การปรับปรุงประสิทธิภาพของภาระงานที่ต่างแบบกันในเชิร์ฟเวอร์เสมือนจริงโดยใช้พฤติกรรม ของผู้ใช้งาน

นายดุลยวิทย์ ปรางชุมพล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ คอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IMPROVING HETEROGENEOUS WORKLOAD PERFORMANCE IN SERVER VIRTUALIZATION BASED ON USER BEHAVIORS

Mr. Dulyawit Prangchumpol

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Science and
Information Technology
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2013
Copyright of Chulalongkorn University

Thesis Title

IMPROVING HETEROGENEOUS WORKLOAD

PERFORMANCE IN SERVER VIRTUALIZATION

BASED ON USER BEHAVIORS

By

Mr. Dulyawit Prangchumpol

Field of Study

Computer Science and Information Technology

Thesis Advisor

Associate Professor Peraphon Sophatsathit, Ph.D.

Thesis Co-Advisor

Associate Professor Panjai Tantasanawong, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Science (Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE		
	Ch	Chairman
(Professor Chido	hanok Lursinsap, Ph	.D.)
Eyle	Sutsitut	Thesis Advisor
(Associate Profe	ssor Peraphon Sophi	atsathit, Ph.D.)
laje	y lolding	Thesis Co-Advisor
(Associate Profe	ssor Panjai Tantasan	awong, Ph.D.)
Sprick	east Phindtons.	Examiner
(Assistant Profes	ssor Suphakant Phim	oltares, Ph.D.)
Zwa	(Qu)	Examiner
(Boonyarit Intiyo		External Examiner
	arnsripinyo, Ph.D.)	

ดุลยวิทย์ ปรางชุมพล: การปรับปรุงประสิทธิภาพของภาระงานที่ต่างแบบกันใน เชิร์ฟเวอร์เสมือนจริงโดยใช้พฤติกรรมของผู้ใช้งาน. (IMPROVING HETEROGENEOUS WORKLOAD PERFORMANCE IN SERVER VIRTUALIZATION BASED ON USER BEHAVIORS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร. พีระพนธ์ โสพัศสถิตย์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร. ปานใจ ธารทัศนวงศ์, 52 หน้า.

องค์กรขนาดใหญ่มีเครื่องเชิร์ฟเวอร์จำนวนมากที่ต้องจัดการและดำเนินการเพื่อรองรับ การบริการที่หลากหลาย สิ่งสำคัญคือการลดการใช้พลังงานของเครื่องเชิร์ฟเวอร์ในฝ่ายเทคโนโลยี สารสนเทศ เพื่อเตรียมรองรับกับปัญหาเหล่านี้ เทคนิคเวอร์ชวลไลเซชั่นได้ถูกนำมาใช้ในช่วง ปัจจุบัน เชิร์ฟเวอร์เวอร์ชวลไลเซชั่นสามารถช่วยรวมเครื่องเชิร์ฟเวอร์ เพิ่มประสิทธิภาพการใช้ ประโยชน์จากอุปกรณ์ ลดการใช้พลังงานขององค์กรและพื้นที่การใช้งานลงได้ อย่างไรก็ตาม การ จัดการภาระงานที่แตกต่างกันของระบบนี้ก็เป็นเรื่องที่ท้าทาย งานวิจัยนี้นำเสนอแนวความคิดใหม่ ในการจัดการภาระงานโดยขึ้นกับพฤติกรรมการใช้งาน โดยในการทดลองได้แบ่งออกเป็น 2 ส่วน ส่วนแรก สำรวจแนวโน้มพฤติกรรมการใช้บริการจากเครื่องเชิร์ฟเวอร์โดยใช้เทคนิคเหมืองข้อมูล ส่วนที่สอง ทำนายการใช้งานทรัพยากรหน่วยประมวลผลและหน่วยความจำบนพื้นฐานของการใช้ งานจริงโดยใช้การทำนายจากหลายวิธี ได้แก่ การค้นหากฎความสัมพันธ์ แบบจำลอง ARIMA และ เทคนิคการปรับเรียบแบบเอ็กโปแนนเซียล ประสิทธิภาพของตัวแบบในการทำนายได้แสดงให้เห็น ระหว่างการใช้งานอย่างคุ้มค่ากับเวลาที่ตอบสนอง ผลการทดลองแสดงให้เห็นว่าพฤติกรรมของ ผู้ใช้งานมีความแตกต่างกันไปในแต่ละประเภทของบริการซึ่งมีผลต่อการกระจายภาระงานในแต่ ละช่วงเวลา ประโยชน์ที่ได้รับจากแบบจำลองเวอร์ชวลไลเซชั่นคือการอนุญาตให้มีการจัดสรร ทรัพยากรากการทำนาย ซึ่งจะทำให้การจัดสรรทรัพยากรเกิดประสิทธิภาพ

ภาควิชา คณิตศาสตร์และวิทยาการ คอมพิวเตอร์ สาขาวิชา วิทยาการคอมพิวเตอร์และ

เทคโนโลยีสารสนเทศ

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

ปีการศึกษา 2556

5173813423 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY KEYWORDS: SERVER VIRTUALIZATION / PREDICTING MODEL / RESOURCE ALLOCATION / USER BEHAVIOR

DULYAWIT PRANGCHUMPOL: IMPROVING HETEROGENEOUS WORKLOAD PERFORMANCE IN SERVER VIRTUALIZATION BASED ON USER BEHAVIORS. ADVISOR: ASSOC. PROF. PERAPHON SOPHATSATHIT, Ph.D., CO-ADVISOR: ASSOC. PROF. PANJAI TANTASANAWONG, Ph.D., 52 pp.

Large enterprises have many servers which must be managed and operated to support heterogeneous service. The emphasis, however, is to reduce power consumption of these servers for IT applications. To cope with such dilemma, the virtualization technique is employed which has gained attention in recent years. Server virtualization can improve hardware utilization by consolidate servers and also reduce physical space and power consumption in data center. However, the challenge is management of heterogeneous workloads in this system. This research proposes a new concept for managing workloads based on user's behavior. The approach is divided into two parts. First, exploring the trend of user's behavior in utilizing the service of each server with the help of data mining technique. Next, predicting hardware resources, CPU, and memory based on their actual operating profile using various prediction algorithms such as association rule discovery, ARIMA model, and exponential smoothing technique. A prediction performance model is devised to demonstrate between utilization and response time. The results show that user's behavior are different in each type of service which affects the distribution of workload and time. The benefits obtained from the virtualization model permit assignment of resources from the prediction, thereby resource allocation can be carried out efficiently.

Department:	Mathematics and	Student's Signature
	Computer Science	Advisor's Signature
Field of Study:	Computer Science and	Co-Advisor's Signature

Information Technology

Academic Year: 2013

I would like to express my sincere gratitude to my advisor Associate Professor Dr. Peraphon Sophatsathit and Associate Professor Dr. Panjai Tantasanawong who have provided me with a great opportunity to do my research work under their guidance. Their suggestions and comments have motivated me during my Ph.D. study.

I would like to thank dissertation committees, Professor Dr. Chidchanok Lursinsap, Assistant Professor Dr. Suphakant Phimoltares, Dr. Boonyarit Intiyot, and Dr. Chalermpol Charnsripinyo for their advices and guidance about research activities. Much of untold appreciations also go to those unaccounted individuals who have lent a helping hand to support this work.

Last but not least, I would like to express my sincere gratitude and deep appreciation to my parents, my family, and my friends for constant encouragement, love, and supports throughout my life.

CONTENTS

	ragi
Thai abstract	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
List of Tables	X
List of Figures	xi
List of Figures	xii
CHAPTER I	1
NTRODUCTION	1
1.1 Problem Identification and Motivation	1
1.2 Research Objectives	2
1.3 Scope of the Study	2
1.4 Problem Statements	3
1.5 Research Contribution	3
1.6 Related Definitions	3
1.7 Organization of the Dissertation	4
CHAPTER II	5
LITERATURE REVIEW	5
2.1 Related Literature	5
2.2 Theoretical Background	6
2.2.1 Virtualization Backgrounds	7
2.2.2 Heavy-tailed Distribution	8
2.2.3 Exponential Smoothing Method	9
2.2.3.1 Simple Exponential Smoothing	9
2.2.3.2 Double Exponential Smoothing	10
2.2.3.3 Triple Exponential Smoothing	10
2.2.4 Association Rule Discovery	11

	Pag
2.2.5 Autoregressive Integrated Moving Average (ARIMA)	11
2.2.6 Resource Utilization	12
CHAPTER III	14
PROPOSED FRAMEWORK	14
3.1 User Behavior Analysis	14
3.1.1 Association Model for Analyzing User Behavior	19
3.1.2 Correlation between User Access and Workload	21
3.1.3 Workload Distribution	23
3.2 Consumption of Hardware Resources Analysis	26
3.2.1 Simulation for Resource Analysis and Prediction	26
3.2.2 Algorithm for Resources Prediction and Allocation	30
3.2.3 Problem Scenario	32
CHAPTER IV	34
EXPERIMENTAL RESULTS AND DISCUSSION	34
4.1 Data set of the experiment	34
4.2 Experiment 1: Results of User Behavior Analysis	34
4.3 Experiment 2: Results of Hardware Resources Consumption Analysis	36
4.4 Experiment 3: Comparison with Other Predicting Models	37
4.4.1 Comparing with Association Rule	37
4.4.2 Comparing with ARIMA	41
4.4.3 Summary of Comparison	42
4.5 Experiment 4: Effect of Compromising Factor on Resource Allocation	42
CHAPTER V	46
CONCLUSION AND FUTURE RESEARCH	46
5.1 Contributions and Implications of this Research	46
5.2 Future Research	46
REFERENCES	47

	Page
VITA	52

List of Tables

Tab	le	Page
3.1	Examples of user access to the proxy at 10:00 AM	15
3.2	Examples of data size in the proxy at 10:00 AM	16
3.3	Examples of rules for prediction	20
3.4	Prediction model of proxy server	21
3.5	The coefficients of the correlations between user access and data size for ea	ach
	day of the week	22
4.1	Example of test model on Monday for proxy server	35
4.2	Sum square error with alpha values for simple exponential	37
4.3	Sum square error with alpha and gamma values for double exponential	37
4.4	Examples of association rules for predicting	38
4.5	Examples of predicting by association rule with confidence and support	38
4.6	Level of memory usage in 24 hours by association rules	39
4.7	Memory usage in percentage of 24 hours by association rules	39
4.8	MSE Comparison for method prediction	42
4.9	Resource utilization with allocation at u65 and u75	44
4.10	Resource utilization with different utilization boundary	45

List of Figures

Figur	e	Pag
2.1	Typical server virtualization architecture consisting of a pool of heterogeneous	
	servers	7
2.2	An example of ARIMA model analyze resource usage in database server	12
2.3	An example of the relationship between resource utilization and	
	response time	13
2.4	Response time curves showing knee values.	13
3.1	Example log file from proxy server	14
3.2	Example log file from web server	15
3.3	User access for the proxy in each day	16
3.4	User access for the proxy in each hour	17
3.5	User access for the web server in each day	17
3.6	User access for the web server in each hour	18
3.7	Workload for the proxy server	18
3.8	Workload for the web server	18
3.9	Data size (sorted by descending size) in Proxy server over 24 hour period	23
3.10	Data size (sorted by descending size) in Web server over 24 hour period	24
3.11	Data size in proxy server over a 24 hour period (cumulative percentage)	24
3.12	Pareto distribution from proxy server over a 24 hour period (cumulative	
	percentage)	25
3.13	Data size in web server over a 24 hour period (cumulative percentage)	25
3.14	Pareto distribution from web server over a 24 hour period (cumulative	
	percentage)	26
3.15	Program VirtualBox for simulation server	27
3.16	Set-up server virtualization	28
3.17	CPU consumption in the proxy	28
3.18	Memory consumption in the proxy	29
3.19	CPU consumption in the web server	29
3.20	Memory consumption in the web server	29
4.1	Resource prediction by exponential smoothing method for three servers	36
4.2	Comparison of resource prediction by association rules and the proposed	
	method using double exponential smoothing method for three servers	40
4.3	ARIMA model resource prediction of three servers	41

List of Figures

Figure		Page
4.4	CPU allocation with compromising factor $u = 65\%$ for database server	43
4.5	Memory allocation with compromising factor $u = 65\%$ for database server	43

