CHAPTER V
FOLDED CONTINUED FRACTION EXPANSIONS

From here, our main concern is the field F((x-1)) of formal Laurent series over a
field F equipped by a degree valuation I-loo- In the previous chapter, we construct
explicit Ruban continued fraction expansions whose partial quotients are symme-
try. The main tool called the Folding Lemma, first appeared in [19], is used in
construction. For more discussion of the Folding Lemma see [13], [18], [20], [26)],
[27], [32], [33] and [34]

In this chapter, we generalize the Folding Lemma for continued fraction expan-
sions with some interesting patterns. We define generalized Folding Lemmas in
first two sections. In the last section, some explicit continued fraction expansions
for certain series expansions are provided.

5.1 A generalized Folding Lemma

Lemma 4.5 (2) is known as the (classical) Folding Lemma. In this section, we
extend this lemma to take care four related possible patterns.

Lemma 5.1, Forn € N, lety £ F[x]\{0} and —p := [6; Oi,o2,... ,an] — [0; X ]
Then
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Proof. The identities (1) and (4) hold by Lemma 4.5.
Propositions 2.1 and 2.2 yield
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and identity (2) holds.
Similarly, by Propositions 4.1, 2.1 and 2.2, we get

;A Al [o;Qieza--+!Only!Quon 1 eee104]

= [0, 0, a2, ..., an,y H y——]

_ (Ay + Ai-i) Cn+

EAIy+A| |;AI

Dny + Ai-i) A, + A,
(Ay + A-i) A +
cn (Ay + 2A-0) + (=I)n
Ai (Ay + 2Ai-i)

A
Ai- | + ()"
AA



78

and identity (3) holds. I

We call the four identities in the previous lemma two-fold continued fraction
expansions of types 1 to 4, respectively.
Theorem 5.2 s an immediate consequence of Lemma 5.1,

Theorem 5.2. Le(t?{ctj} 1beasequence of nonconstant polynomial over a field
F. Fort o N, let D [0; X‘I«r] be the k(th convergent of the continued fraction

expansion of' N2 Then
1) 10X, yyi, ]= f Glﬁ if
ctter = (- 1) EE{{CktDkL+ Dkt-iDkt) + D\tY) for some Y o F[x] x {0} ;
(2) [0-XKLY,-Xke}=]T if
aetl = (-1)fE((Dkt-iD kt - CkeDkl) + DRY) for some Y GF[x] X {0} ;
() ExkY xk]=  f
«m = (2Dk(_1Dkt + DktY) for some Y GF[x] X {0} =
) [OVXkt, Y, -X k=" 1n, if
a+1= (—LKIDR(Y for some Y o F[x] X {0} .

Proof. (1) Let Ge+1 = (-1)** {fCk(DkL+ Dk(-iDkI) + DRY) forsomeY & F[x]\
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{0} . By Lemma 5.1 (1), we get
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(2) Let U = (-1)ff ((FA-iAfe, - CkeDK() + DRtcy +a0)) for some y G
FIx]\ {0}.By Lemma 5.1 (2), we get
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(3) Let am = (-1)f (2Dki_1Dk + DRY) for some y G Fl&] \ {0}. By
Lemma 5.1 (3), we get
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D kt r.2 fv 1 2£>fc*- DkLI c¢*m ~ f ai
M r+ Al
(4) Let cr+1 = (2D jry forsomey GF[X]\ {o}.By Lemma 51 (4), we
get
. Cke 1 (-1)* 1
loor "k y, — Dki Dler  Fleet wha jEiO{
This proves our lemma. O

5.2 A generalized 3-tier Folding Lemma

In this section, we derive analogous results of Lemma 5.1 and Theorem 5.2 for
three-fold, continued fraction expansions.



Lemma 5.3. Let 41,22 GF[x]\ {0} and -pp = [0; Xyq. Then
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Proof. (1) From the two-fold continued fraction expansion of type 1, we have

XN X A=K+ B ooy 00>
s0, by Propositions 2.1 and 2.2, we get
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(2) To prove (2), we recall the two-fold continued fraction expansion of type 2

DAY = [ (Ayz(;éﬁx 1—A)

Applying Propositions 2.1 and 2.2, we get
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Using the fact that, for any word wk
[0:-TU[ = -[0;TU, (5.1)

(5), (e), (7) and (s) follow from the proof of (2), (1), (4) and (3), respectively. We
give only the detail of proof for (5).
Using (5.1), we have

[0 =X 122, X ]= - [0;x n,—22—X 1.

Applying the two-fold continued fraction expansion of type 2 by putting y = —>,
We get

0 -A ,22A']= -—- + [pnyz(—_l)n_1+ )
Then the same proof of (2) leads to
(yi- TT + > T \') Dn + -1
= {y\Dn( 22— , 1+Cn)— ( 2— , -1+ )+ (=I)n]

o (= a+ )
1 (22— 4+ )= ( 2= 4+ )+(1)
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+ A -1-A (Dny2—=Dn-l + ¢,)}
=Y)="{(" -'Dn(Dny2—Dn-1 + (" ) =Dn-\Cn{Dny2—Dn-1+ C )}/
{[2IA {DnV2—Dn-1+ Cn) —Cn(Dny2—A -1+ Cn)+ (=1)"]A
+A-1LA (Dny2—A -1 + Cn)}

b (A W—=Dn-1+A) (A-IA —CnDn-1)}/

{[yiA (Dny2—A -1+ Cn) —A (Ay2—A -1+ (" )+ (=1)"]Dn
+A -1Dn(Ay2—Dn-1+ A)}
N

A I)r
y\Dn CnTDnyZ(D%—\TA Dn+ A -1A
= ¢ 1)"
=a) D | y1+ Dn—l ((:n /. _n]_ZD
2 + 3
which is (5).

If the  th convergent of [0; X1 is Q' 1then two consecutive ( —I)thand u

convergent of [0,?—,,] are - A| and . Substituting them to Lemma 5.1, we

obtain a new version of the two fold contmued fraction expansions of types 1 to
4, respectively, as

1 = N)]. (-1)T
() PIXnyzXn= ~4 Dl
DI 2+
Dn
@ [0x,,y2-X,]= Al (-Al)n o
A y2+ - -

@ oVnwhr=Prti 70 0nea
°T 4+ a)
@ K>:0.%-2j = %=1+ ¢

Then (9), (10), (11) and (12) are obtained by the same proof of (3), (4), (1)
and (2), respectively. We give only the proof of (9).
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= {(yiAl (Dny2+ 2Cn) + Al-1(-On22+ 2Cn) + (—)n)A
+A1-1A1 (Dny2+ 2Cn)} |

@A@I’FB)'W'HDWZ + 2Cn) 'F(—BI)@
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Applying identity (5.1), the remaining cases are obtained similarly.
Using (5.1) and(4)', (13) follows immediately by the same proof of (4)
,(14) follows immediately by the same proof of ()
(1)
(16)

Using (5.1) and( ) ()
Using (5.1) and(2)", (15) follows immediately by the same proof of (2).
Using (5.1) and(1)\(16) follows immediately by the same proof of (1).
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Now, we are ready to state an analogue of Theorem 5.2,

Theorem 5.4, Let {c*i}i>1 be a sequence of nonconstant polynomial over afield
F. ForfeN, let ok = [0 be the k(tfl convergent of the continued fraction

expansion oV =, Then

AN

(1) ©2*, .&.y2 =icT If
L
%|=(GTDI( +- +T+Ck[+Dk(-1
for some Yi,>2 6 F[x] \ {0};
(2) \MtkL¥L1 k(Y2,- | kB = if
: SR S = N JYG

DK

for some vi, Y2 Fixp \ {0} :

() o, Ikt,Yu™ kL, Y2,%ki} = if

aetl= (-1)kDI~ 1+ Cktr — ) +

for some Y\, y2  F[r]\ {0} ;

;A T i, M T2-M=17i-, df

anl= (-~ DI(yl+

for some Yi,y2 8 F[r]\ {0} ;
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oy . -~ ko oxp=ty

o1 = ()*E> (y. + DI~ <)+ CK- Di. s

Y2 + "f
lor somey,y GF[]\ {0}
(6) p;~Mkt,y =Yz, &=~ —1%
0+1 = (B2, I\ + + Ckc + Dk1-1
Y- 'kt
for somey ,y Gy[yn {0};
@by .-y .y 1=1T/1 .1
0,41 = (y + Pty ~ Ct) +
lor some y 1y GF[x]\ {0};
[OMey -y, - AR ="" x
- ‘ Dki-1 - Ck 1
am = (-1)kDI y + P ok 2tk
Y7 Dkt
for somey ,y G F[yn {0};
[Or Akt YLAKLY2 N kel =™ 17 f
fH# N 1

0,« = (-1)“« (y, p A0 ) 2Giz
y +



for some i, Y2 6 F[x]\ {0};
+1

(10) [0 Xk Yo, Xip Yo, = X ] = D =, if

i=1 ¢

=( DD (n+20ff) +
for some Yi,Y2GF[x]\ {0};

) +

«*l= < -i>**(« + N Ckt + -Di-—+
Y2 +
(
for some Yi,\Y2 G Fix1 \ {o};
(12) [0-XktYu X KLY2,-X KI=F  if
am . (y: S ) +Y2+ A* _>2/C£—1
for some Yi, Y2 F[x] N {0} ;
(1S) [0;Xt,yL-",, y,x*]= i
« = (-1) " , + f2

for some Yi,Y2c Fix \ {0} ;

( [OXW¥L-x K ¥2-X M ="2"- if

am = (-1)"MY i+ ¥2-12CH
F>okt

90
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for some Yi, Y2 € F[.t]\ {0};

(15) [0 Xkt,Yi, —Xkt,Y2,X k= A —, if

“« = (-1 )" 4 - AEOT

Jor some Yi1Y2 GF[x] \ {0};

("5 oS AR Y I-XE, Yo -X R =72
a,+1= {-I)kDAYx+ - Ck(+ Dk-

for some Yi, Y. € F[x] \ {0}.

Proof. Using the same proof of Theorem 5.2, but with identities in Lemma 5.3
lead to the desired results. I

5.3 Applications

In this section, some known explicit continued fraction expansions of series expan-
sions are shown as applications of our results. We also construct explicit continued
fraction expansions for some interesting series expansions.

5.3.1  Two-fold continued fraction expansion of type 1

It is easily seen that applying the result of Theorem 5.2 (1), by putting O( =
xmdg-1 for all | > 1in the case that F = F2, gives Proposition 4.4,

5.3.2 Two-fold continued fraction expansion of type 3

In 2010, Chaichana [b] has extended and modified Tamuras results, [28], both in
the field of real numbers and in the field of formal Laurent series in x~1 over a
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field F of characteristic zero. In this subsection, we apply Theorem 5.2 (3) to
prove the main results of Chaichana in the field of formal Laurent series.
We start with definition.

Definition 5.5. Forall € N, a continued fraction expansion [a0, ;ai, a2, ..., an]
is said to be palindromic if the word di, a2, ,an is equal to its reversal.

Remark 5.6. Forall GN, ifa continuedfraction expansion [do, ;«1,a2)..., an] =

S% is palindromic, then we have by induction that

Cn=Dn-1-

Let /(T) = T(T + 2)(T - 2)g(T) - T2+ 2 be a monic polynomial (in T) in
(F[X])[T], for some g{T) e (F[x])[T}]. We observe that, g(T) is monic. We consicer
series expansion of the form, for all i > o

Ao (T )IKT)) .o/n(T)

where fo(T) = T and f (T) =/ (/n_i(T)) for all > 1, which induces /2 =

[Ioll eee /1 { composites).
Here, we consider the continued fraction expansion representing an infinite

sum of the form

A / -1y (5'2)

Let Ho(F) = 1, BO(T) —/o(F) = Tand for > 1

H,(T) = ()" 12 (-ir U T)tmu(T) en T) = (-1)" + in(T)An-I(T)

Bn{T) = f0(T)h(T)---UT). (54)
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By induction, for all t > 0, it follows that

Lemma5.7. If/+) e (F[X]) [T]\ {0}, then Ae(fi(T)) = t+-H+ ) mod /i+)
Jor allf,j ¢ Nu {o}.

Proof. The case i = 0 is trivial.
Ifi >0and i —0, then the desired result follows from the definition of + .
For £1 > 11we observe that

+++)) = (FLY+ £ (-lr+l/m++)) s /<++))
m-1
=(-1/] + Dm 7™ ) en+l4) L FEI(T).
( m;2+1( ) ) ) (T)
Consequently,

++2+)

+ DE+E (<11 Hfm(T) ennfi+i(T) + A (H)melmt ) oo, fe+i(T)
m= M=2+

w4+ - 1)ymE/m{n) et +i(r)
[

tAt(fi(T)) mod /1+).

This proves our lemma. I

Next, we substitute T with a nonzero polynomial z(x) in F[x]. For brevity,
we will write z for Z(x).

Lemma 5.8. I1fz € F[x]\ {0}, then Z [(++) —1) for all i e N\J {0} .



94

Proof. Since /|(0) = 2, by induction we have ft(0) ——2, for all £> 2
To prove the lemma, it suffices to show that ~(0) = 1 forall EEN  {0}.
Clearly, AO(Z) = L Thus,

A(O) = (“ 1)1+ /i(0) -A)(0) = —1+ 21= 1

By induction, we get At(0) = (—Lye+ for all £> |, and the desired result follows.
O

Lemma 5.9. If Z GF[x] \ F, then Be(Z) ~ 0, B((Z) 1 (A2(Z) —1) for all
e N {o}.

Proof. For Z € F[x]\ F, we have

2 < \MZ)Voo < |[i(Z)|00 < \f2{Z)\00 <e==1 (5.5)

and (s.4) implies that Bt(Z) » o for all £Gn  {03. Now from Lemma s.s, for
all £> o, we get

ft(z) HAN{ft{Z)) - 1). (5.6)
We also have from Lemma 5.7 that for £ 6 N {0}, either

AR(fi(Z)) = A(H(Z) + 2DFi(Z)At+i(Z) + D22(2),

ARfi(Z)) = AZI(Z) - 2Dfi(Z)At+i(Z) + DX 2(2),

for some D € F[x], By (5.6), for all £1 € Nu {0}, fi{Z) | (A2+i(Z) —1).
Specifically, forall i =0,1,... £

fi(Z) |(4 oH(Z) - 1= A2Z) - 1 (5.7)
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It remains to prove that
Bi{Z) = fo(Z)h(Z)... fe(Z) 1(AE(Z) - 1). (5.8)

Forj, k aNu {0} with j <k, since fk(z) = fk-j(fj{Z)) = lfc-j(o) mod /j(Z),
and

forfc=j+1
for A>j + 1,
we deduce that, for all j ™ K,
ged(N(Z).10Z)) = gcd(1(£),2)GF, (5.9

e, fj(Z),tk{Z) are relatively prime. Therefore, (5.8) follows from (5.7) and
(5.9). 0

An analogoue of Tamuras result in the field of formal Laurent series reads:

Theorem 5.10. 1f Z € F[x] \ F is monic (in x), then fo{2) — [0;Z], and for

t> | if -

E:O/O(Z)/‘K[.-Zl;r--/n(Z) = [0; 3 ki]

is a palindromic Ruban continued fraction expansion, then

R YT s fn(Z) = 0 oxem 2 yeh ] (5.10)

“where
U@z = (D™ fly -2~ F |l B,.1Z) =

with ole being the k(th convergent of fo; :J-
In partlcular the continued fraction expansion representing the infinite sum
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(5.2) takes the form

£ I\WZ]M/I Z]---Jn-I[-y)VA"

Trn=1ciz>i(z)>z* 2@z pz.“i(z)>z.“3(z >+

Proof. Forall£> 1, leta, = (-1 Y~Ifo(Z)fl{Z) *.. #_1(Z) and = [;
be the Pth convergent of the continued fraction expansion of

L L MZ) + h(Z)h(Z) + ot h(Z)h(Z) o 1(Z)

= [ @z)li(z)" -1..(2)
Clearly, 0 {12) =021 = Blzl‘ s0 K\ is an odd positive integer.
From Lemma 59, we know that A(MZ) and  1(Z) are relatively prime.

Since Ae-i(Z), Be-i(Z) are monic (in Z) and Bt-i(Z),qkt are monic (in Z), we
infer that

Be-i(Z) = DK (5.11)
and so Ae-i(Z) = ckt. Since [0; X ] is palindromic, by Remark 5.6, we have

ck=Dk 1.

(5.12)

Next, we show that if z ¢ F[x] \ F, then Ue(2) ¢ F[x] \ F for all £ ¢ N. By
(5.3) ,forall £c N, we get

MZ)2=(~1)2+2{-1) ft{z)AtMZ) +fe(Z)2Ae-M)2.

(5.13)
By Lemma 5.9 and (5.13), we get

N tejz) fe(Z)AtMZ)2  fi{Z)At1{z?\ _2M M)
[ J{ Bei2) BeMZ) Be-x(Z) J Be-M)
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= (1Y 0 t(2) (At il 1))+ 1y o'W AL 120 + (R '2A - 1Z)\
ilkl BIRRRNR il
( 1)'f.( 14- K D<>/I<(z)2-i(2)2 1,-.(2)/,(2)

For all *6 N, from (5.11) and (5.12), we get

Tpoott e )->1eS))

= - (24-1(Z)E<-1( )+ ((-iy-tfe(Z)Be-1(Z) - 2A-1( )E,-1( )
= (-1)eBe-i(Z)fe(Z)
=(-)eM Z)M Z)---1e(2)

= <*'+!o

We observe that ¢~3~>1 obtained by this process is a sequence of odd positive

integers so
(-1) & (2DkI-\D kt + gl{ue) = at«: for all feN.

Using Theorem 5.2 (3), we get

: INGKORN & (-1
[O;27* )X =E2 =B o yin( )y
and the proof is complete.

The proof of the following theorem with some minor changes is also applicable
to some other forms of / (T) such as T{T + 2)(T —2)¢{T) +T2—-2

Theorem 5.11. IfZ e F[x] ™ F is monic (in x), then 10{2) = [0; ], and for

t>1%* :
-1

NOMZ)A(Z)---Mz) TG0
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is a palindromic Ruban continued fraction expansion, then

(-1)” N -
£ i (Z)MZ)---fn(2) [0; ~$ke,Ve(Z), " fj,
where
ve(Z) - - 2pM § ) A-'(Z) - Ct- B<-dZ) = Dk

Ck : :
5 being the k™ convergent of [0; sz(].

with
In ﬁértlcular, the continued fraction expansion representing the infinite sum
(5.2) takes the form

- 1r 0:Z,v:(2), Z,V2(2), Z, (), z\3(2),...]

§/0(2)1i(Z)---1,(Z)

5.3.3  Two-fold continued fraction expansion of type 4

We can apply the result of Theorem 5.2 (4) to prove Proposition 4.8 as in Section
4.2, by putting > 1 = Pes1 for all £> 1+ 1in case of formal series over a finite
base field.

5.3.4  Three-fold continued fraction expansion of type 13

Here wc are interested in the work of Cohn [g], who considered series expansions
of real numbers of the form

=IO |
% z)’

where f°(x) = x and fn{x) = f (fn~I{x)) for all > 1, the th iterate of / (x).
Cohn showed that, such a series expansion has explicit Ruban continued fraction
expansion if and only if f(x) satisfies one of fourteen congruence conditions.

In this subsection, we consider one of fourteen congruence conditions of Cohn
and extend Cohn result in the function field with respect to the degree valuation.
The main tool here is Theorem 5.4 (13).
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Let f(T) = T2(T —1)g(T) + 1 be a monic polynomial (in T) in (F[x])[T], for
some g(T) e (F[x])[T]. We observe that, g(T) is a monic polynomial (in T).
We consider series expansions of the form, for all | > 0

fLIHTY

where f°(T) =T and fn(T) =/ (/n_1(T)) forall > 1, the thiterate of / (T).
Then, forall > 1,

((T)=r -ly2(In-I(T) - 1)gn(T) + 1

for some gn{T) := g (fn~L(T)) e (F[X])[T].
Let An(T) = TH(T) ---fn(T) forall >0

Theorem 5.12. 1fz 6 F[x] * F is'monic (in x), then

17 =0z,-9@)z- 1)1 +L-1- 1]
and for I > 2, if = |o; then
=0 4
0; M 91{Z)0e-i(Z) {fe
£ [ H2)g A(\e?SEZ)Z 1w
Proof. Forall £> 1, let  —fe~1(z) and [0,  bethe  convergent

of the continued fraction expansion of

A A S S R T =5 ~nzy

First, we claim that Dkt = Af-i(Z) for all £> 1 For all t > 1, consider



= f-\2) 4-\2) 2(1622) - 1) e L2)gt(2)
= (E\Z) K E22)2... 1 (Zy2(1(2) - D9AD) V.. gt-i(2)gt(2)
= (5\2) K E22)2000] (2)222(Z - Dg(2)g22) .. ot(2),

and so
Ai-L(2)2] (1(Z2)-1). (5.14)

Then
f£(Z) = Ae-i(Z)2B( + 1 for some Be G (F[x])[T]. (5.15)

For all | > 1 consider

(f(zy- T&\z ) +~(Z12(Z). .ot 6 12 ) + 0ot (Z/(Z) ---1 £ 2(2))

Suppose that there exists a prime element » G F[x] such that
VI((/@) -1 A2t (z12z).0 FAZ)) + e+ (ZE(Z) 0

and PIZf(Z)-11 ,-' (2).
Since p 12f(Z) ---fE&1{Z), » 1/ 1(Z) for some 0 < r < t —1, which implies that
PAZE(Z) ... r~\Z ) r+U(Z)r+2Z) -.*[«"HZ). Then

PIZf(Z) ---r_1(Z) or
Ife 12/(F) ---/ r-1(Z), using (s.14), We see that p 1 (/r(Z) —1), contradict-
ing» I/ 1(Z). Thenre Ir+\Z)r+2Z)...I"(Z).
By (5.15), we get

fred(Z)fr+2(Z2)---1£-\2)
- {Ar(Z)2B w1+ 1) (Ar+1(Z)2Br2+ 1y (Ae-2(Z)2B€" + 1).
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Since / r(Z) 1Aj(Z) forall r <j and p 1/1(Z), so we get p |1, which is a
contradiction.
Then, (1(Z).. *f-(2)) + (Z12(Z)..-p-\z)) + .+ (ZI(Z)...p-\1)) and
2f(Z) o-1 € 1(Z) are relatively prime.
Since z is monic, we get Dle = Zf(Z) ---f " [{Z) —Ae-i(Z) forall t > 1
Thus, the claim is proved.

Next, we consider

am = .f\Z)
= £ 2)of'-4(2)-Ds(Z) + |
= N +1
= A 2 i(afst\zf- 0L 1Z)8,(2)+ 1
= a2 P PG
= SAm(2)2Yi + —

N (IF2(2) =) gt-i(Z)ge(Z) - IV
where l:= (A'()At )332)2()9() and y2 ::1L
By (5.14), we get Yi € F[x] \ {0}.

Let “k 2be the word z, —§(Z)(Z —1), —= + 1, —= —1 Then
01 k}=[0z-5(Z)(Z2-1),-Z+L-Z-0=1+4

We observe that {keje>2 obtained by this process is a sequence of even positive
integers. Then

<+1= (-1)'v>i, + L

where Tl,y2= 15 F[x]\ {o}.
Using Theorem 5.4 (13), we get

- = P/ r i+1 4

= 9(2)9e1(2) (f2(2)-1) <« . = 1 1
0; X, X LX) = ==Y
l)’ kes Ag_;g(Z)z ) key Ls kfl Q 7
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This completes the proof. O



	CHAPTER V FOLDED CONTINUED FRACTION EXPANSIONS
	5.1 A generalized Folding Lemma
	5.2 A generalized 3-tier Folding Lemma
	5.3 Applications


