CHAPTER |
INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Over the past fifty years, there have been numerous works on continued frac-
tion expansions. In 2007, A. H. Fan, B. . Wang and J. [10] introduced
a class of continued fraction expansions in the field of real numbers, called Op-
penheim continued fraction expansions. In the field of p-adic numbers, there are
two well-known continued fraction expansions, due respectively to Ruban [23] and
Schneider [25] since 1970. In the field of formal Laurent series in x-.. a Ruban
continued fraction expansion was studied by T. Chaichana, V. Laohakosol and A.
Harnchoowong [7] in 2006. In Chapter I, we devise an algorithm for constructing
continued fraction expansions of elements in a discrete lion-archimedean valued
field. This algorithm embraces almost all known continued fraction expansions as
special cases.

In 1987, V. Laohakosol and p. Ubolsri [15] derived some criteria for algebraic
independence of elements in the field of p-adic numbers. Similar criteria in the
field of formal Laurent series in x .. were established by T. Chaichana and V.
Laohakosol, [6], in 2007. In Chapter IIl, analogous criteria are derived in the
function field with respect to a prime-adic valuation and we use them to obtain
sufficient conditions for algebraic and linear independence of elements represented
by continued fraction expansions.

In Ffy((x-1)), the field of formal Laurent series in x .= over a finite base field of g
elements, where g is a prime power, let [1] := xq —X, d0:= ¢, di ;= \\d\_1 (7> 1),
and let



the exponential element for F?[a]. For brevity, put e := e(l). In 1992, D. Thakur
[29] showed that e(z) has a continued fraction expansion with an interesting pat-
tern. In Chapter 1V, we generalize the result of Thakur by giving the explicit
Ruban continued fraction expansions for elements in Fg((x-1)) of the form i
where m e N and f(x) is a nonconstant monic polynomial over a finite fieﬁd Fg
satisfying f(x) I[t].

To prove main results in Chapter 1V, one needs the Folding Lemma. In the
final chapter, Chapter V, a generalized Folding Lemma and a generalized 3-tier
Folding Lemma are given and some examples are obtained by applying these
lemmas.

1.2 Preliminaries

In this section, we collect basic definitions and results, given mainly without
proofs, and give brief background materials needed. The first subsection deals
with valuation and related concepts. Details and proofs can be found in McCarthy
[17] and Bachman [2], A principal result is Theorem 1.14, which shows how to
represent elements in complete discrete non-archimedean valued fields of formal
Laurent series. The second subsection deals with continued fraction expansions
and their notation.

1.2.1 Valuation

Definition 1.1. A valuation on a field k is amap 1-1 K —»R with the following
properties:

(i) forall Q€ K, |o:] > 0 and |tt| = o if and only ifa = 0,

(a) forall a, 3£ K, \a/3\ = |a]|/3],

(to) for all a,p GK, Ja+ (A < Ja + \p\.

There is always at least one valuation on K 1 namely, that given by setting
la| = lifa gk \ {0} and |0] = 0. This valuation is called the trivial valuation
on K.
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Definition 1.2. A valuation I+lon a field K is non-archimedean if the condition
(in) in Definition L1 is replaced by a stronger condition, called the strong triangle
inequality

I +p\ < max{Jal, 3}, foralla, 3£ K.

Any other valuation on K s called archimedean.

A valued field (K, I+1) isa field K equipped with a valuation lelon k. If the
valuation is non-archimedean, then K is called a non-archimedean valued field.
Examples of valuations are as follows:

Example 1.3.

(1) The usual absolute value I+1is an archimedean valuation on Q.

(2) Let p be a prime number. By the Fundamental Theorem of Arithmetic,
eacha £ Q\ {0} can be written uniquely in the form

[ L a
where r'p@) £ Z, a,b£ 2 (6> 0), ged(a, b) = 1and p \ ab.
Define 1+1p: Q —+Mby
jalp = ifa 0 and [Op=0.
Then Inlpis a non-archimedean valuation on Q and called the p-adic valuation.
(3)  Consider the field F(x) of rational functions over a field F. Let (x) be
an irreducible polynomial in F[X]. Any a £ F(x) « {0} can be written uniquely

as

Q= Tr(x)I” f)&;

where I'n(a) £ 2. a(x) and b(x) are relatively prime elements of F[x], b(x) Is a
nonzero monic polynomial and  (x) \ a(x)b(x).
Define I-(&: F(x) =R by
alv=2-IAqdeg)if Q" oand =0
Then Ikt is a non-archimedean valuation on F(x) and called the 7r-adic valuation.
(4) Define I+ 0n F(x) by, for all f(x), g(x) £ F[x] \ {0} 1



ZM = 20ey/-degy and loj” = 0,
IW
Then I+l is a non-archimedean valuation on F(x) and called the degree valuation.

Theorem 1.4, Let (K, I+]) be a non-archimedean valued field and a, 3 GK .
If o 13\, then
\a+0\ = max{fa], \0Y) .

From a non-archimedean valuation I-1on a field K, we define v : K —RU{o0}

by
(@) = —ogzja] ifa 0 and 4(o)= oo,

With the convention 0o+ a =00 =a+ ooforallaGRU {oo} and 0o > a for all
a GR, the properties of I+l translate to

(i) forallaGK, (a) €M {oo} and v(a) = 0o ifand only if a =0,

{) forall a, 3GK, otfd) = n(a) + il(/?),

(ill) for all a, 3GK, (a+0) > min{i(o), (/?)} with equality when v(a)
Amapping v . K =R {oo} satisfies (i) —(Hi) is called an exponential
valuation of K corresponding to the valuation Iel.

Definition 1.5. A non-archimedean valuation I+11is called a discrete valuation
it (K\ {0}) isa discrete subgroup of the additive group of real numbers, i.e.,
v(K\ {03) = {0} or (K'\ {0}) is an infinite cyclic subgroup of (R, +).

Two kinds of examples of discrete valuations are as follows:
Example L6.

(1) The p-adic valuation, I- I is a discrete non-archimedean valuation on Q.

(2) The TT-adic valuation, I, and the degree valuation, |- log, are discrete
non-archimedean valuations on F(x).

The concepts of convergence and completeness of our mentioned fields are
defined in the usual ways.
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Definition 1.7. Let (k, I+]) be a valued field. A sequence {a,} of elements of
K IS @ Cauchy sequence In K if for any . > 0 there is an integer N such that
ln_ aml<. Wheneverm,n> N,

Definition 1.8. Let (AT Inl) be a valued field. A sequence {an} of elements of K
converges to a in K if for any £ > 0 there is an integer N such that [an—al< £
whenever > N,

Definition 1.9. The field K is called complete with respect to the valuation 1-1
if every Cauchy sequence in K, with respect to I+1, has a limit in K.

Definition 1.10. A field K with valuation I+1is a completion of a field K with
M if

(1) K is an extension of K 1
(2) K is complete with respect to I+lwhich is a prolongation of I+1over K,
(3) every element of K is a limit of some Cauchy sequence in K.

Example 1.11.

(1) In the case of Q, with the usual absolute value, its completion is the field
R of real numbers.

(2) In the case of (Q,I-1p), its completion is the field of p-adic numbers
.- uva3nen |

(3) In the case of {F(x), I- ) its completion is (F (( (x))),I- ) the field
of formal Laurent series in 7(x) or the function field with respect to the n-adic
valuation.

(4) In the case of (F(x), I-loo), its completion is (F((I/x)), I-loo) the field
of formal Laurent series in 1/x or the function field with respect to the degree
valuation.

Definition 1.12. Let (K, I+]) be a non-archimedean valued field.

(1) The set 0 := {a€ K :\al <1} is a ring, called the valuation ring of
(tf.1-D -

(2) The set v := a ck :|a] < 1} is the unique maximal ideal of o.

(3) The field o /V is called the residue class field of (K 11-1).



Example 1.13. In the case of the field of p-adic numbers, we get

0={"eQ: (@b)=nhpib} 1
V= ~6qQ:(ah)=1piaple =po,

and the residue class field is O/p0 = {o,1,... ,p —1}.

Elements in a field completed with respect to a discrete non-archimedean val-
uation can be uniquely represented via series expansions as stated in the next
theorem, see e.g. [17].

Theorem 1.14. LetK be a complete field with respect to a discrete non-archimedean
valuation I+|. For each integerm let Tm be an element of K such that (tv1) = rn.

Let A be a complete set of representatives in O of the elements oijV , that s, A

consists of exactly one element from each of the residue classes ofV in 0. Then

every a GK \ {0} can be written uniquely in the form

where r = y(tt), ¢, G A for each i, and cr ~ 0.

Example 1.15.

(1) In the case that TL = pm, m G 7, p is a prime number and A =
{0,1,... ,p — 1}, we have a unique representation of any element in the p-adic
number field Qp of the form

o

Z ap'.

i=r

wherer GZ, ¢ G{0,1,... ,p—1} foreachiandcr 0.
(2) An element Tm = x~min F((l/x)) and the set A: F give a representation
of an element in F((1/x)) of the form



wherer £Z, « £ F foreachiand cr 70,
(3)  Anelement rm=amin F((x)) and the set A = F give a representation of
an element in F((x)) of the form

£ > ‘1
wherer £Z, < £F foreachiandcr/ 0

1.2.2  Continued fraction expansions
A finite or infinite expansion of shape

bl

do +
a\ +

2+

is called a continued fraction expansion. The quantities dj and bi may be taken
to be integers, real or complex numbers, functions or elements in a field, and
called the partial numerators and partial denominatorslrespectively. When all
bi—1(1> 1), it is usually referred to as a regular or simple continued fraction
expansion.

For convenience we shall generally denote the above continued fraction expan-

sion by .
1h 2 M 1l

a0 + _11 3; ......... ! (1-1

which was introduced by Rogers [2] in 1907.
In addition, one also finds in this thesis the notation

[do; bi, aiy b2, a2;100;n,an]... ]



A terminating or finite continued fraction expansion

0 &l Cn
+
1+ 2+ u,

is called the 1' convergent of the continued fraction expansion (L.1).
From the definition of a continued fraction expansion we have

o o
Do [T
gi_ =30+ bi __0__1_1+- b\
c2 b| - a0+ b\a2 012+ agb2+ briz aZC\+b2CD
= o . SAT 12410 12+ b2 a2D\ + h2Dv
al

a2

Forall > 2 assume that
¢n—ancni +oncn2 a0 Dn  dnDn=d'nDn 2 (1.2)

Then, forall > 2 .
QM onCn—"FbnCn-2

Dn anDn | 'FnDn-2

Relationships (1.2) were first established by Wallis [3] and were considered

in detail by Euler [9. Euler was the first person who used continued fraction
expansion.
Following Euler, we put C-1= Land D-1=0in order to make (1.2) valid for

=1
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