voltage source.

[ iew lgria
i -—> -
i i + hoso
i |
| \
!
} | Utility
! ! gnid
| Inverter |
a)
S T lgra
— P ——
P.Q ¥ lioea
Utility
grd
Inverter

b)

Fig. 5. System model: a) constant current and b) constant power sources
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Since the PV inverter function is to inject power from the
PV array to the grid, it is not supposed to regulate the gnid
voltage at the point of common connection. We note that the
damped-oscillating behavior after the mverter stops
energizing is not in the scope of this paper since our
concentration is on the so-called subtransient period in Fig. 1
and the damped oscillation occurs long after that. Based on
the previous discussion, the PV inverter can be modeled as
either a constant current source or constant power source, as
depicted in Fig. 5. The justification of the constant power
model is that the cumrent and voltage magnitudes are
constant. Therefore, the output power obtained from the
averaged value of the product between current and voltage is
also constant.

T+,

P=% ! \,i’"'(t)'imv(t)dt @

This simple modeling concept allows the integration of the
PV systems in fault contribution study. Especially, in a
readily available power flow solver, the constant power
model of a PV inverter can be easily adopted since the PQ
load is a typical load in a power flow solver, it values can be
set to negative values to represent power mjection.

In addition, it 1s used to investigate the fault contribution
in a power distribution system. It is worth noting that the
operation of circuit breaker is to isolate the fault from other
parts of the system. This generally means that the fault
contribution must be considered starting at the moment the
fault occurs until the operation of the circuit breaker.
However, for a radial distribution system, this may not be
the case because a circuit breaker or a fuse is typically
located upstream. Once the fault is isolated by the upstream
circuit breaker, the inverter still supplies current to the fault
until it successfully indentifies islanding operation and stop

V. FAULT CONTRIBUTION ANALYSIS

The experimental results from the previous section are
used to investigate the fault contribution in a power
distribution system under different levels of PV penetration.
The test system is a radial, medium-voltage network with 51
buses and 11 branches rated at 22 kV 10 MVA as shown in
Fig. 6. The total load is of 2.48 MVA. The model of the test
system is developed and run in Matlab Simulink [11]. To
simulate effects on different penetration level and modeling,
the PV grid-connected system rating is scaled up to various
percentage of the feeder total load demand. PV generators
are arbitrarily assigned to be at buses 21, 30, 32, 42 and 51
with total power rating of 100% of the total demand. The
fault is assumed to be a three-phase to ground fault and
occurs at bus 26 at t = 0.20 second and is isolated 3 cycles
later.
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Fig. 6 Test system

First, the PV systems are modeled as a constant current
source. The simulated short circust currents are compared
between a case with no PV installation and with PV
penctration set at 100% of total demand. as shown in Fig. 7.

4000 - v v
——— No PV instalaton
1000 T WHRPV @ 100% of load | |
2000
<
|
-
3
L
b 0
-1000
2000 N . N
1] 0.02 0.0« 000 0.08 0.1
Time(s)

Fig 7. Shoxt crcust level companson (modeled 23 corrent sowrce).

3230F T T v
—— No PV instataton
=== -With PV @ 100% of load
2201 1
i 3210 .
E 32001 ¥ g
') . \
‘
3 3190 ;
3180} B J
31701
0.028 00285 0020 00205 003
Time(s)

Fig. 8 Magufied version of Fig 6.

It is seen that there is a slight difference in fault current
where the case with PV generators installed results in 0.59%
higher short circuit level compared to the case with no PV
system. A magnified version at the first peak is shown in
Fig. 8. Next, we model the PV systems as a constant power
source. The short circuit level companison and its magnified
version are shown 1n Figs. 9 and 10, respectively. The short
caircuit level of the system with PV system installations 1s
approximately 12.5% higher than the case with no PV
instatilation.

Typically, protective devices are designed and set to
accompany the original system configuration by system
operators. With an increasing level of penetration of the PV
systems on the distribution feeder, the fault contribution of
PV must be seriously taken into consideration.
Especially, the short-circuit capacity at a bus which is a
common measure of the strength of a bus defined as a
product of the magnitudes of the rated bus voltage and the
fault current, commonly used for determmation of a bus bar
and the interrupting capacity of a circut breaker

o —No PV instataton
3000} it A .-—--mm:vcwosdmd

Fault current (A)

Time(s)
Fig. 9. Short circunt Jevel companson (modeled 23 power source)
3800 +
—No PV installaton
3000} . -~ -With PV @ 100% of load
3400} 02
< 3200 DA
3000 3
2 2000} A
2000} s
2400} ; /\
; ; \
s i il i N N H
-m802 0025 003 0035 004 0045 005 0055
Time(s)

Fig 10. Magnified version of Fig. 7
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VI CoNcLUsION

This study has shown that different PV system modeling
has resulted in different short circuit level. Simple models of
PV systems are obtained and can be easily incorporated in a
power flow solver. The higher penetration level of the PV
gridconnected systems results in lugher fault curmrent
compared with the case without PV installed. It unavosdably
has effects on the protective devices such as relay setungs
and ratings of bus bars and circut breakers. This observation
introduces the possibility of selecung, and’or upgrading
protective devices in a distnbution system that allows
penetration of PV systems.
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Y 1 a 4
ﬂ]i]ﬂﬁ .1 ﬂ']WﬁHJMfJiﬁ'lU‘U'EN'CT']UﬂGN

From Node | ToNode | Phase |Line Type| Length (km)

A 1 ABC 185PIC 2.2
1 2 ABC 185PIC 0.3
2 3 ABC 185PIC 0.3
3 4 ABC 185PIC 0.2
4 5 ABC | SOACSR 0.6
5 6 ABC | 50ACSR 0.3
6 7 ABC | 50ACSR 0.01
6 8 ABC | S0ACSR 1

8 9 ABC | 50ACSR 1.1
9 10 ABC SO0ACSR 1
10 11 ABC S0ACSR 1.2
11 12 ABC 50ACSR 04
12 13 ABC | S0ACSR 1.1
13 14 ABC | 50ACSR 0.2
14 15 ABC S0ACSR 0.01
13 16 ABC S0ACSR 0.1
16 17 ABC S0ACSR 0.9
17 18 ABC | SOACSR 0.4
18 19 ABC S0ACSR 0.01
18 20 ABC | 50ACSR 1
20 21 ABC | 5S0ACSR 0.6
21 22 ABC | S0ACSR 0.01
4 23 ABC 185PIC 1.8
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" J a d 1
GIHN?I v.1 mmimmasmwmmuﬂau (n9)

From Node | To Node | Phase |Line Type| Length (km )
23 24 ABC 185PIC 0.3
23 25 ABC 185PIC 0.3
25 26 ABC 185PIC 1.3
26 27 ABC | 50ACSR 0.5
27 28 ABC | 50ACSR 0.8
28 29 ABC | 50ACSR 0.2
28 30 ABC | 50ACSR 0.25
30 31 ABC | 50ACSR 1.2
31 32 ABC | S0ACSR 0.01
26 33 ABC 185PIC 1.75
33 34 ABC 185PIC 2.2
37 38 ABC 185PIC 0.6
38 39 ABC 185PIC 1.25
38 40 ABC | 50ACSR 0.8
40 41 ABC | S0ACSR 1.25
36 42 ABC | 50ACSR 0.001
42 43 ABC | 50ACSR 0.001
43 44 ABC | 50ACSR 0.2
44 45 ABC | S0ACSR 0.1
44 46 ABC | S0ACSR 0.3
46 47 ABC | S0ACSR 1.6
47 48 ABC | S0ACSR 0.7
48 49 ABC | S0ACSR 14
49 50 ABC | 50ACSR 0.01
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d' 9 a P P [
AN V.2 mlamJmuazummmmuTuan‘umuﬂau

Transformer
Node |Transformer Connection Number of CT-VT
Size(kVA) '

1 ABC 50 1
2 BC 30 2
3 ABC 100 3
4 - - .
5 BC 30 4
6 - - -
7 CT - 5
8 BC 20 6
9 BC 30 7
10 ABC 100 8
11 ABC 50 9
12 AC 2*30 10
13 = = =
14 ABC 250 11
15 CT - 12
16 ABC 100 13
17 AC 30 14
18 = = =
19 CT - 15
20 ABC 50 16
21 AC 30 17
22 CT = 18
23 ABC 100 19
24 ABC 50 20
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4 a PR o 1
M31an v.2 nijeulasasiimesnigou lostumotlou(ds)

Transformer
Node |Transformer Connection Number of CT-VT
Size(kVA)

25 ABC 250 21
26 ABC 400 22
27 BC 30 23
28 = - =

29 BC 20 24
30 AC 20 25
31 AC 20 26
32 CT - 27
33 AB 30 28
34 - = =

35 CT - 29
36 = R =

37 ABC 100 30
38 < - £

39 CT - 31
40 AC 30 32
41 AC 20 33
42 AB 30 34
43 AC 20 35
44 BC 20 36
45 ABC 100 37
46 ABC 160 38
47 AC 30 39
48 AC 20 40
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H a P [ [
19191 v.2 nieudautaziimesnien lustumotlou (sia)

Transformer
Node |Transformer Connection Number of CT-VT
Size(kVA)
49 ABC 50 41
50 ABC 50 42
M523 0.3 Yoyaaio v
Uszinney R(ohm/km) | X(ohm/km)
120A 0.26643 0.36147
120PIC 0.26643 0.34869
185A 0.17571 0.34721
185PIC 0.17571 0.33444
S0ACSR 0.66668 0.38899
50PIC 0.64015 0.37985
95A 0.34059 0.3692
AVR 0.0001 0.0002
UG 0.1 0.1
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NIAI§IU IEEE Std 1547.1™-2005 IEEE Standard Conformance Test Procedures

for Equipment Interconnecting Distributed Resources with Electric Power Systems
dy 9y o g s [ @ 9y o
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msnaaevil iWumsnaaeutuduiginssinssinuneldimgungiindmua uaznaniw
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Tsanudmua
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dy A a g a [} A o o 9 a a
msnadouilitoNgein ssuuwda Iihswdes freruszuuzinuneldanuralndves

usenu ldnsa i Tuanrzusesdudiu usesdud uazensongamshau ldausmuanse

3 HanRUaHRInNNNAAUNAvYRIANND
dy &4 a a0 a 1 a1 o o 9/ a a
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4 MINAAdV Synchronization

H o a ' d o 24 o [
minaaevil uaasliiiudaiimsdegunsalidifuszun gz 19dmsy  synchronous
generators NAovuUAUszuY I 1ded19gndes nmstleadunisgaudunis synchronize 13

doams ondusududmsuusadunsey

5 Interconnection integrity
’ dy LY 1 g ' @ a blsl
msmﬁauuﬁ‘]umsmsmmu miﬁmﬂuwammﬁmmmman ANTNUADUIIAULT T LA (AL
J d‘ [ 9y o dy 4{
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C37.90.1, IEEE C37.90.2, C62.41.2, 1lag C62.45

6 Mamaa I nszuansa(Limitation of dc)
manaaeuiiignii szuuninIMfhswdes vlildMihnssuaasadldluszuunnnd
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7 m3inamsislanding tuvlaiNa1saan (Unintentional Islanding)

I Yy o

d” 1Y a
nmsnageuiiumsnaasumstieatunisifaisianding Tuszu i gunseindedhdussuy
4 a U4 @ v W@ o [}
(iieifia Islanding Tuszuuudaginsaivznszquanelddaduesninszuuimite msnaaey

& A ~ o o o a a a
uﬂﬂﬂﬂuuuwu§1uﬂ Tﬁaﬂﬂm]aﬂ nf’n'ﬂlﬂﬂ5§1uuﬂ']HUf]uﬂﬂﬂ"UiufT@qu']ﬂ

8 matleanundsnyinihdeundu (Reverse Power (for unintentional islanding))

Ji‘] v o y Y - L . .
NINATDUUL umﬁ’]aqnuwawm"lﬂﬁwﬂuﬂaummumnwm Unintentional Islanding

a o Jdy a @ @ 9 v o @ a o yy
ﬂun@ﬂﬂﬂiﬂﬂﬂuszUU{]ﬂQﬂUﬂ15Waﬂq'luUQUﬂﬁUa'lﬂ5‘Uﬂ15!ﬂﬂ Islanding vl')ﬂ'JU

v A 9/ a a a a " o
9 MINBAUVNIIZVUNIN INAANUHAUNA (Reconnect Following Abnormal Condition
Disconnect)
P P " oA 9 o’: [ A0 o L4 ] 9
nanglnsaifvzaeiudgszuuiu ndwinidadesesnninszuy gilnseivzandiszuy
Tminislunaifsmua uazginsalazdesdSunsminura1d dramitensii Tasard
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Total

Individual

demand
harmonic order h [ h<11 | 11<h<17 | 17<h<23 |23<h<35 |35<h

distortion

(odd harmonics)

(TDD)

Percent (%) 4.0 2.0 1.5 0.6 0.3 5.0
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FAULT TYPE Phase | Normal Fault Vs
A 1754.91 10058.00
30FAULT B 2768.48 16625.00
aC 2785.76 14462.00
DA 1754.65 9913.37
39 GROUND FAULT B 2768.09 16750.00
aC 2787.01 14445.00
A 2047.58 11671.00
Line AB FAULT B 2047.38 11670.00
aC 0.00 0.00
OA 0.00 0.00
Line BC FAULT ?B 2599.58 14655.00
aC 2599.57 14655.00
DA 1976.12 9161.00
Line AC FAULT 0B 0.00 0.00
oC 1976.12 9161.00
A 2100.50 11600.00
Line AB GROUND FAULT| @B 2100.65 11700.00
oC 0.00 0.00

P a L J v o [}
Normal Fault = ﬂszuavlaa'nﬂnmmaamtmaagiuizummmﬂ

dda L (Y 1 1 o [}
Vs (Voltage Source) = nszuanoanniiunassioussau Ilfhnenglussuudmiine
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FAULT TYPE Phase | Normal Fault Vs
OA 0.00 0.00
Line BC GROUND FAULT| ©B 2667.01 15790.00
oC 2056.16 14140.00
DA 1901.41 8435.43
Line AC GROUND FAULT| ©B 0.00 0.00
oC 2056.16 10077.00
A 279.80 1811.69
Line A GROUND FAULT | @B 0.00 0.00
oC 0.00 0.00
QA 0.00 0.00
Line BGROUND FAULT | OB 333.35 3070.43
aC 0.00 0.00
QA 0.00 0.00
Line C GROUND FAULT | ¢B 0.00 0.00
oC 324.25 2741.56

Iy 14 (L 1 (] o ]
Normal Fault = ﬂizuﬁﬂaa‘n‘w"l:mLmawwmﬂeghizummuw

7 " @ 1 T 0 1
Vs (Voltage Source) = nszuaroaniitiunassioussau Iiihasegluszuuimiwe
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4' d o ] Aa UK o ]
AN 0.2 ﬂssu’dvlaa'w‘uaaszummmtmmmmmUnszuﬁ"lﬂﬁﬂuizummuw

FAULT TYPE Phase| Normal Fault |Cs= 33%| Cs= 66% |Cs= 100%

OA 1754.91 1765.50 | 1776.70 | 1788.05

3OFAULT ?B 2768.48 2773.64 | 2778.57 | 2783.22

oC 2785.76 | 2795.69 | 2804.10 | 2812.23

OA 1754.65 1763.64 | 1772.62 | 1782.38

30 GROUND FAULT | 9B 2768.09 |2772.74| 2776.40 | 2779.20

oC 2787.01 2798.40 | 2809.70 | 2820.90

OA 2047.58 |2053.18| 2058.63 | 2064.19

Line AB FAULT 0B 2047.38 |2053.18| 2058.62 | 2064.18
aC 0.00 0.00 0.00 0.00
DA 0.00 0.00 0.00 0.00

Line BC FAULT 0B 2599.58 [2603.50| 2607.45 | 2611.48

oC 2599.57 [2603.50 | 2607.44 | 2611.47

OA 1976.12 1986.25 | 1996.41 | 2006.70

Line AC FAULT ?B 0.00 0.00 0.00 0.00

aC 1976.12 1986.25 | 1996.41 | 2006.71

OA | 210050 [2107.80( 2114.75 | 2121.35

Line AB GROUND FAULT| @B 2100.65 2005.89 | 2010.00 | 2013.55

aC 0.00 0.00 0.00 0.00

OA 0.00 0.00 0.00 0.00

Line BC GROUND FAULT| ©B 2667.01 2669.05| 2671.10 | 2672.85

oC 2056.16  [2539.83 | 2546.23 | 2552.72

QA 1901.41 1907.58 | 1913.97 | 1920.77

Line AC GROUND FAULT| ¥B 0.00 0.00 0.00 0.00

oC 2056.16 [ 2069.55 | 2083.57 | 2097.98

Il 1 (Kl ' [} ° '
Normal Fault = ﬂizLLE‘M?)aVm"lmlLmaw1ﬂmag1uizuni}muw

Cs (Current Source) = AszuaWeanniunastwnszua iihdosyluszuudmie



a Jd 0 ] Aa (K ° ] '
A13194N 9.2 ﬂistlﬁﬂﬂﬁ“ﬂ'ﬂﬂQSZUUﬁ']ﬂu'IU'YIIJHWﬁ\]ﬂTUﬂixllﬂvlﬂﬁ'ﬂ‘l‘lizU‘UﬂTH'lﬂU (n0)

FAULT TYPE Phase| Normal Fault |Cs=33%|Cs= 66% | Cs= 100%

OA 279.80 280.00 | 288.94 | 298.46

Line A GROUND FAULT| @B 0.00 0.00 0.00 0.00
oC 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00

Line B GROUND FAULT| OB 333.35 323.44 | 313.47 | 303.20
oC 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00

Line C GROUND FAULT| ¥B 0.00 0.00 0.00 0.00
oC 324.25 328.10 | 332.20 | 336.34

I 1o () 1 ' o ]
Normal Fault = nszuanoani hifiunastisdesgluszuusmi

/a (L ' [} ' [}
Cs (Current Source) = nszuavpaniitiuvasvionszua Iiihdesgluszuusmiie

:‘ d ° ' Ao UL o @ J ° [}
M1319N 9.3 ﬂi&’uﬁﬂﬂﬂ'ﬂﬂﬂﬂi%ﬁﬂﬂﬂLl'IUYllllL'HfNi)’lUfﬂfNvlﬂ‘NWﬂﬂﬁh‘liSUUi)'mu'lU

FAULT TYPE Phase|Normal Fault | Ps=10% | Ps=20% Ps=30%

A 175491 |1758.40( 1762.40 1766.44

30FAULT ?B 2768.48 |2773.15| 2776.90 2781.67

oC 2785.76  12793.50| 2798.70 2805.07

A 1754.65 |1759.27| 1763.60 1768.30

30 GROUND FAULT ?B 2768.09 |2771.50| 2775.60 2779.12

oC 2787.01 |2793.00| 2800.50 2807.00

QA | 2047.58 |2051.60| 2055.50 2059.38

Line AB FAULT ?B 2047.38 |2051.60| 2055.50 2059.40
ocC 0.00 0.00 0.00 0.00

P [P= [ ] (] ° ]
Normal Fault = nszuaWeani lilunasnieaesgluszuusimi

s " o w 1 ) o [}
Ps (Power Source) = Nszuavloanfiliunastiomas iWihaesgluszuudme
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q' d o ] Ao L o 1 0 [} 1
A1 1N 0.3 ﬂi3“.?(7‘]ﬂi’m‘\lENSz‘U'U%'I‘H'Nwﬂillmﬁ\iﬂTUﬂTGQulNﬁ'IGIEJGluiz‘UU‘NHH'IU (99)

FAULT TYPE Phase|Normal Fault| Ps=10% | Ps=20% Ps=30%
_ OA 0.00 0.00 0.00 0.00
Line BC FAULT ?B 2599.58 [2605.70 | 2611.76 2617.89
aC 2599.57 [2605.70| 2611.75 2617.89
OA 1976.12 | 1980.93 | 1984.75 1989.34
Line AC FAULT 9B 0.00 0.00 0.00 0.00
aC 1976.12 11980.93 | 1984.77 1989.35
QA | 210050 ]2019.85| 2119.04 2127.80
Line AB GROUND FAULT| @B 2100.65 |2001.70( 2001.98 2002.06
acC 0.00 0.00 0.00 0.00
DA 0.00 0.00 0.00 0.00
Line BC GROUND FAULT| @B 2667.01 |2674.13| 2681.10 2688.16
oC 2056.16 |2537.67| 2542.00 2546.30
DA 1901.41 1904.30 | 1907.30 1910.36
Line AC GROUND FAULT| @B 0.00 0.00 0.00 0.00
aC 2056.16 |2062.87| 2069.30 2076.27
OA 279.80 283.57 301.00 315.70
Line A GROUND FAULT | @B 0.00 0.00 0.00 0.00
aC 0.00 0.00 0.00 0.00
OA 0.00 0.00 0.00 0.00
Line B GROUND FAULT | 9B 333.35 348.73 363.38 377.80
acC 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00
Line C GROUND FAULT | 9B 0.00 0.00 0.00 0.00
oC 324.25 332.02 339.78 347.27

Normal Fault = nsguaanuiansesd lifiunasssaseglussuudming

Ps (Power Source) = N3zuaANUHANTBINNuMaInIige Infhaeegluszuusmie
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9’“51\1?1 2.3 ﬂizll’d'ﬂﬂﬁ“ﬂ‘uENS3UUﬂ'I‘HUTUﬁﬁlmEN‘i)16ﬂ1ﬁ\11ﬂﬁ1¢l81uizﬂﬂﬂ1ﬂuw (n9)
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FAULT TYPE Phase |Normal Fault| Ps=40% Ps=50% Ps=60%
QA 1754.91 1770.00 | 1772.46 1778.05
30FAULT ?B 2768.48 2786.07 2789.45 2795.67
acC 2785.76 2810.80 2815.45 2824.30
A 1754.65 1772.78 1775.40 1782.00
30 GROUND FAULT 0B 2768.09 2782.60 2784.20 2789.28
aC 27817.01 2813.88 2816.90 2826.71
A 2047.58 2063.00 2065.88 2071.00
Line AB FAULT JB 2047.38 2063.00 2065.86 2071.00
oC 0.00 0.00 0.00 0.00
DA 0.00 0.00 0.00 0.00
Line BC FAULT JB 2599.58 2623.79 2627.79 2636.00
oC 2599.57 2623.78 2627.78 2636.00
QA 1976.12 199.4.2 1996.78 2003.30
Line AC FAULT 0B 0.00 0.00 0.00 0.00
aC 1976.12 1994.20 1996.79 2003.36
A 2100.50 2136.65 2142.09 2154.50
Line AB GROUND FAULT | @B 2100.65 2002.23 2003.14 2003.18
aC 0.00 0.00 0.00 0.00
OA 0.00 0.00 0.00 0.00
Line BC GROUND FAULT | @B 2667.01 2694.52 2698.12 2709.25
aC 2056.16 2550.21 2553.02 2560.00
DA 1901.41 1913.36 1914.27 1919.74
Line AC GROUND FAULT| OB 0.00 0.00 0.00 0.00
aC 2056.16 2082.78 2087.43 2096.30

o 1 L 1 (] o ]
Normal Fault = ﬂszuﬁﬂaa‘nﬂ"lummmmumeegiuszummuw

s K o w ] ' o '
Ps (Power Source) = nszitaneanniunassemas lvhaeeglussuudmi



d' d o [} Ao 1 o w 1 1
AN 2.3 ﬂizuﬁﬂﬂaw‘umizuumnuwﬂmmawwmm"lvlﬁma‘luizun (n9)

FAULT TYPE Phase| Normal Fault [Ps=40%{ Ps=50% [Ps=60%

A 279.80 330.75( 345.00 | 372.00

Line A GROUND FAULT | @B 0.00 0.00 0.00 0.00
aC 0.00 0.00 0.00 0.00
OA 0.00 0.00 0.00 0.00

Line B GROUND FAULT | @B 333.35 391.70| 398.91 [418.53
ocC 0.00 0.00 0.00 0.00
0A 0.00 0.00 0.00 0.00

Line C GROUND FAULT | 9B 0.00 0.00 0.00 0.00
aC 324.25 355.32| 360.65 |370.90

G URE " [ (] ° ]
Normal Fault = nszuaneani hifiunastioaseglussuusmui

/A (L 0o w 1 (] ' ]
Ps (Power Source) = nszuavloanniiunassiomasiiihdesglussunsmiw

{ d o ] 4 L o W J J
VI]SN‘?I 2.3 ﬂszuaﬂaamms:uumwuwﬁﬁtmmmumm'lﬂﬁmeﬂusz‘uu ((213))]

FAULT TYPE Phase | Normal Fault | Ps=70% | Ps=80% | Ps=90% | Ps=100%

OA 175491 [1782.10|1786.00|1790.05( 1794.00

30FAULT 9B 2768.48 |2798.62|2803.22|2808.38| 2812.00

oC 2785.76  [2829.97|2835.90|2842.52| 2848.97

A 1754.65 |1786.00|1791.00|1795.57| 1800.53

39 GROUND FAULT 9B 2768.09 |2793.29]2796.25]2799.31| 2802.72
oC 2787.01 |2834.00|2840.28 (2846.64 | 2853.61

A 2047.58 [2074.64|2078.24(2082.06 | 2085.50

Line AB FAULT ?B 2047.38 |2074.60]2078.23 (2082.05| 2085.50
oC 0.00 0.00 0.00 0.00 0.00

Jan 14 (L ] [ o ]
Normal Fault = ﬂixuﬁﬂaaww"lnmmmmumagius:ummmu

s L o w ] (] ° ]
Ps (Power Source) = nszualpaniniiunastiemas Inihaeegluszuusmie
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t:; d o [ { [ o w ] [l
MTNN 0.3 ﬂszuﬁﬂaammswmmmuﬁﬁunmmumm"lvl‘ﬁmﬂusxuu (n9)

FAULT TYPE Phase| Normal Fault | Ps=70% | Ps=80% | Ps=90% |[Ps=100%
A 0.00 0.00 0.00 0.00 0.00
Line BC FAULT OB 2599.58 |2642.00| 2647.85 |2653.59 | 2659.68
aC 2599.57 |2642.00| 2647.80 |2653.58 | 2659.68
OA 1976.12  |2007.90| 2012.20 {2017.15{2012.85
Line AC FAULT 0B 0.00 0.00 0.00 0.00 0.00
oC 1976.12  |12007.90| 2012.20 |2017.15|2021.86
DA 2100.50 |2163.30| 2171.90 | 2181.50 | 2190.00
Line AB GROUND FAULT| OB 2100.65 [2003.50| 2004.01 | 2004.13 | 2004.29
aC 0.00 0.00 0.00 0.00 0.00
DA 0.00 0.00 0.00 0.00 0.00
Line BC GROUND FAULT| @B 2667.01 (2715.24| 2722.50 | 2729.33 | 2735.60
aC 2056.16  |2564.05| 2569.20 | 2574.40 | 2578.40
DA 1901.41 |1922.65| 1926.00 | 1929.28 | 1932.40
Line AC GROUND FAULT| @B 0.00 0.00 0.00 0.00 0.00
aC 2056.16 [2102.28| 2109.50 | 2116.18 | 2122.84
OA 279.80 380.00 | 388.78 | 422.89 | 438.16
Line A GROUND FAULT | @B 0.00 0.00 0.00 0.00 0.00
oC 0.00 0.00 0.00 0.00 0.00
OA 0.00 0.00 0.00 0.00 0.00
Line B GROUND FAULT | @B 333.35 431.40 | 444.07 | 486.37 | 500.02
oC 0.00 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00 0.00
Line C GROUND FAULT | OB 0.00 0.00 0.00 0.00 0.00
oC 324.25 380.00 | 389.60 | 420.62 | 429.65

Ia 1 (K ] (] ° ]
Normal Fault = ﬂi3LlﬁﬂOﬁVIVIvlllllllﬂﬁ\?i]'lﬂﬁf]ﬂﬁiﬂﬁzﬂuvlﬂu'lﬂ

P [ o w ' 1 ° ]
Ps (Power Source) = NszuaWoarnniunasnioigs Iihaeegluszuusmie
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