CHAPTER IV

THE MULTIPLICATIVE SEMIGROUP

OF nxn MATRICES OVER A FIELD

In this chapter, we give a significant result of matrix semigroups.
It is proved that for any positive integer and for any field F, the
m ultiplicative semigroup of nxn matrices over the field F is locally

factorizable.

Throughout this chapter, the following notation are adopted

Let F be a field and a positive integer. The set of all nxn
matrices over the field F is denoted by Mn(F), and let On and In denote
the nxn zero matrix and the nxn identity matrix over F. Then under the
m ultiplication of matrices, M (F) is a semigroup with zero On and iden-
tity | . For the remainder of this chapter, the notation MAF) w ill

denote such the semigroup.

For k e {0, 1, 2, ..., } et
D(k) ¢d..)
n 1)
1 if i = %k
where d.. =
) 0 otherwise.
For instance
10000
10 0 o 10 00
of" 000 B 0010 0
) 000 00010
00000
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We remark that = ¢on and = In>

First, we shall show that the semigroup M (F) is indeed (iso-

morphic to) a transformation semigroup on the set Fn where

Fn = {(Xp, x2, X ) | Xp, x2, xn E F}. For A e M (F), define
. 3 - >
the map a, Fn 4 Fn by Xa, xA where X e Fn. Then a, £ lp,n Q Tpn
for all A M (F), and for A, B E M _(F), aAaB z aAB' Hence the map
A is a homomorphism from M (F) into T . To show this map is
one-to-one, let A, B EM(F) such that = otg. Then xA = xB for
X E Fn. Let A= (afj) and B = (tn.). For i E (1, 2, ..., '}, we have
(a|.|., ai—2‘“’ am) = e+.A = eI.B 3 (b-i'l" b|‘209 birr) where er E Fn

such that the i"™“lentry is 1 and other entries are all 0, so a., = ..
I I
forall | £ {I, 2, ..., }.. Hence A = B.

In this chapter, we are only interested in square matrices,
therefore we shall use matrices to mean matrices in M (F). First we
recall some preliminaries concerning matrices.

An elementary row operation on a matrix Ais an operation of

one of the following three types

(1) a permutation of two rows,
(2) a multiplication of a row by a nonzero scalar,

(3) an addition of one row to another.

An elementary matrix is any matrix which can be obtained by performing
a single elementary row operation on the identity matrix. Any elemen-
tary row operation can be performed on a matrix A by multiplying A on
the le ft by the corresponding elementary matrix [3, Theorem 6.1].

Every elementary matrix is nonsingular [3, Theorem 6.2].
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Two matrices A and B are said to he row equivalent, written as
A ﬁB, if B is obtainable from A by a finite sequence of elementary
row operations, that is, A* B if and only if B = EMEM ... EMA for some
elementary matrices E™, EA*, Ej*. Because the inverse of an ele-
mentary matrix is the product of elementary matrices [3, Theorem 6.3],

then the relation 'R is an etiuivalent relation on M (F).

Amatrix Ais in row - reduced echelon form if

(1) the first nonzero element in each row is 1,

(2) in any column containing the first nonzero element of
some row, that element is the only nonzero element in that column,

(3) the zero rows of A (if any) come last,

(H) when the leading ones in the nonzero rows are connected

by a broken line, that line slopes down and to the right.

An example of a matrix A in row - reduced echelon form is

o o o o o

o o o o =

o o o - ©
>*

o o o

o o = o o

where * is some scalar in F.

Every matrix is row equivalent to a matrix in row - reduced

echelon form [3, Theorem 6.5].

Let a matrix A be in row - reduced echelon form. Suppose that
At On and the first row to the p't" row are all the nonzero rows of A,
For each i e {1,2, ..., p}, let the first nonzero element of the i"t"

row be in the c¢*I* column. Then i $ ¢ for all i e {1, 2, ..., p} and
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< < ... < ) [ if i =c.
c1 2c cp For each i in {1, 2, 3, ,opY, it Ci’ le t
ErN = In, and if i <c”, let he the elementary matrix obtained by
interchanging the [1*1row and the r'ow in | i Then we have

that EMEM.-.EMA is a matrix having the following properties

(a) the first nonzero element in each row is 1, and lies on
the main diagonal,
(b) in any column containing 1 in the main diagonal this ele-

ment 1 is the only nonzero element in the column.

For convenience, we say a matrix satisfying the conditions (a)
and (b) is in the special form. Hence, a matrix A = (a,) is in The

special form if and only if

(al) for each j, either . = 0 or a" =1,

(b") ai'j' S U R N A

(c*) for each jy . = 1 implies a ., = 0 for all k t i
(d") for each j5 a.. =0 implies a, - 0 for all k.

An example of a matrix in the special form 'is

0 00 00
010*0

0 01~*0
0 00O00O0
0 0001

where * is some scalar in F.

4.1 Lemma. Let A e M (F) be in the special form. Then A" = A, that

is, A e EM (F)).

Proof Let A (& ) eM(F) be in the special form. Let



A2 = (x...). Then fori, | £ {1, 2, R To
(IJ) j £ } 1] %
show X., =a., for all i, j e (1, 2, ,holet i, £ {1, 2, C)
i i
he arbitrary fixed.
Case a.. - 0. Then a. k- 0 for ell k 0 {1, 2, ..., },ooso o x, =0
= d,.
I
Case R 1. For k e {1, 2, .}k foi, it atk 0, then
ak% =0 and so akj' = 0. Hence al’kakj' =0 for all k e {1,2,
kt . a 2 #

Thus X'i-j

As mentioned before, every matrix in row - reduced echelon form
is row equivalent to a matrix in the special form. Hence every matrix
is row equivalent to a matrix in the special form.

4.2  Lemma. For any positive integer and for any field F, the semi-
group M (F) is factorizable.

Proof Let A £ M (F). Then A is row equivalent to a matrix
in the special form, say B. Therefore A = EMEA A EMB for some ele-
mentary matrices E®, , ..., Ej» Since EMEM A...EM is nonsingular,

43

EMEM AUV EM £ G where G is the multiplicative group of nonsingular
matrices in M (F). By Lemma 4.1, B2 =B, so Be ECMACF)). Then
A = (EREk 1...£1)B e GE(M (F)). Hence Mn(F) = GE(Mn(F)), so Mn(F) is

factorizable. J

In matrix theory, we have that if A is

then A =T1"D

k £ {0, 1, 2, ..., }

for some nonsingular matrix T in

(4, page 226], and observe that

an idempotent in M"(F),

MA(F) for some
and

A =00 if
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only if k = 0. For any nonsingular matrix T in M (F) and for any

k £ {0,1,..., '}, T "D*k"T is clearly an idempotent of MA(F). Hence

EM (F)) = {T~VK)T IT EM(F), T is nonsingular, k e {0, 1, 2,

4.3 Lemma, If Ais a nonzero idempotent of M (F), then AMn(F)A s

isomorphic to M?(F) for some k £ {1, 2, ..., }.
Proof Let A £ ECMACF)) and A I 0*. Then A =T FD*"T for
some nonsingular matrix T in M (F) and for some k £ {I, 2, ..., 1}
Thus
AMn (F)A = (T_V k)T)Mn(F)(T~VKk)T)
I IDMTM (F)T_1)DMkT
= T "V k)M (F)D"k)T
(k) T it i =] £k,
Since D is the matrix (d..) where d ..
H ' 0 otherwise,

by the multiplication of matrices, we have that for any matrix B ()
in MACf), D™k™BD"k " is the matrix ( ")
where

b.. if i, ] $k,

'] 0 otherwise.
Let M*kA~(F) denote the set {B = ( ._) £ (F) I~ =0 if i >k or
, rgk), . . .
j > k}. Then M "'(F) is a subsemigroup of M (F) and obviousely

D Ik (F)Dnk) = Mnk)(F)- Hence' AMn(F)A = T~V k)(F)T which is

isomorphic to M*k*(F) by the map B BT FBT (B C h/k*(F)). Clearly,
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Cf) is isomorphic to M ~\f) by the map X H- X where if X - (X,,)

MA(F), then X = (>Lj) E Mn(F) is defined by

13 0 otherwise.

Hence AM (F)A is isomorphic to M (F). #

We know that O0*Mn(F)en = (0n) which is factorizable. Hence

from Lemma 4.2 and Lemma 4.3, we obtain the following theorem.

4.4 Theorem, For any positive integer and for any field F, the mul-

tiplicative semigroup of nxn matrices over F is locally factorizahle.
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