CHAPTER 11

TRANSFORMATION SEMIGROUPS

Most of the main results of the thesis are in this chapter. We
first characterize locally factorizable partial transformation semi-
groups. This result is applied TO give characterizations of locally
factorizable full transformation semigroups and locally factorizable
1-1 partial transformation semigroups, and to show that for any set X,
the semigroup of all almost identical partial transformations of X is
locally factorizable, and then we have the following results as corol-
laries For any set X, the semigroup of all almost identical trans-
formations of X and the semigroup of all almost identical 1-1 partial

transformations of X are locally factorizabhle.

Throughout this chapter, the following notation are adopted

For a set X, let

T = the partial transformation semigroup on X,
(jx the fu ll transformation semigroup on X
I‘x the symmetric inverse semigroup on X or the 1-1 partial trans-

formation semigroup on X

U the semigroup of all almost identical partial transformations
of X, ie .5
Aoz o {a £ Tj j |s(a)] <0} where s(a) = {x £ Act | xa | x}

the shift of a
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V, = the semigroup of all almost identical transformations of X, ie

v = {aedx | |s@)l <5

L]

x - the semigroup of all almost identical 1-1 partial transforma-

tions of X, ie .,

= {gel | 1Is(a)l <®}9

Gx = the symmetric group (the permutation group) on X.

The first theorem gives a characterization of locally factori-
zable partial transformation semigroups. To prove the theorem, the

following lemma is required

3.1 Lemma. Let X be a set anda, 3 eTA, If a = 3yfor some Y £ Tx,

then Aa QG A3 and for X e ActXIT= (foﬁ'r :
yNlad

a

Proof Let a, 3 e T , and assume that a = 3y for some Y e TH,
Then Aa = A3y ¢ A3. Next, let X e Aa. If y E XTT" and t e yTT, then
xa = ya, y3 = t3, soxa = ya= y3y = (y3)y = (t3)y= t3y zta, and hence

t e mot' This proves that VIT- G X'|"|'a. ['f s e X'ITa, then e SNn;

- 3
yex-lﬁa
& yiTg. Hence XTa = vTTg. #
yexTT YEXTT
a a
3.2 Theorem. The partial transformation semigroup on a set X is

locally factorizable if and only if X is finite.

Proof [f Tx is locally factorizable, then Tj, is factorizable
since T has an identity, so X is finite [7, Theorem 3.1].

Assume X is a finite set. Let a e E(T?). To show that aT"a
1 H"E(aTxa), let P e aT”a. If p = 0 then p a0 ¢ H*ECaT™a). Assume
p i 0. Since P e aT™a, p = apa for some P e TA. It follows that Ap

Q Aa, Vp <G Va. By Lemma 3.1, we have that for each X e Ap5 XIT =
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) yT . For each a £ Vp, if X £ ap \ then ap A =XT = U yir

yexiip a p o yexiTp a
= U yir . Hence for each a E vp, ap » : U " yii*. Since X is
yeap a yeap
finite, for each a e vp, there exist c11, c‘IZ, an in ap-1 such
that ap'1 = P dhin is a disjoint union. Therefore Ap = ap-1
=l aa aeVp

= (" d]'TT ) which is a disjoint union. Because X is finite,
aeVp i=1 a a

[Aot/TTAl = |Va] < °°. It follows that IAalii"M d \ala*E vp}l = |ValVpl.
Then there exists a one-to-one map Ip from the set Aa/n \ {d*ii*la e Vp}

onto the set VaWp. Define the map B from Aa into X as follows

a if X e d"TA a e Vp,
= <
(Xﬁa)m if X e Aa\ dgTa.
aeVp
Then
a if X e djhr , a E Vp,

X8 =
(xtt")Ip if XTT" e Aa/TT&\ {d"T ala e Vp}.

Hence Ap = Aa, vs = Va since ij is onto 5 Tg = "a since " is one-to-one.
Therefore Pe H . (Chapter I, page 8 ). since Wj=VaWp, we have
that Vp and {(d\ )lp 1 a e Vp, i =2, 3, ..., 3} are disjoint sets.
Define the map Y from VpU((%\g)ijj l a EVp, i =2,3, ..., =}into

Vp as follows

X if XeVp5

a if X = (dAaTTa)Ipa e VRS i =2, 3 .,

Then Vy = Vp and Ay'S VpUViJj ¢: VaUVa = Va. Hence Vy§£ Ay and if X
e Vy, then X e Vp, so xy - X. Thus y e E(T ) (chapter I, page 7 ).

13 _1 _1
Since Vy = Vp  Vac Aa, we have Aya = (VyflAa)y = = (Vy)y =~ = Ay and

xya = xy for all X e Ay (because ya =y for all y £ Va). Therefore

ya = y. It follows that (aya)* = aya®ya = ay"a = aya, hence aya e E(aT a),
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Claim that p = gy. Let X £ Ap, and let a = xp. Then a e Vp,

- >
ap L = d'iin. If X e d~TT"9 then xg = a E Vp, and hence

so X e XTTp

Xgy = ay = a = xp. If XEd\a for some i E {2, 3, }, then xgy
= ((Xtt JpY = ((dSr )lp)y = a = xp. This shows that ApC_Agy and xp
= xgy for every XE ip, Next, let y £ Agy. Then yg £ Ay = VPU
{(dsir)4 1a e Wpsi =2, 3, A,

Case yg £ Vp. Then (yg)y = yg e Vp. From the definition of g, y e d"TT",
yg = a for some a e vp. since dg'l"raQ ap "5y £ ap and so yp = a.

Hence ygy = ay = a = yp.

Case yg = (dSr )f) for some a e Vp, is (2, 3, n Then yiTh = dAMTTA
since Ip is one-to-one. Hence ygy Z((yiT")A)y - ((d%a)A)Y:a . yp
since y £ dTT Q ap

Hence gy = p. But ¢ £ H' and Ya = v, it follows that p = Qy = gaya
e HME(aT"a). Hence aTxa = HE(aTxa).

Therefore, the theorem is proved. #

Let X be a set, the transformation semigroup /x or Ix, and
a e E(s). We know that the 3C - class of Tx containing a, H" =
{9 ETx | Ag : Aa, vg = Va and TI* = TTg}. If Aa = X, then for all g £ H",
Ag = X. If a'is one-to-one, then TI" is the identity relation on Aa, so
for g e HM Tig is the identity relation on Ag which implies g is one-to-one.
Hence ¢ . Hence, for a £ , the - class of containing a is 1
the X - class of Tx containing a. Using this result and Theorem 3.2,

we have the following corollary.

3.3 Corollary. Let X be a set and let he ®» or Ix> Then the

transformation semigroup is locally factorizable if and only if X is

finite .
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Proof If s is locally factorizable 5 then is factorizable
since has an identity, so X is finite [I, Corollary of Theorem 3.1
and 7, Theorem 3.2].

Assume that X is finite. Let a e E(s). Then a e E(T").
Therefore aT"a = HME(aTyCi) where is the a - class of T* (and

also) containing a, by Proposition 2.1 and Theorem 3.2. To show aSa

= HM"EOaSa), let p e . Then apa € aT"a. Since aTja = H"ECaT"a), we
have apa = Paya for some g € and y £ Tif such that aya e E(aT"a).I

Because apa e and HaQ , it follows that aya = aaya = g/gaya = gapa
€ where g is the group inverse of g in the group H . Therefore aya

= a(aya)a e E(aSa), and hence apa e H"E(aSa). Thus aSa = H"E(aSa).

Therefore is locally factorizable. #
Let T be a subsemigroup of a semigroup . Let e e E(T). Then
e e E(s), is the maximum subgroup of having e as its identity and

HePiT is a subsemigroup of T having e as its identity. If HgDT is a
subgroup of T, then it becomes the maximum subgroup of T having e as
its identity (since every subgroup of T is a subgroup of ), and it then

follows that HAOT is the it - class of T containing e.

3.4- Lemma. Let X be a set and the transformation semigroup *,
or A If ais an idempotent of , then HAf is the it - class of

containing a where HO is the it - class of TX containing a.

Proof As mentioned above, to show that Ha is the
class of containing a, it suffices to show that H*n is a subgroup
of . Now, is a subsemigroup of having a as its identity. Let
g E . Since is a subgroup of TA having a as its identity,

there exists y £ such that gy = yg =a. Since y, g and a are all
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MoCorelated, AY = A3 = Act. To show s(y) is finite, it suffices to
show that S(Y)\.5(S) is finite since S(Y) @ (S(y)\ (B)) (B) and
(B) is finite. For Xe S(y)\S(B) we have X e Ay = AB = Aa, xy 1 X
but xB = X. Hence for X e s(y)\ (B), we have xa = xBy = (xB)y = xy
i x. Thus  (y)\s(s)c s(a). since s(a) is finite, S(Yy)\ () is

finite, so y e . This shows that HA is a subgroup of . Therefore

Ha is the it - class of containing a. #

1Given a set X, @t Tj, and asubset A of X, let alAanA

denote the restriction of a toAaf)A. Then for any set X, if a £ TX,
then a|Aa|1|Ae TXfor all subsets Aof X ; note that a'AaHA need not

helong to TA.

3.5 Lemma. Let X be a set and a, B £ T If A is a subset of X such
that “LnA ' e|ABOA EV then (c'IA<.OA)(e|AenA) = (“8)L bOA-

Proof Let X e A(a'J\’aDAA') (3'}\'Bi'/&')' Then X e Aan A and

xa E ABOA. since X £ Aa and xa e AB, we have that X £ AaB. Hence

X £ AaB A and x(a|40na>eld6 4) = *«e = X<a6)[40604.

Next, let y £ A(a3 Then y £ AaB A5 S0y E AaPIA

A
)MaQHA'
and ya e AB. Since e ™ anl y e “ariA, we have ya £ Ac Hence

ya £ ABOA. Thus y s <al4004)(B14604)) and y(a8) 140604 = yaB
= (*")(6 46 *) = (y(“lAanA))(B|ABr>A) = y (" 1lAa A)<6 1ABCIA*+

Hence, we have that (a14004)(eld6 4) = <«f»l406 A- *

Let X be a set and Y ¢ X. Then Ty — Tx' Let a e Ty' m<l Ha

and H” the $ - class containing a of T and Ty, respectively. Then

Ha = " e Tx | AS

Aa, VB Va, Ty = TT"},

HA Aa, VB

(B £ T | AB Va, Tig = TT4.
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Since Tye T , H2,/‘= H . If geH, then AB = Aac Y, VB = vae Y
7|%=Tr,so BE£H . This proves that H = H .
a a a a
Hence, for a subset Y of a set X, if a e T , then the - class

of TY containing a is the UL- class of Ty containing a.

3.6 Theorem. For any set X, the semigroup of all almost identical

partial transformations of X is locally factorizable.

Proof LetX be a set andlet a £ E(Uy). To show that aUya
= (Ha Uy)E(aUya) where is the - class of Ty containing a, let
p belong.to Uy. Set A= (a) ( (a))a (p) ( (P))p. Then 1Al <@
since Hs(a)i<0 and | (q)i <00 Let a = aIAaDAAand p = piApn A
Then Aa, Ap/<=A. For X £ Aa = AaHA, if X E s(a), then xa = xa e(s(a))a
G A, and if Xt (a), then xa = xa = X £ A. Then Vac A. Similarly,
Vp £ A. Thus a, p £T". Now VaQVvaflA. since VaC Aa, VaPIA

¢ AaPIA = Aa. Then Va = (Aa )a ? (VaOA)a = (VaOA)a = VaflA since

Xa X for all X £ Va. Hence Va = VaHA. since a =al 1 e and
a2 = a, by Lemma 3.5, we have that

= alAacCIA

a e E(T"). By Lemma 3.5, we have alp/a =

(al. F)(p|. _)(al]. ~-.) = (apa)|. _ so Aalplal = AapaHA.

Since A is finite, TA is locally factorizable by Theorem 3.2. But the
class of TA» containing a is the % - class of Ty containing a 5

so by Proposition 2.1, we have d t a = H/E(a T*a ). Then alplal =

Xalyal for some X £ HA and Y £ T such that a'ya' £ E(a/T*al). since

X £ HM 5 we have AX = Aal = Aa A Q Aa, vx = Va =Va Aand Ty = TIV.

Define a map X from Aa into X as follows

<[ xh if X E AX,
X -
X it X £ Aal AX.

"= (a Ua



30

Note that AA = AciOA C A, Aal\AA = Aa\(AaOA) = Aa\A. Since Va C Aa,

ValA ¢t Aa\A. If X e Aa\A, then Xt (a) since (a)c A so X = xa

e ValA. Thus ValA = AaNA. It follows that vX = VAU(Aa\AA) =

(va A) (Aa\ A) = (vafVA) (va NA) = Va. Hence VA = Va. Since

(AAJA = VA and (aXnaa)X = (Aa*AA)A = AaW A, it follows that (AA)X
(AAVAA)X = . Thus for X, y e AA, xA = yx implies X, y e AA or

X, y t AA, and so xA = yA or X=y. Let a, b e Aa = aX be such that

aa = ba. Suppose a e Aa(= AaOA) and b I Aa . Then ae A and b ?A.

Since VaA and s(a) ¢ A, we have that aa e A and ba bt A
Hence aa = aa = ba = bwhich is acontradiction. This proves that for
x,y e Aa,xa =ya implies either x,y e Aor x,y 2 A, and so xa' vyal

or x =y since (a) Q A. Hence, for X, y e aX = Aa,

(x.y) € X<- > XX = yX
< > xA =yA or X=y
< >xa =ya or X=Y (since T, =T/)
< > xa = ya

<t (Xy) e TR

Therefore we have T = T Hence Xe (Chapter I, page 8 ).
Clearly, (X) = (a). Then lsex)l = |s(A) s lal <. Thus X H Nuy
Since Ay Q A, we have that AyU(AapalA) is a disjoint union. Define

the map Y from AyU(AapaNA) into X as follows

xy if Xe Ay,
Xy =
X it Xe Aapa \ A.

Then [S(Y)| = IS(y)! < IAl <0, so ye ™ To show that aja = (aja)2,
first note that AyHA = (Ay (Aapal\A)) A = AyHA = Ay since Ay C A.
Also, al|*a™ A a e TA" an® T 1lAy =Y E T It then follows from Lemma

3.5 that (aja)lAajaPiA =ava e TA* But (@ Y )2 =aya , so
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(aja)l = (Cotyot) | )Mo= (aya)tl 7 (Lemma 3.5).
AajaOA AayaOA A(aya) A
Hence AayaOA = A(aya)*0 A and (aya)| = (aya)hj . Let
AayjaOA AajaOA
Xz A(aya). If X E A, then X e AajaOA, so xaya = x(aya)|
Aaya O A
= x(aya)* _ = x(aja)*. If X 2 A, then X i s(a) since (a)¢ A,
Aaya O A

so X = xa e Ay\V A which implies X = xa = (xa)y ZAaNA, hence X

= xay = (xay)a = xayja. Thus xaja = x(aya)*. This proves Aajya G A(aya)"

and xaya x(aya)* for all X ZAaya. But A(aya) G Aaja, so we

(aya)r ZE(aT a).

have aya

Next, we claim that apa = xaya. We have that aj ~1A = a 5

Pl AanPid =p 5 x| _ = x| 7§50 AN =y =y and a, P, A, Y
ApnA AA QA AX Ay O A Ay
are all in TA' Also, we have apa = Aaya . Then by Lemma 3.5, we get
(apa) " A= apoi = Aaya = (Xaya)] _ . Hence AapaOA = AXayaOA
apa ' AXayaOA

and (apa)lAapanA = (Xaya)lAapanA . Let X e Aapa. If X e A, then
X z AapaOA, so xapa = xXaya. If X 2 A, then X % (a), Xt (p),
Xz Aa\ A = Aa\ AA, X Z Aapa\ A and hence xa = X, xap = xp = X, xX = X,
Xy = X which implies xapa = X = xXaya. This proves that Aapa G AXaja
and xapa = xAaya for all X z Aapa. Next, let y z AAaya. Then y Z AA
= Aa. If y e A, then y Z AAaya OA = AapaOA and thus yapa = yAaya.
Assume 'y 2 A Then y Z aX\A = Aa\A, so yX =y, ya =y. Thus
yAaja = yja. Therefore y € Aj NA = Aapa NA G Aapa. Hence yAaja = yja
=ya =y since y i (a). Also, y z Aapa and yapa =-ypa —-ya =y
since 'y 2 (p). It follows that yXaya =y = yapa. Hence we nave proven
apa = Xaya, so we have the claim.

Therefore apa = Xaya z (H"o U")E(aUya), so aU”a G (H"o *)E(aUya).
Hence aU”a = (H"o 7*)E(aUj,a). This proves that Ais locally factori-

zable for any set X (Lemma 3.4). #
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Let X be a set and the transformation semigroup VX or
Let a £ E(s). Then, by Lemma 3.4 H * is the - class of x con-
taining a, so Ha  xis the maximumsubgroup of containing a. But
x = {B e x | A3=Aa, VB = Va, 70 = TTg}5 so if Aa = X, then AB
= X for all B e&% X5and if I& is the identity relation on Aa, then
for each B e Ha 0 1TB is the identity relation on AB = Aa. Then
H X S(; X, SO x is the maximum subgroup of having a as its

identity, so it is the J- class of containing a. Using this fact,

we have the following corollary.

3.7 Corollary. For any set X, the semigroup of all almost identical
transformations of X and the semigroup of all almost identical 1-1 par-

tia | transformations of X are locally factorizable.

Proof Let X be a set and let bhe Vx or . Then ¢ "
Let a e E(s). It follows from Lemma 3.4 and Theorem 3.6 that aU”a =
(HM  x)E(aUxa). Now x is the $ - class of having a as its
identity. To show aSa = ( » x)E(aSa), let p £ . Then apa £ aUxa,
and hence apa = Baya for some B £ x and y e ux such that aya
e E(aU a). It follows that aya = aaya = BBaya = Bapa £ where B is
the group inverse of B in the group Ha % Hence aya = a(aya)a £ E(aSa).

Therefore aSag¢ (H x)E(aSa). It follows that aSa = (H" x)E(aSa),

so aSa is factorizable. #

Let X be a set and C a cardinal number, 1 < ¢ § JXI. Let

h9 and D¢ denote the following transformation semigroups
RC = {a£TX lval <

(.
11

{atTy Inal< |
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= {a £T7"
5¢ { 1 1Aal1¢ 0.

Then R¢c R¢ and D¢Q Dg. Since |val < 1Aa] for ail @ E TA it follows

that D¢ ¢ R¢ and D¢ ¢ Rg.

Let be R¢5 R, D¢ or Dg¢5 and let a e . Then "a " (3 £ 77 |
A3 = Aa, V3 = Va and = TTg}, the a - class of containing a. It
follows that ., S0 is also the 4L - class of containing a.

Thus for a e E(s), aSa is factorizable if and only if aSa = H"E(aSa)

(proposition 2.1).

3.8 Theorem. Let X be a set and 1 < ¢ s |X| Then

(1)  Rg is locally factorizable if and only if KE u{ 710},
where denotes the set of all positive integers and ft0 denotes the
cardinality of a denumerable set.

(2) R¢ is locally factorizable if and only if Ce

Proof (1) Suppose ( is a cardinal number and § e { A0}.
Then if a e R, then Va is a finite set. Let a e E(R ). Then Va Q Aa
and xa = X for all X e Va. To show that aRtA’a = HaE(le,e,,a) where Ha is
the jC- class of Txcontaining a, and hence of RQ' let P e R£. Set

A =VaU(VanAp)p. Then IAl <». Let a =alAa0A and p =plApnVa-

Then Aa Q A, ip ¢ A, Vag VaQ A and Vp = (VaOAp)p/ = (VaHAp)p Q A.

Therefore a, p £T . If X EVa, then X E jaflfA : Aa and xa = xa = X,
Keva Thus vasvh s et vaeT andd b
S0 e Va. us a2- . since a_aAanA e Aan a = a, hy

Lemma 3.5, we have 4 = a, therefore a e E(T*). Thus Va Q Aa. But
A is finite, by Theorem 3.2 and the fact that the N - class of TA con-

taining a is the 41 - class of TX containing a, we then have aTAa =

HQ/E(aTAa), where HQ/ is the 4L - class of Txcontalnmg a. Therefore

ap'a = Xaya! for some A e H/ 5Y e T such that ayd e E(aTay). Then
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VA = Va = Va, AA = Aa/ G Aa, and VaW ¢ Aaya". Since VaG Aa and xa = X

for all X e Va, it follows that Aa - Xii is a disjoint union.
xeVa a
Define the map A from Aa into VA (= Va) by

XA = yA <« > X £yir ,y £ Va.

This is well-defined because Va = Va G Aa = AA and Aa = 1) yii is a
) yeVa a
disjoint union. Now VA =Va Q Aa : AA and VA ¢ VA. Claim that A E H"

(that is, AA = Aa, VA = Vaand T, = 1Ta). First, we show that A'A& = A,

Let X e AA. Then xA

yAfor some y e Va such that Xey7b.J O xa
= ya. Since y e Va and X e AA = Aa, we have xA = yA = (ya)A = (xa)A
= (xa)X = xaA = xX since A £ Ha and Ha/is a group having a as its

identity. Thus Al = This implies that VA£ VA and hence VA =

N

VX = Va = Va. Let £ Aa = AA.  If (x xN) £ TTA then x"a = x"a

x1* x2

9
= xMa. = (X2a)a, so we have x*, x" e (x*a)-* and X™U e Va which implies

2 2

assume (Xl'f”) e Tr-g. Then XiA = X2A and there exist y,152y,, e Va such

that x* e y"TT" .. e y2ra'  US = y*A (from the definition of A),
0 (yisy2) £/ =, -~ Hne X@ =y -y - Y2A=ya=xad D

(x1,>§,,) £ ITa. Hence we have the claim. Let Y = YiA»yn\}a' Then Ivyll

X, A =_(x a)A = X, A, and hence (x1,§ ) £ 1TX. For the reverse inclusion,

£ [Ay/] ™ IVetl < £ 9 hence y £ R . But Va = Va, Ay C Ay, Vay G Vy C A,
so it follows that Vaya = (VayHAa)a = (((Van Ay)y)n Aa)a Q
(((vaOAy)y)n Aa)a = (VayOAa)a = (Vayn(VaynAa))a Q (Vayn (a HAa))a

= (VaynAa)a = (VaynAa“a' = Vaya. Next, let X £ Aaya*. Then xa = xa
and xa £ Ay, so xa = xa E AyNVva - Ayy Therefore xaya =xaya, SO

X £ Aaya. Hence Aaya*C Aaya and xaya* = xaya for all XE Aaya. But
Vaya C Vaya* C Aaya*, so Vaya C Aaya. Let y £ Vaya. Then y £ Vaya

G Aaya*. Therefore yaya = yaya; =y since aya is an idempotent. This

proves that aya £ E(aR"a).
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Next, we shall show that apa = Aaya. Let X £ Aapa. Then
xa £ VaOAp = Ap, xap e Aa and xap £ (VaOAp)p £ A. Therefore xap
£ AOAa = Aa and xa E Va : 7at Aa. It follows that (xap)a = xapa =
xap/al = xaapV = xa(apa) = xa(Aaya?) = (xaA)aya = xA(aya) = xXaya. The
last equality follows from the fact that Aaya C Aaya and taya = taya

for all t £ Aayal Next, let y £ AAaya. Then yAaya = yaAaya since

YaA £ VAOAa

AEH . Since YA EVa=Vai Aa = AA we have YaX

Q AaOA

Aal, and so yaAa = yaAa. Hence YaAay= yaXayle AaoVy

£ AanA

Aa. It follows that yAaya = yaAaya = yaAaya = ya(Aaya)

ya(apa) = yaapa = yapa. This proves that apa = Aaya, so apa £
H E(aRjpa). Hence aR a = H E(aR%a). Therefore R- is locally factori-
K ¢ a e ¢

Conversely/, assume C is an infinite cardinal number such that

£ > &0. Then there is a subset A of X such that Al =H* < C. Then
TAE R . Let 1" be the identity map on A. Then 1" is an idempotent

of R¢. Since TA we have that "R 1~ = T~ But T™ is not
factorizable [7, Theorem 3.1]. Therefore R¢ is not locally factorizable.

Hence R¢ is locally factorizable if and only if C£ NU({ 1.

(2) Assume C £ IM. If ¢ = IXI then R¢ = T" is locally facto-
rizable since X is finite. If ¢ < IXI then Rg¢ = R¢+" is locally facto-
rizable by (1). Hence if £ £ NN then R¢ is locally factorizable.

Conversely, assume £ is an infinite, cardinal number. Then there
is a subset A of X such that [Al = >0 " £ Hence 1 , the identity
map on A, is an idempotent of R, and T"£ R . But I[*R 17£ T*, so

[AR 1~ = TA. Since A is infinite, TM is not factorizable.

Therefore, the theorem is proved. #
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3.9 Corollary. Let X be a set and 1 < ¢ $§ IXI. Then
(1) D¢ is locally factorizable if and only if £ e frsjJu{ O}

(2) D¢ is locally factorizable if and only if ¢ E fg.

Proof LetC £ KU{ ~}. Let a e E(Dg). Since D £ R ,
we havea e E(R ) andaD"a £ aR™a. If B e R" then |Aaga] » IActl< C,
so aga e D¢ and thus aga = a(aga)a e aDg.a,

This proves that aD"a = aR"a for all a e E(Dg¢). similarly,
if £E IN, then we also have aD”"a = aR"a for all a e E(D ). By
Theorem 3.8, we have that if ¢ e INU{ "}, then D¢ is locally facto-

rizable, and if E e N 3then D is locally factorizable.

Let Cand Xbe cardinal numbers, Ci NU{ A"} and X tN o

Thenthere existsa subset Aof X such that IAj = vYA Then Al < £
and Al $§ X» Thus TA¢ DC and TAc )-. Let be the identity map
A. Then 1A £ ™) and h e E(D-), TA> 1, 5! Y

so I"Dg¢I* = T~ = |AD-1~. Since A is infinite, TA is not factori-

zable. Hence D¢ and D- are not locally factorizable. #

Let X be a set3 and let E and M denote the semigroup of all
mappings from X onto X and the semigroup of all 1-1 mappings from X

into X, respectively. Then

Er = {a X X lais onto)
= (a €™ I Va:x},

M = (@ X>X 1 ais 1-1})
= (ael 1 A=X}L

Note that GX (the symmetric group on X) is the unit group of

Er and of M It is easily seen that if X is finite, then E* = M

= G If Ex = Gx , then X is finite. Also, if = G, then X is finite .
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To prove this, suppose X is infinite. Let a £ X. Then |x\{a}| = IXI
Let a be a 1-1 map from Xs-{a} onto X, and let 3 be a 1-1 from X onto

x\{a}. Then 3 £ M\ G . Define the map from X into X as follows
xa =

Then a is onto but not 1-1. Therefore a £ EM\Gy. Hence t G°
and M t G . This proves that E» = G" if and only if X is finite and

MX = GX if and only if X is finite.

Let a £ E(E [f X £ X, then X £ Va, so xa = X. Therefore

X)'
a is the identity map on X, and hence E(EX) = {1}

Let a £ E(M [f X E X, then xa £ Va and hence (xa)a = xa,

X)'
SO xa = x since ais 1-1. Thus a is the identity map on X, hence

E(Mx) = {1}.

3.10 Proposition. Let X be a set and let be Ex or M" Then is

locally factorizable if and only if X is finite.

Proof Assume is locally factorizable. Because G, is the
maximum subgroup of having 1 as the identity, then 1Sl = = G Mil}
= G* Therefore X is finite.

Conversely, if X is finite then = Gx which is locally fac-

torizable since every group is locally factorizable. #

Let X he a set. For a nonempty subset A of X and for X £ X,
le t AX denote the partial transformation of X with AAX = A %ud VA =
{x}. Let Cy and FX denote the following transformation semigroups on
X
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cx = {Ax 1 <MA¢ X XeX {0},
o= Dx I XeX if XFé

and
o= {0} if x *.

Let A and B he nonempty S'absets of X and X, y e X. Then

a it XeB,
AyB,, =
Xy o it Xt B.
Hence Ax = Ax if and only if X A, Then Fx is a band, so it is
locally factorizable by Proposition 2.2. If Xe A, then we clearly
have A C Ax = {0, A} = {AXHA 50} which is factorizable.

Hence, we have

3.11 Proposition. For a set X, the transformation semigroups Cx and

anre locally factorizable.
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