

การทำข้าวนึ่งให้แห่งในฟลูอิไคซเบค

นางสาว ภัตนา ศานติยานนท์

วิทยานิพนษนี้เป็นสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต แผนกวิชาเคมีเทคนิค บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย

W.M. bockska

O3# 131

FLUIDIZED-BED CRYING OF PARBOILED RICE

Miss Ratana Santiyanont

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemical Technology Graduate School Chulalongkorn University

1979

Thesis Title	Fluidized-Bed Drying of Parboiled Rice
Еу	Miss Ratana Santiyanont
Department	Chemical Technology
Thesis Advisor	Associate Professor .Phol Sagetong,Ph.D.

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Master's degree.

S. Burnag Dean of Graduate School

(Associate Professor Supradit Bunnag, Ph.D.)

Thesis Committee

War Jahr Chairman

(Professor Frasom Sthapitanonda, Ph.D.)

teres Member

(Assistant Professor Chaiyute Thunpithayakul, Ph.D.)

L/15 Member

(Assistant Professor Shooshat Baramee, Ph.D.)

Un1-31-275/ Member

(Assistant Professor Kroekchai Sukanjanajtee, Ph.D.)

(Associate Professor Phol Sagetong, Ph.D.)

Copyright of the Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนษ ชื่อนิสิต อาจารยที่ปรึกษา แผนกวิชา ปีการศึกษา การทำข้าวนึ่งให้แห้งในฟลูอิไดซ์เบด นางสาว รัตนา ศานติยานนท์ รองศาสตราจารย์ คร.พล สาเกทอง เคมีเทคนิค

-

୭୯୭୬

บทคัดยอ

ข้าวนึ่ง เป็นสินค้าออกที่สำคัญประเภทหนึ่งของประเทศไทย แต่ในปัจจุบันกรรมวิธีการ ผลิตข้าวนึ่ง ในขั้นตอนของการทำข้าวนึ้งให้แห้ง เป็นสิ่งที่ควรได้รับการแก้ไขปรับปรุงจากแบบที่ นิยมทำกัน โดยใช้วิธีตากแดดซึ่งทำให้สิ้นเปลืองเงินทุนและแรงงานคน อีกทั้งให้ผลผลิตที่ไม แนนอนในทางคุณภาพและปริมาณ

เทคนิคทางฟลูอิไคซ์เบคเป็นวิชีที่มีผู้นำไปใช้ในการทำให้ผลิตผลหลายอย่างแห้ง โดย ได้ผลดี ดังนั้นจึงได้นำมาประยุกต์ใช้กับการทำให้ข้าวนึ่งแห้ง โดยขั้นตอนของงานวิจัย เริ่มด้วย การออกแบบและสร้างฟลูอิไคซ์เบค ศึกษาการทำงานของเครื่องมือวิจัยทั้งแบบต่อเนื่องและไม่ ต่อเนื่อง จากนั้นจึงได้เก็บข้อมูลการวิจัยโดยมีตัวแปรที่พี่จารณาคือ เวลา อัตราการไหลของ อากาศ อุณหภูมิของอากาศร้อน และอัตราการผ_้มีตข้าว เพื่อหาความสัมพันชกับอัตราการทำ ให้แห้ง อัตราการถ่ายเทความร้อน สัมประสิทธิ์ของการถ่ายเทความร้อน และวิเคราะห์ผล ที่ได้หลังการสีข้าว ซึ่งทำให้ได้สภาวะที่เหมาะสมที่สุดในการใช้ฟลูอิไคซ์เบคในการทำข้าวนึ่ง ให้แห้ง

จากผลการทคลอง แสคงให้เห็นว่าเทคนิคทางฟลูอิไคซ์เบคสามารถนำมาใช้กับการทำ ข้าวนึ่งให้แห้งได้อย่างมีประสิทธิภาพสูง ระบบที่ใช้ควรเป็นระบบที่มีการป้อนข้าวแบบต่อเนื่อง เพราะจะทำให้สะควกรวดเร็ว โดยได้ข้าวที่มีคุณภาพดี ปริมาณมากเขอเทาที่ต้องการ ฉะนั้น สภาวะที่เหมาะสมที่ควรนำไปใช้คือ อุณ..ภูมิของอากาศร้อน ๑๔๓ องศาเซลเซียส อัตราการ ไหลของอากาศ ๐. ๖๕ กิโลกรัม ต่อ วินาที ต่อ ตารางเมตร และอัตราการผลิตข้าวนึ่ง ๓๑. ๖ กิโลกรัม ต่อ ชั่วโมง

Thesis Title	Fluidized-Bed Drying of Parboiled Rice
Name	Miss Ratana Santiyanont
Thesis Advisor	Associate Professor . Phol Sagetong, Ph.D.
Department	Chemical Technology
Academic Year	1978

ABSTRACT

Parboiled rice is one of the most important exported product of Thailand. Normally, the drying step in production of parboiled rice is performed by means of the conventional method of using sun drying. This uneffective method of drying needs to be improved since it requires high capital investment and labor work, and the quality of product obtained has no consistency.

Fluidized-bed is one of the techniques that has been successfully applied in drying many types of products. Therefore, this technique was selected to be used in drying of parboiled rice.

First, the fluidized-bed column was designed and constructed. The operational systems, batch and continuous types, were studied. Four variables were taken into consideration, namely; time, air flow rate, temperature of hot air, and feed rate. The experiment was conducted and the data obtained was used to calculate the relationships between the rate of drying, the rate of heat transfer, the heat transfer coefficient, and the results obtained from milling were observed to find the optimum conditions in drying of parboiled rice by using fluidized-bed.

It was shown from the experimental results that the fluidized-bed technique is suitable for drying of parboiled rice with high efficiency. The system used should be continuous type operation with screw feeder since it gives a convenient, fast operation, and yields high quality products at any quantity required. The optimum conditions selected were 183° C of air inlet temperature at the air flow rate of 0.65 kg/sec.m² and the production rate of 31.59 kg/hr.

ACKNOWLEDGEMENT

The author would like to express her gratitude to her advisor, Associate Professor . Phol Sagetong, for his great help and many valuable suggestions. Special thank is due to the committee whose criticisms and comments have been especially helpful.

She is deeply indebted to the Faculty of Science, Chulalongkorn University for granting her partial financial support to conduct her research. She also wishes to thank Mr. Weerasak Suthapong for his constant encouragement, helpful comments, and proofreading help.

Finally the author must acknowledge the staffs of the laboratory of the Department of Chemical Technology, Chulalongkorn University and the laboratory of Rice Division, Department of Agriculture for their useful contributions.

CONTENTS

Pi	ag	0
----	----	---

Abstrac	t (Th	ai)			iv
Abstrac	t (En	glish)			v
Acknowl	edgem	ent			vii
List of	Tabl	es			xii
List of	Figu	res			xiv
Nomencl	ature				xvi
Chapter					
I	INTR	ODUCTIO	N		
	1.1	Import	ance of Pa	arboiled Rice	1
	1.2	Advant	ages of U	sing Fluidizing Technique ····	1
	1.3	Purpos	e and Sco	pe of Research	4
II	LITE	RATURE	REVIEWS		
	2.1	Parboi	ling Tech	nique	5
		2.1.1	Mechanis	m of Parboiling	5
		2.1.2		ristics of the Paddy for	
			Parboili	ng	9
		2.1.3	Parboili	ng Process	10
			2.1.3.1	Precleaning and Grading · · · ·	10
			2.1.3.2	Soaking	11
			2.1.3.3	Steaming	14
			2.1.3.4	Drying	15
		2.1.4	Advantage	es and Disatvantages of	
			Parboili	ng	19

1.1

.

	4	20	
	4	No.	

Chapter		Page		
	2.2	Solids	-Drying Fundamentals	23
	2.3	Fluidi	zed-Bed Drying	25
		2.3.1	Fundamental Concepts	25
		2.3.2	Minimum Fluidizing Velocity	26
		2.3.3	Pressure Drop in Fluidized Beds	27
		2.3.4	Beat Transfer in Fluidized Beds	29
		2.3.5	Advantages and Limitations of Fluidized-Bed Drying	33
		2.3.6	Applications of Fluidized-Bed	
			Drying	35
III	EXPE	RIMENTA	L EQUIPMENT	
	3.1	The Exp	perimental System	46
		3.1.1	Condenser	46
		3.1.2	Rotameter	46
		3.1.3	Electric Heater	50
		3.1.4	Fluidized-Bed Column	50
		3.1.5	Screw Feeder	52
	3.2	Steami	ng Tank	52
IV	EXPE	RIMENTA	L CONSIDERATION	
	4.1	Minimu	m Fluidizing Velocity Conditions	56
	4.2	Experi	mental Procedure	56
		4.2.1	Start-Up Procedure	56
		4.2.2	Experimentation	57
	4.3	Condit	ions of Operation	59
		4.3.1	Batch operation	59
		4.3.2	Continuous operation	59

ter		Pa	age
	4.4	Milling Qualities Determination	60
	4.5	Determination of Physical Properties of Bed.	51
		4.5.1 Determination of void fraction 6	61
		4.5.2 Determination of dp of paddy	61
		4.5.3 Determination of density of paddy	61
		4.5.4 Determination of bed surface area (62
V	EXPEI	RIMENTAL RESULTS	
	5.1	Minimum Fluidizing Velocity Determination 6	6 3
	5.2	The periods of drying (Batch operation) 6	65
		5.2.1 Fixed air flow rate	65
		5.2.2 Fixed air inlet temperature	72
	5.3	The Heat Balance	34
		5.3.1 Rate of heat transfer and	
		Temperature difference	34
		5.3.2 Heat transfer coefficient 8	39
		5.3.3 Nusselt number and Reynolds	~ 1
	5 4	number	
		Results of Milling	
		Physical Properties of Bed Determination 9	36
Ϊ		USSION	
	6.1	Equipment Construction and System	~~~
	_	Mechanism	
		Experimental Results 9	36
VII	CONCI	LUSION AND RECOMMENDATIONS	
	7.1	Conclusion	106
	7.2	Recommendations 1	L07

E	Page
References	109
Appendix	
A CALIBRATION OF ROTAMETER ,	114
B DETERMINATION OF MINIMUM FLUIDIZING CONDITIONS ··	116
C EXPERIMENTAL DATA	119
D SAMPLE OF CALCULATION	133
Vita	139

LIST OF TABLES

Table		Page
1-1	The Statistics on Types of Rice exported from Thailand in 1977	2
1-2	The Statistics on Parboiled Rice exported from Thailand from 1970 to 1977	3
2-1	The Comparison of Some Properties Between Raw and Parboiled Rice	22
2-2	Survey of Applications of Eluidized Drying	37
2-3	Summary of Applications of Fluidized Drying	38
5-1	Comparison of experimental and theoretical	
	minimum fluidizing velocities	63
5-2	The rate of drying when Tgi = 80° C	66
5-3	The rate of drying when Tgi = $100^{\circ}C$	6 7
5-4	The rate of drying when Tgi = $120^{\circ}C$	68
5-5	The rate of drying when Tgi = $143^{\circ}C$	69
5-6	The rate of drying when Tgi = $160^{\circ}C$	7 0
5-7	The rate of drying when Tgi = $185^{\circ}C$	71
5-8	The rate of drying when $Qo = 1.9941 \times 10^{-2} \text{ m}^{3}/\text{sec}$ at S.T.P.	72
5-9	The rate of drying when $Qo = 1.8283 \times 10^{-2} \text{ m}^3/\text{sec}$ at S.T.P.	73
5-10	The rate of drying when $Qo = 1.5790 \times 10^{-2} \text{ m}^3/\text{sec}$ at S.T.P.	74
5-11	The rate of drying when $Qo = 1.0804 \times 10^{-2} \text{ m}^3/\text{sec}$ at S.T.P.	75

xiii

Table		Page
5-1 2	Rate of heat transfer and Temperature difference	
	(Batch operation)	85
5-13	Rate of heat transfer and Temperature difference	
	(Continuous operation)	87
5-14	Experimental heat transfer coefficients (Batch	
	operation)	89
5-15	Experimental heat transfer coefficients (Continuous	
	operation)	90
5 - 16	Nusselt number and Reynolds number	91
5 - 17	Results of Milling for Batch operation when air	
	flow rate was fixed	93
5-18	Results of Milling for Batch operation when air	
	inlet temperature was fixed	94
5-19	Results of Milling for Continuous operation when	
	air flow rate and inlet temperature were fixed	95
5-20	Determination of Physical Properties of Bed	96

LIST OF FIGURES

^r igur	e	Page	
2-1	Diagrammatic representation of the structure of a paddy grain in longitudinal section	7	
2-2	Change in milling quality of parboiled paddy during continuous drying in an LSU drier	le	
2-3	Variation of moisture content of paddy with drying time (sum drying)	18	
2-4	Variation of drying rate with drying time (sun drying)	18	
2-5	The periods of drying	24	
2-6	Pressure drop versus gas velocity for a bed of uniformly sized sand particles	28	
2-7	Pressure drop diagrams for poorly fluidized beds	29	
2-8	Heat and mass transfer in the drying of a particle in a fluidized bed	29	
2-9	Experimental results of Nup vs Rep	31	
3-1	The Experiment System	47	
3-2	Schematic drawing of the experimental system (Batch Drying)	48	
3-3	Schematic drawing of the experimental system (Continuous Drying)	49	
3-4	Types of distributor	51	
3-5	Schematic drawing of the fluidized bed column	53	
3-6	Screw Feeder	54	
3 -7	Steaming tank	55	
4-1	Schematic diagram of experimental procedure	58	

Figure

gur	e	Page
5-1	Pressure drop versus Air velocity at different height of bed	64
5–2	Moisture content versus Time when air inlet flow rate was fixed	76
5-3	Moisture content versus Time when air inlet temp. was fixed	77
5-4	Rate of drying versus Moisture content when air inlet flow rate was fixed	78
5 - 5	Rate of drying versus Moisture content when air inlet temp. was fixed	79
5-6	Rate of drying versus Average moisture content when air inlet flow rate was fixed	80
5-7	Rate of drying versus Average moisture content when air inlet temp. was fixed	81
5-8	Rate of drying versus Time when air inlet flow rate was fixed	82
5-9	Rate of drying versus Time when air inlet temp. was fixed	83
5-10	Rate of heat transfer versus Temperature difference (Batch operation)	86
5-11	Rate of heat transfer versus Temperature difference (Continuous operation)	83
5-12	Correlation of Nusselt number and Reynolds number	92
A-A	Calibration curve of rotameter	115

NOMENCLATURE

a	н	specific surface or surface of solid per volume of
		solid, m ⁻¹
AC	11	cross-sectional area of tube or bed, m^2
As	=	surface area of bed, m ²
C		empirical constant of Eq.(2-5), dimensionless
Cpg	u	specific heat of air, Joule/kg. ⁰ K
dp	81	diameter of sphere having the volume of the paddy, m
Ρ	Π	production rate of parboiled paddy, kg/sec
g		9.80 m/sec ² , acceleration of gravity
gc	11	980 gm.cm/(gm-wt)(sec) ² , conversion factor
h _p	8	heat transfer coefficient between hot air and
		parboiled paddy, Joule/sec.m ² . ⁰ K
k g	н	thermal conductivity of air, Joule/sec.m. K
Lm	11	height of fixed bed, cm.
Lmf	=	height of bed at minimum fluidizing conditions, cm.
m	ţ,	empirical constant of Eq.(2-5), dimensionless
M	=	moisture content (dry basis)
Nup	88	$h_{p}.d_{p}/k_{g}$, Musselt number for bot air-parboiled padd
		beat transfer, dimensionless
Δp	11	pressure drop across bed, cm.H ₂ 0
q _h	H	rate of heat transfer, Joule/sec
Qo	Ŧ	volumetric air inlet flow rate, m/sec
R	=	dM/dt, rate of drying, gm.H ₂ 0 evaporated/gm.dry
		paãdy.hr

- Rep = dp.Uo pg/ µg, parboiled paddy Reynolds number, dimensionless
- t = drying time, min.
- t' = drying time after tempering, min.
- Tg_b = temperature of air in bed, ^oC
- Tg_i = temperature of air inlet, ^oC
- U0 = superficial air velocity through a bed of parboiled paddy, m/sec

- Emf = void fraction in a bed at minimum fluidizing conditions, dimensionless
- Em = void fraction in a random packed bed, dimensionless
- //g = viscosity of air, kg/m.sec.

$$l^{2}g$$
 = density of air, kg/m³

- fs = density of paddy, kg/m³