CHAPTER IV

THE MULTIPLICATIVE SEMIGROUP OF n×n MATRICES OVER A FIELD

In this chapter, we give a significant result of matrix semigroups. It is proved that for any positive integer n and for any field F, the multiplicative semigroup of n×n matrices over the field F is locally factorizable.

Throughout this chapter, the following notation are adopted :

Let F be a field and n a positive integer. The set of all n×n matrices over the field F is denoted by $M_n(F)$, and let O_n and I_n denote the n×n zero matrix and the n×n identity matrix over F. Then under the multiplication of matrices, $M_n(F)$ is a semigroup with zero O_n and identity I_n . For the remainder of this chapter, the notation $M_n(F)$ will denote such the semigroup.

For
$$k \in \{0, 1, 2, ..., n\}$$
, let

$$D_{n}^{(k)} = (d_{ij})$$

where

$$d_{ij} = \begin{cases} 1 & \text{if } i = j \leq k, \\ 0 & \text{otherwise.} \end{cases}$$

For instance,

$$D_{3}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} , D_{5}^{(4)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

We remark that $D_n^{(o)} = O_n$ and $D_n^{(n)} = I_n$.

First, we shall show that the semigroup $\mathbf{M}_{\mathbf{n}}(\mathbf{F})$ is indeed (isomorphic to) a transformation semigroup on the set $\mathbf{F}^{\mathbf{n}}$ where $\mathbf{F}^{\mathbf{n}} = \{(\mathbf{x}_1, \, \mathbf{x}_2, \, \dots, \, \mathbf{x}_n) \mid \mathbf{x}_1, \, \mathbf{x}_2, \, \dots, \, \mathbf{x}_n \in \mathbf{F}\}. \quad \text{For } \mathbf{A} \in \mathbf{M}_{\mathbf{n}}(\mathbf{F}), \text{ define the map } \alpha_{\mathbf{A}} : \mathbf{F}^{\mathbf{n}} \to \mathbf{F}^{\mathbf{n}} \text{ by } \bar{\mathbf{x}} \alpha_{\mathbf{A}} = \bar{\mathbf{x}} \mathbf{A} \text{ where } \bar{\mathbf{x}} \in \mathbf{F}^{\mathbf{n}}. \quad \text{Then } \alpha_{\mathbf{A}} \in \mathbf{S}_{\mathbf{F}}^{\mathbf{n}} \subseteq \mathbf{T}_{\mathbf{F}}^{\mathbf{n}} \text{ for all } \mathbf{A} \in \mathbf{M}_{\mathbf{n}}(\mathbf{F}), \text{ and for } \mathbf{A}, \, \mathbf{B} \in \mathbf{M}_{\mathbf{n}}(\mathbf{F}), \, \alpha_{\mathbf{A}} \alpha_{\mathbf{B}} = \alpha_{\mathbf{A}} \mathbf{B}. \quad \text{Hence the map } \mathbf{A} \mapsto \alpha_{\mathbf{A}} \text{ is a homomorphism from } \mathbf{M}_{\mathbf{n}}(\mathbf{F}) \text{ into } \mathbf{T}_{\mathbf{F}}^{\mathbf{n}}. \quad \text{To show this map is one-to-one, let } \mathbf{A}, \, \mathbf{B} \in \mathbf{M}_{\mathbf{n}}(\mathbf{F}) \text{ such that } \alpha_{\mathbf{A}} = \alpha_{\mathbf{B}}. \quad \text{Then } \bar{\mathbf{x}} \mathbf{A} = \bar{\mathbf{x}} \mathbf{B} \text{ for } \bar{\mathbf{x}} \in \mathbf{F}^{\mathbf{n}}. \quad \text{Let } \mathbf{A} = (\mathbf{a}_{\mathbf{i}\mathbf{j}}) \text{ and } \mathbf{B} = (\mathbf{b}_{\mathbf{i}\mathbf{j}}). \quad \text{For } \mathbf{i} \in \{1, 2, \ldots, n\}, \text{ we have } (\mathbf{a}_{\mathbf{i}\mathbf{1}}, \mathbf{a}_{\mathbf{i}\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{i}\mathbf{n}}) = \bar{\mathbf{e}}_{\mathbf{i}} \mathbf{A} = \bar{\mathbf{e}}_{\mathbf{i}} \mathbf{B} = (\mathbf{b}_{\mathbf{i}\mathbf{1}}, \mathbf{b}_{\mathbf{i}\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{i}\mathbf{n}}) \text{ where } \bar{\mathbf{e}}_{\mathbf{i}} \in \mathbf{F}^{\mathbf{n}} \text{ such that the } \mathbf{i}^{\mathbf{th}} \text{ entry is 1 and other entries are all 0, so } \mathbf{a}_{\mathbf{i}\mathbf{j}} = \bar{\mathbf{b}}_{\mathbf{i}\mathbf{j}} \text{ for all } \mathbf{j} \in \{1, 2, \ldots, n\}. \quad \text{Hence } \mathbf{A} = \mathbf{B}.$

In this chapter, we are only interested in square matrices, therefore we shall use matrices to mean matrices in $M_n(F)$. First we recall some preliminaries concerning matrices.

An elementary row operation on a matrix A is an operation of one of the following three types:

- (1) a permutation of two rows,
- (2) a multiplication of a row by a nonzero scalar,
- (3) an addition of one row to another.

An <u>elementary matrix</u> is any matrix which can be obtained by performing a single elementary row operation on the identity matrix. Any elementary row operation can be performed on a matrix A by multiplying A on the left by the corresponding elementary matrix [3, Theorem 6.1]. Every elementary matrix is nonsingular [3, Theorem 6.2].

Two matrices A and B are said to be <u>row equivalent</u>, written as A $_R$ B, if B is obtainable from A by a finite sequence of elementary row operations, that is, A $_R$ B if and only if B = $E_k E_{k-1} \dots E_1 A$ for some elementary matrices E_1 , E_2 , ..., E_k . Because the inverse of an elementary matrix is the product of elementary matrices [3, Theorem 6.3], then the relation $_R$ is an equivalent relation on $_R$ (F).

A matrix A is in row - reduced echelon form if

- (1) the first nonzero element in each row is 1,
- (2) in any column containing the first nonzero element of some row, that element is the only nonzero element in that column,
 - (3) the zero rows of A (if any) come last,
- (4) when the leading ones in the nonzero rows are connected by a broken line, that line slopes down and to the right.

An example of a matrix A in row - reduced echelon form is

where * is some scalar in F.

Every matrix is row equivalent to a matrix in row - reduced echelon form [3, Theorem 6.5].

Let a matrix A be in row - reduced echelon form. Suppose that $A \neq 0_n$ and the first row to the p^{th} row are all the nonzero rows of A. For each $i \in \{1,2,\ldots,p\}$, let the first nonzero element of the i^{th} row be in the c_i^{th} column. Then $i \leq c_i$ for all $i \in \{1,2,\ldots,p\}$ and

 $c_1 < c_2 < \ldots < c_p$. For each i in $\{1, 2, 3, \ldots, p\}$, if $i = c_i$, let $E_i = I_n$, and if $i < c_i$, let E_i be the elementary matrix obtained by interchanging the i^{th} row and the c_i^{th} row in I_n . Then we have that $E_1 E_2 \ldots E_p A$ is a matrix having the following properties:

- (a) the first nonzero element in each row is 1, and lies on the main diagonal,
- (b) in any column containing 1 in the main diagonal this element 1 is the only nonzero element in the column.

For convenience, we say a matrix satisfying the conditions (a) and (b) is in the <u>special form</u>. Hence, a matrix $A = (a_{ij})$ is in the special form if and only if

- (a') for each i, either $a_{ii} = 0$ or $a_{ii} = 1$,
- (b') $a_{ij} = 0$ if i > j,
- (c') for each i, $a_{ii} = 1$ implies $a_{ki} = 0$ for all $k \neq i$,
- (d') for each i, $a_{ii} = 0$ implies $a_{ik} = 0$ for all k.

An example of a matrix in the special form is

where * is some scalar in F.

4.1 <u>Lemma</u>. Let $A \in M_n(F)$ be in the special form. Then $A^2 = A$, that is, $A \in E(M_n(F))$.

<u>Proof</u>: Let A = (a_i) $\in M_n(F)$ be in the special form. Let

 $A^2 = (x_{ij}). \quad \text{Then for i, j } \epsilon \{1, 2, \ldots, n\}, \quad x_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj} . \quad \text{To}$ show $x_{ij} = a_{ij}$ for all i, j $\epsilon \{1, 2, \ldots, n\}$, let i, j $\epsilon \{1, 2, \ldots, n\}$ be arbitrary fixed.

Case $a_{ii} = 0$. Then $a_{ik} = 0$ for all $k \in \{1, 2, ..., n\}$, so $x_{ij} = 0$ $= a_{ij}$.

Case $a_{ii} = 1$. For $k \in \{1, 2, ..., n\}$, $k \neq i$, if $a_{ik} \neq 0$, then $a_{kk} = 0$ and so $a_{kj} = 0$. Hence $a_{ik}a_{kj} = 0$ for all $k \in \{1, 2, ..., n\}$, $k \neq i$. Thus $x_{ij} = a_{ii}a_{ij} = a_{ij}$. #

As mentioned before, every matrix in row - reduced echelon form is row equivalent to a matrix in the special form. Hence every matrix is row equivalent to a matrix in the special form.

4.2 <u>Lemma</u>. For any positive integer n and for any field F, the semi-group $M_n(F)$ is factorizable.

<u>Proof</u>: Let A ϵ M_n(F). Then A is row equivalent to a matrix in the special form, say E. Therefore A = $E_k E_{k-1} \dots E_1 B$ for some elementary matrices E_1 , E_2 , ..., E_k . Since $E_k E_{k-1} \dots E_1$ is nonsingular, $E_k E_{k-1} \dots E_1$ ϵ G where G is the multiplicative group of nonsingular matrices in M_n(F). By Lemma 4.1, $B^2 = B$, so $B \epsilon E(M_n(F))$. Then $A = (E_k E_{k-1} \dots E_1) B \epsilon GE(M_n(F))$. Hence M_n(F) = $GE(M_n(F))$, so M_n(F) is factorizable.

In matrix theory, we have that if A is an idempotent in $M_n(F)$, then $A = T^{-1}D_n^{(k)}T$ for some nonsingular matrix T in $M_n(F)$ for some $k \in \{0, 1, 2, ..., n\}$ [4, page 226], and observe that $A = 0_n$ if and

only if k = 0. For any nonsingular matrix T in $M_n(F)$ and for any $k \in \{0,1,\ldots,n\}$, $T^{-1}D_n^{(k)}T$ is clearly an idempotent of $M_n(F)$. Hence $E(M_n(F)) = \{T^{-1}D_n^{(k)}T \mid T \in M_n(F), T \text{ is nonsingular, } k \in \{0,1,2,\ldots,n\}\}.$

4.3 <u>Lemma</u>. If A is a nonzero idempotent of $M_n(F)$, then $AM_n(F)A$ is isomorphic to $M_k(F)$ for some k ϵ {1, 2, ..., n}.

 $\underline{\text{Proof}}: \quad \text{Let A } \epsilon \ \text{E}(\texttt{M}_n(\texttt{F})) \ \text{and A } \neq \texttt{O}_n. \quad \text{Then} \quad \texttt{A} = \texttt{T}^{-1} \texttt{D}_n^{(k)} \texttt{T} \quad \text{for some nonsingular matrix T in M}_n(\texttt{F}) \ \text{and for some k } \epsilon \ \{1, \, 2, \, \ldots, \, n\}.$ Thus

$$AM_{n}(F)A = (T^{-1}D_{n}^{(k)}T)M_{n}(F)(T^{-1}D_{n}^{(k)}T)$$

$$= T^{-1}D_{n}^{(k)}(TM_{n}(F)T^{-1})D_{n}^{(k)}T$$

$$= T^{-1}D_{n}^{(k)}M_{n}(F)D_{n}^{(k)}T$$

Since $D_n^{(k)}$ is the matrix (d_{ij}) where $d_{ij} = \begin{cases} 1 & \text{if } i = j \leq k, \\ 0 & \text{otherwise,} \end{cases}$

by the multiplication of matrices, we have that for any matrix $B = (b_{ij})$ in $M_n(F)$, $D_n^{(k)}BD_n^{(k)}$ is the matrix $(b_{ij}^{'})$ where

$$b'_{ij} = \begin{cases} b_{ij} & \text{if } i, j \leq k, \\ 0 & \text{otherwise.} \end{cases}$$

Let $M_n^{(k)}(F)$ denote the set $\{B = (b_{ij}) \in M_n(F) \mid b_{ij} = 0 \text{ if } i > k \text{ or } j > k\}$. Then $M_n^{(k)}(F)$ is a subsemigroup of $M_n(F)$ and obviousely $D_n^{(k)}M_n(F)D_n^{(k)} = M_n^{(k)}(F)$. Hence, $AM_n(F)A = T^{-1}M_n^{(k)}(F)T$ which is isomorphic to $M_n^{(k)}(F)$ by the map $B \mapsto T^{-1}BT$ ($B \in M_n^{(k)}(F)$). Clearly,

 $M_{k}(F)$ is isomorphic to $M_{n}^{(k)}(F)$ by the map $X \mapsto \overline{X}$ where if $X = (x_{ij})$ $\in M_{k}(F)$, then $\overline{X} = (\overline{x}_{ij}) \in M_{n}(F)$ is defined by

$$\bar{x}_{ij} = \begin{cases} x_{ij} & \text{if i, j } \leq k, \\ 0 & \text{otherwise.} \end{cases}$$

Hence $\mathrm{AM}_{\mathrm{n}}(\mathrm{F})\mathrm{A}$ is isomorphic to $\mathrm{M}_{\mathrm{k}}(\mathrm{F})$. #

We know that $0_n M_n(F) 0_n = \{0_n\}$ which is factorizable. Hence from Lemma 4.2 and Lemma 4.3, we obtain the following theorem.

4.4 <u>Theorem</u>. For any positive integer n and for any field F, the multiplicative semigroup of $n \times n$ matrices over F is locally factorizable.