

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

DEGREE

FIELD DEPARTMENT

TITLE: Embedded Multi Sensors for Hydrological Monitoring System

NAME: Mr. Rattanasak Kasettham

THIS THESIS HAS BEEN ACCEPTED BY

 THESIS ADVISOR

()

 THESIS CO-ADVISOR
()

 THESIS CO-ADVISOR
()

 DEPARTMENT HEAD

()

APPROVED BY THE GRADUATE SCHOOL ON

 DEAN

(Associate Professor Gunjana Theeragool, D.Agr.)

Master of Engineering (Information and Communication Technology for Embedded Systems)

Assistant Professor Dusit Thanapatay, Ph.D.

Associate Professor Nobuhiko Sugino, Ph.D.

Assistant Professor Teerasit Kasetkasem, Dr.E.

Information and Communication Technology for Embedded Systems Electrical Engineering

Mr. Rachaporn Keinprasit, Ph.D.

THESIS

EMBEDDED MULTI SENSORS FOR HYDROLOGICAL

MONITORING SYSTEM

RATTANASAK KASETTHAM

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Master of Engineering (Information and Communication Technology for Embedded Systems)

Graduate School, Kasetsart University

2011

 Rattanasak Kasettham 2011: Embedded Multi Sensors for Hydrological

Monitoring System. Master of Engineering (Information and

Communication Technology for Embedded Systems), Major Field:

Information and Communication Technology for Embedded Systems,

Department of Electrical Engineering. Thesis Advisor: Assistant Professor

Dusit Thanapatay, Ph.D. 61 pages.

The purpose of this research is to design and implement the low cost sensor

nodes for Hydrological Monitoring System. It consists of low cost flow velocity

sensors and low cost flow direction sensor. This sensor node is used to measure the

flow velocity in various depths and the flow direction of the river. The flow velocity

sensor is designed by using a propeller and a Hall Effect sensor. The rotation of

propeller is designed to provide a pulse when it passes Hall Effect sensor. So, the

frequency of the pulses is proportional to the velocity of water. The flow direction

sensor is implemented by using a compass sensor, magnet, vane and controller

(MSP430). It is used to measure the angle between the flow direction of the water

and the flow velocity sensor. Then, the angle is used to improve the accuracy of flow

velocity.

For experimental results, demonstrate that the low cost flow velocity sensors

have a low root mean square error. So, they can measure the flow velocity in general

flow-velocity condition. And the low cost flow direction sensor has an acceptable

accuracy but it need to calibration before using. Furthermore, the pitch and roll of

the flow direction sensor has effect to the accuracy. Then, the sensor node should

install in horizontal to prevent the error. Therefore, the low cost sensor nodes which

consist of low cost flow velocity sensors and low cost flow direction sensor have

efficiency for using in the hydrological monitoring station.

 / /

Student’s signature Thesis Advisor’s signature

ACKNOWLEDGEMENTS

 I would like to grateful thank and deeply indebted to Dr. Dusit Thanapatay my

thesis advisor, Dr. Rachaporn Keinprasit my co-advisors from National Electronics

and Computer Technology Center, and Prof. Nobuhiko Sugino my co-advisor from

Tokyo Institute of Technology for advice, encouragement and valuable suggestion for

completely writing of thesis.

 This research is financially supported by Thailand Advanced Institute of

Science and Technology - Tokyo Institute of Technology (TAIST-Tokyo Tech),

National Science and Technology Development Agency (NSTDA), Tokyo Institute of

Technology (Tokyo Tech), National Research Council of Thailand (NRCT) and

Kasetsart University (KU).

Rattansasak Kasettham

 February 2011

i

TABLE OF CONTENTS

Page

TABLE OF CONTENTS i

LIST OF TABLES ii

LIST OF FIGURES iii

LIST OF ABBREVIATIONS v

INTRODUCTION 1

OBJECTIVES 3

LITERATURE REVIEW 4

MATERIALS AND METHODS 7

Materials 7

Methods 7

RESULTS AND DISCUSSION 21

CONCLUSION AND RECOMMENDATION 34

Conclusion 34

Recommendation 34

LITERATURE CITED 35

APPENDICES 37

Appendix A The circuit of low cost flow velocity sensor 38

 Appendix B The circuit of low cost flow velocity sensor 40

Appendix C Source code of main microcontroller 42

Appendix D Source code of microcontroller in low cost

 flow direction sensor 53

CIRRICULUM VITAE 61

ii

LIST OF TABLES

Table Page

 1 Bill of Materials for low cost flow velocity sensor circuit 13

 2 Bill of Materials for low cost flow direction sensor circuit 16

 3 The average data from six points. 21

 4 Root mean square of each trend line 23

 5 The data from first reference position 23

 6 The data from second reference position 24

 7 The data from third reference position 24

 8 The data form fourth reference position 25

 9 Average data of 4 reference positions 25

 10 The data of first reference position 27

 11 The data of first reference position with pitch 27

 12 The raw data of reference positions 30

 iii

LIST OF FIGURES

Figure Page

1 Real time flood monitoring with wireless sensor networks overview. 4

2 Sensor network with double Gate Way nodes. 5

3 Proposed sensor network and its components. 5

4 3 inch propeller 8

5 Hall Effect sensor (A1302) 8

6 3-Axis Digital Compass IC (HMC5843) 9

7 Application circuit of HMC5843 10

8 MSP430F169 11

9 A block diagram of our proposed system. 11

10 Flow velocity sensor 12

11 The schematic of low cost flow velocity sensor 12

12 Over all of testing system of flow velocity sensor 13

13 Front-end window of the data locker 14

14 Flow chart of the system 14

15 Flow direction sensor 15

16 The PCB of flow direction sensor 16

17 Front-end window of the data logger 18

18 A flowchart of the main program 18

19 Reference positions 19

20 Offset translation of HMC5843 19

21 Mobile Telemetering for Flood Warning in Chao Phraya basin

station(C35) 20

22 the setting sensors 20

23 Relationship between number of pulse per second and the velocity 22

24 Average position of 4 reference points 25

iv

LIST OF FIGURES (Continued)

Figure Page

25 Position of 4 reference points after subtracting offset 26

26 Our practical field 28

27 Connection ports board 29

28 The converting circuit 29

29 The data logger 30

30 The data of flow velocities without change some parameter 31

31 The accuracy from low cost flow velocity sensors compare with

station’s sensor 32

32 The data of flow velocities with change some parameter 33

v

LIST OF ABBREVIATIONS

ADC = Analog to Digital Converter

A/D = Analog to Digital Converter

ASCII = American Standard Code for Information Interchange

D/A = Digital to Analog Converter

DCO = Digitally Controlled Oscillator

I
2
C = Inter-Integrated Circuit

USART = Universal synchronous/asynchronous receiver/transmitter

PCB = Printed Circuit Board

ASIC = Application-specific integrated circuit

RISC = Reduced Instruction Set Computer

IC = Integrated Circuit

SCL = Serial Clock

SDA = Serial Data

Rp = Pull-up Resistance

1

EMBEDDED MULTI SENSORS FOR HYDROLOGICAL

MONITORING SYSTEM

INTRODUCTION

 Thailand is the agricultural country which is cultivated area more than 50%.

Nowadays, 80% of water in this river is used in agriculture. So flood disaster is

significant and growing problems for agriculturalist around Chao Phraya River. To

reduce these problems, we would like to know the volume of the river for

management. Therefore, improving the measurement system is one of the most

important things to obtain data of river.

Recently, flow velocity of river measures in one depth (Lee et al., 2008) (Chayon

et al., 2007) and used to calculate the volume of the river. But flow velocity is varying

in different depths. Thus, the information of flow velocity in any depths is more

useful to analysis and management (Hughes et al., 2006) (Freiberger and Sarvestani,

2007). Then we will improve measurement system by applying low cost flow velocity

sensors and low cost flow direction sensor to measure and record them at various

depth of river. After that we evaluate and send the data to station for the flow rate

calculation.

In this research, the low cost flow velocity sensor and the low cost flow

direction sensor are developed. We separate our work into two parts: design part and

practical field part. In design and develop parts, the low cost flow velocity sensor and

the low cost flow direction sensor is developed. The flow velocity sensor is designed

by using a propeller and a Hall Effect sensor. The rotation of propeller is designed to

provide a pulse when it passes Hall Effect sensor. The frequency of the pulses is

proportional to the velocity of water in the river. The circuits that used in this sensor

are differential amplifier and Schmitt Trigger. The low cost flow direction sensor is

implemented by using a compass sensor, magnet, vane and controller. The position of

vane that has attached by magnet is used to detect the flow direction of the water. It

2

uses converting signed two's complement to decimal and trigonometric relations to

translate the data from compass sensor to an angle of the position of vane. In practical

field part, the low cost flow velocity sensor and the low cost flow direction sensor are

used to collect the data nearly the Mobile Telemetering for Flood Warning in Chao

Phraya basin station. Then, we use the result of design and testing parts to compute

the flow velocity and the flow direction of the water and compare with the data from

the station.

3

OBJECTIVES

1. To design and develop the low cost flow velocity sensor for hydrological

monitoring system.

2. To design and develop the low cost flow direction sensor for hydrological

monitoring system

4

LITERATURE REVIEW

The idea of hydrological monitoring system with sensor networks is not new,

Lee et al. (2008) described the real time flood monitoring with wireless sensor

networks. In sensor node, they had a level sensor, a flow sensor and a rainfall sensor

to collect data. Then they send that data via wireless network to a base station. In the

base station, they used Ethernet port for connected to internet. Data from each river is

stored in the database designed to distinguish the measured data by rivers and sensor

nodes. The GUI-based web service providing 3D model, data graph, and other

representation materials for better readability for users, and SMS are provided by

using received data in real-time.

Chayon et al.(2007) described sensor network with Bluetooth. The sensor

node consists of Bluetooth devices, water level sensor and pressure sensor to collect

data and send it through relay node. Due to Bluetooth devices have a short range

wireless then they use relay node to improve the area of network for base station to

sensor node. In relay node there is only a microprocessor and a Bluetooth device to

communicate with others. So there are another node which are only used for transmit

the data to the next node. The Gate Way Node has the data from the sensors and

transmits them to the base station. The Gate Way node is very important for the whole

Figure 1 Real time flood monitoring with wireless sensor networks overview.

5

section of the network. If this Gate Way node will fail the whole part of the network

will fail. To solve this problem, they use the Double Gate Way Node.

Freiberger and Sarvestani (2007) researched in measure soil properties at

various depths. Each sensor took measurements based on a schedule, or when

prompted by an event. Events could be a measurement value exceeding a threshold,

or simply at the user’s request. The measurements must be stored and transmitted

back over the existing GSM cellular infrastructure.

However, many researchers have attempted to improve accuracy, resolution,

scalability and power consumption. But to improve those things, we need to create

low cost measurement systems, along with the ability to leave the equipment in the

Figure 2 Sensor network with double Gate Way nodes.

Figure 3 Proposed sensor network and its components.

6

field for extended periods of time, make it possible to increase the spatial resolution,

or alternatively, cover a larger area. So, the main sensor that needs to develop is the

flow velocity sensor and the direction sensor.

7

MATERIALS AND METHODS

Materials

1. Computer

2. CircuitMaker 2000

3. Microsoft Excel software

4. Microsoft Visual C++ 2008 Express Edition software

5. Altium Designer Winter 09

6. MSP430F169 microcontroller

7. IAR Embedded Workbench for MSP430

8. ET-MSP430 FET Debugger (ETT)

9. RS232 Cable

10. Hall Effect sensor (A1302)

11. Compass sensor (HMC5843)

12. Propeller

Methods

In this research, we divided into two parts: design part and practical field part.

First, we will introduce the main components. Then, the low cost flow velocity sensor

and the low cost flow direction sensor are developed at the design part. After that,

they will test for finding the characteristic before using in the practical field. In the

practical field part, those sensors will test in the real conditions around Mobile

Telemetering for Flood Warning in Chao Phraya basin (C35).

1. Hardware description

In this experiment, we separate the explanation of hardware description into

two parts. First, the main hardware on low cost flow velocity sensor. Second, the main

hardware on low cost flow direction sensor.

8

1.1 Low cost flow velocity sensor

 The low cost flow velocity sensor is designed by using a propeller and a Hall

Effect sensor. The propeller as shown in Figure 4 is 3 inch propeller which is selling in

the electronics market.

 The Hall Effect sensor that use in this research is Continuous-Time

Ratiometric Linear Hall Effect Sensor (A1302) as shown in Figure 5 from Allegro

MicroSystems. It is optimized to accurately provide a voltage output that is

proportional to an applied magnetic field. This device has a quiescent output voltage

that is 50% of the supply voltage (4.5 to 6.0 V operations).

Figure 4 3 inch propeller

Figure 5 Hall Effect sensor (A1302)

9

1.2 low cost flow direction sensor

 The low cost flow direction sensor is implemented by using a compass

sensor, magnet, vane and controller. The compass sensor is 3-Axis Digital Compass

IC (HMC5843) as shown in Figure 6 from Honeywell that provides advantages over

other magnetic sensor technologies. The device features 3-Axis Magnetoresistive

sensors and ASIC in a Single Package, Low Voltage Operations (2.5 to 3.3V) and I
2
C

Digital Interface. The HMC5843 uses a simple protocol with the interface protocol

defined by the I
2
C bus specification. The data rate is at the standard-mode 100kbps or

400kbps rates as defined in the I
2
C bus specifications. The bus bit format is an 8-bit

Data/Address send and a 1-bit acknowledge bit. The format of the data bytes

(payload) shall be case sensitive ASCII characters or binary data to the HMC5843

slave, and binary data returned. Negative binary values will be in two’s complement

form. The default (factory) HMC5843 7-bit slave address is 0x3C for write

operations, or 0x3D for read operations. The HMC5843 Serial Clock (SCL) and Serial

Data (SDA) lines have optional internal pull-up resistors, but require resistive pull-ups

(Rp) between the master device (usually a host microprocessor) and the HMC5843.

Pull-up resistance values of about 10k ohms are recommended with a nominal 1.8-

volt digital supply voltage. Other values may be used as defined in the I
2
C bus

sspecifications or with the internal 50k ohm pull-up resistors that can be tied to digital

supply voltage.

 Figure 6 3-Axis Digital Compass IC (HMC5843)

10

The compass sensor architecture, combined with five modes which can be used to

minimize the total power consumption in applications. The data from each axis is 16-

bit value in 2’s complement form, whose range is 0xF800 to 0x07FF. The

recommended application circuit for this experiment is shown in Figure 7.

 The microcontroller that use in this research is a MSP430F169 as shown in

Figure 8. This microcontroller is a mixed-signal microcontroller family from Texas

Instruments. Built around a 16-bit CPU, the MSP430 is designed for low cost, and

specifically, low power consumption embedded applications. The microcontroller has

six different low-power modes, which can disable unneeded clocks and CPU to

minimize the total power consumption. The device features a powerful 16-bit RISC

CPU, 16-bit registers, and constant generators that attribute to maximum code

efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power

modes to active mode in less than 6μs. MSP430F169 is microcontroller

configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, dual 12-bit

D/A converter, two universal serial synchronous/asynchronous communication

interfaces (USART), I2C, DMA, and 48 I/O pins.

Figure 7 Application circuit of HMC5843

Host CPU HMC5843

+2.5V to 3V

VDD

I2C_CLK

I2C_DATA

VSS

DVDD
VREN

AVDD
SDAP
SCLP

SCL

SDA

SETP

SETC

C1

AGND

DGND

15

16

18

2

3

1

20

9

14

13

17

12

C2

0.22 uF

C1

4.7 uF

11

2. Design part

 In this part, the general design and testing of low cost flow velocity sensor and

low cost flow direction sensor is described. The proposed system shows in Figure 9. It

has two microcontrollers. The main function of the main microcontroller is to

communicate to computer via USB port and receive the data from the sensors.

2.1 low cost flow velocity sensor

 The low cost flow velocity sensor, as shown in Figure 10, is designed by

using a propeller and a Hall Effect sensor. The rotation of propeller is designed to

provide a pulse when it passes Hall Effect sensor. The frequency of the pulses is

proportional to the velocity of water in the river. The cost of our flow velocity sensor

is about 500 Baht.

Figure 8 MSP430F169

Figure 9 A block diagram of our proposed system.

12

The circuits that used in flow velocity sensor are differential amplifier and Schmitt

Trigger as shown in Figure 11. The supply voltage is 5 V. So, the quiescent output

voltage of A1302 is about 2.5 V at none magnetic field. Then we need to cut off the

offset by using differential amplifier and Schmitt Trigger to reduce the noise. The

components that use in this sensor is shown in Table 1.

Figure 10 Flow velocity sensor

Figure 11 The schematic of low cost flow velocity sensor

R6 1Meg

R5 10k

R7 10k

R8 10k

R9 10k

R10 10Meg
R2 10k

R1 22k
R3 10k R4 22k

LM358
LM358

+5V

+5V

+5V

+5V

13

Designator Comment Description Quantity

C1 C 1uF Capacitor SMD 1uF 16V 2

D1 MBRS120T3 Schottky Diode 1

R1, R3, R4, R5, R8, R9 R 10 K Resistor SMD 1/10W 5% 6

R7, R10 R 22 K Resistor SMD 1/10W 5% 2

R2, R6 R 1 M Resistor SMD 2

U1 LM1117IMPX-5.0 LDO regulator ; Voltage 5 1

U2 A1302 Hall Effect Sensor 1

U3 LM358DR Op-Amp SMD 1

In the testing of low cost flow velocity sensor, as shown in Figure 12, there are

two barrels and pipe connected to the upper barrel. The flow velocity sensor was

installed into the pipe. Then water was drained from the upper barrel to the lower

barrel and measured the time and volume of the water. Therefore flow rate is

obtained, and the velocity is calculated with this equation

V = Q/A (1)

where, V is flow velocity of the water (m/s)

 Q is flow rate of the water (m
3
/s)

 A is cross sectional area of the pipe (m
2
)

Table 1 Bill of Materials for low cost flow velocity sensor circuit

Flow velocity sensor

Upper barrel

Lower barrel

Figure 12 Over all of testing system of flow velocity sensor

14

The flow velocity sensor generates voltage pulses when the water passes. The

relationship between number of pulse and the flow velocity is then found out by using

trend analysis. The flow velocity sensors connect to interrupt channels of main

microcontroller. Figure 13 shows the front-end window of the developed software

using Visual C++ builder program. The application software has an auto sampling to

get data in the period of time and save those data into a file. The obtained data consist

of date, time and number of pulse from the flow velocity sensors. The flow chart of

the system shows in the Figure 14, the pulses from the flow velocity sensors are sent

to main microcontroller for counting. The PC then requests the data from main

microcontroller. After that, counter is reset and main microcontroller then become

waiting status for interrupt.

Figure 13 Front-end window of the data logger

Figure 14 Flow chart of the system

a) Flow chart of programming in the PC

b) Flow chart of programming in main microcontroller

15

2.2 low cost flow direction sensor

 The low cost flow direction sensor, as shown in Figure 15, is implemented

by using a HMC5843, magnet, vane and controller (MSP430). The PCB inside box as

shown in Figure 16, has the main components such as microcontroller (MSP430),

compass sensor (HMC5843), True RS-232 transceivers (MAX3232) and low-dropout

linear regulator (LM1117). The MSP430 is used to collect the data from HMC5843

when the microcontroller receives the signal from main microcontroller. The

communication between main microcontroller and the microcontroller uses RS232

channel. The power supply is used in MSP430 and HMC5843 is 3.3 V. The

components are used in this sensor is shown in Table 2. The cost of this sensor is

about 3000 Baht.

Figure 15 Flow direction sensor

 (a) Inside of flow direction sensor

 (b) Bottom view of PCB

 (c) Top view of flow direction sensor

 (d) Side view of flow direction sensor

(b) (a)

Compass
sensor

MSP430

(c) (d)

Magnet Vane

16

 Table 2 Bill of Materials for low cost flow direction sensor circuit

Designator Comment Description Quantity

C1, C2, C3, C4,

C6
Electrolytic Capacitor 0.1uF 5

C10 Electrolytic Capacitor 10uF 1

C15, C16 Electrolytic Capacitor 47uF 2

C5 Ceramic Capacitor 10 nF 1

C7, C8, C11, C12 Ceramic Capacitor 10 pF 4

C9, C13, C14 Ceramic Capacitor 0.1uF 3

Crystal1 XTAL(HC49S-7.3728M-LF) 7.3728MHz 1

Crystal2 XTAL (DT-26-LF) 32.768KHz 1

D1 Diode 1N4001
1 Amp General Purpose

Rectifier
1

H1 Connector Header 1x4 , 100 mil 1

H2 J-tag Header 2x7 , 100 mil 1

H3 Compass Sensor Header 1x4 , 100 mil 1

MSP1 MSP430f169 MSP430f169 1

R1 Resistor Resistor 47k 1

R2, R3 Resistor Resistor 10k 2

SW1 Reset (TC-0103-X-ROHS) Tact Switch 1

U1 MAX3232CPE+

+-15KV ESD-PROTECTED,

+5V RS-232

TRANSCEIVERS

1

U2 LM1117MPX-3.3 LDO regulator ; Voltage 3.3 1

Figure 16 The PCB of flow direction sensor

 (a) Top view

 (b) Bottom view

(a) (b)

MAX3232 HMC5843 LM1117 MSP430

17

The XYZ-axis data from the HMC5843, which is signed two’s complement

representation from 0xF800 to 0x07FF, can be collected by the application processor,

and software routine written to interpret the data as required for heading output. The

heading is computed by using these following trigonometric relations.

Where X > 0 and Y > 0

Angle = arctangent(Y/X) (2)

Where X < 0 and Y > 0

Angle = 180 + arctangent(Y/X) (3)

Where X < 0 and Y < 0

Angle = 270 - arctangent(Y/X) (4)

Where X > 0 and Y < 0

Angle = 360 + arctangent(Y/X) (5)

Where X = 0 and Y > 0

Angle = 90 (6)

Where X = 0 and Y < 0

Angle = 270 (7)

Where X > 0 and Y = 0

Angle = 0 (8)

Where X < 0 and Y = 0

Angle = 180 (9)

HMC5843 is connected through I2C of microcontroller. The software is used

to interpret the data is developed by Visual C++ builder program as shown in Figure

17. The flowchart of the software, is shown in Figure 18, has an auto sampling to get

data in the period of time and record those data into a file. The obtained data consist

of date, time and raw data from sensor. Then, the program converts the raw data to the

position of vane in XY-axis by converting signed two's complement to decimal.

Afterwards, the angle is calculated by using the trigonometric relations of equation

(2)-(9).

18

The vane that has attached by magnet is used to collect data for this

experiment. Here, the vane is rotated to 4 reference positions as shown in Figure 19.

The first position is on 0° of X-axis, the second position is on 180° of X-axis, the third

position is on 90° of X-axis and the fourth position is on 270° of X-axis. For each

reference positions, the data is collected 10 times. After that, the average data for each

reference positions are calculated. The minimum and maximum values of XY-axis are

found. Then, determine the mean values as offsets for each axis. By subtracting these

offsets to the average 4 references positions, the calibrated compass heading is

resolved.

Figure 17 Front-end window of the data logger

 (a) Date and time (b) Raw data (c) Position of vane in XY-axis

(a) (b) (c)

Figure 18 A flowchart of the main program

19

Figure 20 shows the average 4 reference positions offset being translated back

to the correct axis for compass heading computation. Xmax represents the average

first reference position, Xmin represents the average second reference position, Ymax

represents the average third reference position and Ymin represents the average fourth

reference position. The dash-dot line represents the trace of magnet that is obtained

from HMC5843. The solid line represents the trace of vane that is subtracted by

offsets.

(a) (b)

(c) (d)

X

Y

X

Y

X

Y

Magnet

Vane

X

Y

Figure 19 Reference positions

 (a) First position (b) Second position

 (c) Third position (d) Fourth position

Figure 20 Offset translation of HMC5843

Xmean

Ymean

20

3. Practical field part

 The practical field that use to test the sensors is Mobile Telemetering for

Flood Warning in Chao Phraya basin station (C35) as shown in Figure 21.

Figure 22 shows the preparation of the testing. This sensor node is used to

measure the flow velocity in vary depths and the flow direction of the water. The

Distance between the low cost flow direction sensor and the ground is 0.50 m.

And the distance between sensor to sensor is 0.50 m.

Figure 21 Mobile Telemetering for Flood Warning in Chao Phraya basin station(C35)

 Amphoe Bang Ban Phra Nakhon Si Ayutthaya

 Latitude: 14.36907 Longitude: 100.52751

Figure 22 The setting sensors

Low cost flow velocity sensors

Low cost flow direction sensor

21

RESULTS AND DISCUSSION

Our experiments are designed based on our system development. Two phases

of experiments are performed. The first phase is to validate our low cost flow velocity

sensor and low cost flow direction sensor. In this phase, our sensors are tested in the

setting conditions for finding characteristic. The second phase experiment is to validate

our sensors node. Our sensors are experimented under real condition.

1. Sensors

1.1 low cost flow velocity sensor

 The goal of testing the low cost flow velocity sensor is to find the

characteristic before using in the practical field. The sensor is tested in the setting

conditions. First, we collect the data in six points from the low velocity to high

velocity by changing the size of pipe. For each point, the data will collect in 30 times

and average them as shown in Table 3. The flow velocity can obtained by draining

the water from the upper barrel to the lower barrel and measured the time and volume

of the water. We denote that the capacity of lower barrel is 0.01 m
3
 so the flow rate is

obtained by equation (10). And the flow velocity is calculated by equation (1). So,

the average data for each point will pot in to the graph.

 Q = 0.01/T (10)

where, Q is flow rate (m
3
/s) T is time (s)

Time velocity(m/s) Number of pulse per second(Hz)

1 0.046670804 0.400983639

2 0.420690649 3.23879846

3 0.637617256 4.59463978

4 1.033772724 7.765845719

5 1.380021131 10.78627316

6 2.037147617 15.22725145

Table 3 The average data from six points.

22

Result of testing the low cost flow velocity sensor shows in the Figure 23. It

shows relationship between number of pulse per second and the flow velocity. The

minimum of flow velocity that the low cost flow velocity sensor can be detected is

0.04 m/s. And approximate velocity is calculated by using trend analysis. After

calculating, polynomial of degree 2 is used in the trend line because it has the least

root mean square error as shown in Table 4. The coefficients in this line is given by

Y = -0.104V
2

+ 7.761V- 0.050 (11)

where, V is flow velocity (m/s)

 Y is number of the pulse per second (Hz)

(a)

(b)

Figure 23 Relationship between number of pulse per second and the velocity

 (a) The result form testing

 (b) Add the trend line

23

The experimental results showed that the low cost flow velocity sensor which

used a propeller and a Hall Effect sensor has a low root mean square error so it can

measure the flow velocity in general flow-velocity condition. Then the low cost flow

velocity sensor can be used in the sensor node to improve measurement system by

obtaining the flow velocity in various depth.

1.2 low cost flow direction sensor

 The goal of this experiment is to calibrate the low cost flow velocity

sensor and find the characteristic before using in the hydrological monitoring station

around riverside.

Table 5 to Table 8 show the data that collect 10 times for each reference

positions. After that, the average data for each reference positions are calculated as

shown in Table 9.

Table 5 The data from first reference position

Table 4 Root mean square of each trend line

Type of trend line Root mean square error

Polynomial of degree 2 0.183782166

Linearity 0.188551778

X axis Y axis

145 436

150 423

147 432

142 429

148 426

151 426

148 436

147 429

141 426

144 425

24

Table 6 The data from second reference position

X axis Y axis

-334 434

-323 436

-331 431

-332 430

-331 436

-329 435

-320 438

-323 436

-322 434

-329 423

X axis Y axis

-82 679

-75 680

-81 673

-82 676

-76 674

-84 680

-85 678

-78 676

-78 680

-82 678

Table 7 The data from third reference position

25

Reference position The average on X-axis ()X The average on Y-axis ()Y

First 146.3 428.8

Second -327.4 433.3

Third -80.3 677.4

Fourth -91.3 214.2

The graph of average 4 reference positions is shown in Figure 24. The error of

displacement from the correct axis can be found on the graph. Therefore, the offset is

required to adjust the error of HMC5843.

Table 8 The data form fourth reference position

X axis Y axis

-91 214

-90 213

-90 208

-89 211

-95 215

-93 214

-84 218

-94 212

-94 221

-93 216

Table 9 Average data of 4 reference positions

Figure 24 Average position of 4 reference points

26

Figure 25 shows the plot of 4 reference positions after subtracting the offsets.

For X-axis, the offset is determined by

Offset X = (
FirstX +

SecondX)/2 (12)

where,
FirstX is the average of first reference position.

SecondX is the average of second reference position.

For Y-axis, the offset is determined by

Offset Y = (
ThirdY +

FourthY)/2 (13)

where,
ThirdY is the average of third reference position.

FourthY is the average of fourth reference position.

Table 10 shows the data which is collected from first reference position. The

angle is calculated by using the trigonometric relations of equation (2)-(9). Here, the

maximum ADC quantization error of low cost flow direction sensor is 5.41°.

Figure 25 Position of 4 reference points after subtracting offset

27

Table 11 shows the data that is collected from first reference position with

pitch. The error of pitch at 10° is 4.72° and the error of pitch at 20° is 8.94°. So, the

error is increased due to the angle changed. The second, the third and the fourth

reference position has the result as the first reference position.

Table 10 The data of first reference position

Data from first reference position

Angle

(Degree)
Raw data

Subtracting

offsets

X Y X Y

145 436 235.55 -9.8 357.62

150 423 240.55 -22.8 354.59

147 432 237.55 -13.8 356.68

142 429 232.55 -16.8 355.87

148 426 238.55 -19.8 355.26

151 426 241.55 -19.8 355.31

148 436 238.55 -9.8 357.65

147 429 237.55 -16.8 355.95

141 426 231.55 -19.8 355.11

144 425 234.55 -20.8 354.93

Table 11 The data of first reference position with pitch

Average data from first reference position
Angle

(Degree)
Raw data Subtracting offsets

Pitch X Y X Y

0° 146.30 428.80 236.85 -17.00 355.89

10° 143.90 448.30 234.45 2.50 0.61

20° 144.00 465.60 234.55 19.80 4.83

-10° 145.20 412.20 235.75 -33.60 351.89

-20° 143.50 387.60 234.05 -58.20 346.04

28

Our experimental results showed that the compass sensor (HMC5843) need to

calibration before using. Furthermore, the pitch of the sensor has effect to the

accuracy. Then, the sensor node should install in horizontal to prevent the error.

2. Practical Field

This section presents results of testing our proposed systems on a practical

field. Our practical field is nearly Mobile Telemetering for Flood Warning in Chao Phraya

basin (C35) shown in Figure 26. This part is the hardest part in our thesis. Because we

need to calibrate the flow direction sensor in the water before collecting the data on

the field. After calibration, we collect the data every 15 minutes in one day and

compare the results with the Mobile Telemetering for Flood Warning.

 Due to the power supply of the sensors and the main controller is different; we

have to re-do the experiment setup before running on the field. The connection ports

board as shown in Figure 27 is used to connect the sensors to the main controller. The

circuit that shows in Figure 28 is used to convert the output voltage of low cost flow

velocity sensor before connecting to main controller.

Our sensors

Figure 26 Our practical field

Mobile Telemetering

for Flood Warning

29

This experiment is conducted in order to test the accuracy of the proposed

system. During process, our systems collected the flow velocity at three different

depths and a flow direction. First, the calibration of flow direction sensor is

determined by using the raw data of 4 positions as shown in Table 12. So, the offset

Figure 27 Connection ports board

From low cost flow velocity

sensors
From low cost flow direction

sensor

The power supply of

sensors

To main

controller

+3.3V

1K

Output
Input from low cost

flow velocity sensor

1K 4N26

Figure 28 The converting circuit

30

can be found by using equation (12)-(13). The offset of X is 236.37 and the offset of

Y is -393.67. Then, the data will collect in one day. The collected data have combined

with date, time, flow velocity at three depths and the flow direction as shown in

Figure 29.

Table 12 The raw data of reference positions

The raw data of reference positions

First Second Third Fourth

X Y X Y X Y X Y

422 -342 -53 -335 230 -104 228 -566

427 -363 -46 -360 240 -123 229 -593

436 -380 -32 -381 242 -141 249 -621

433 -430 -27 -380 228 -139 238 -617

433 -377 -47 -370 227 -140 227 -592

432 -442 -43 -402 226 -177 220 -642

433 -439 -35 -444 222 -216 245 -665

439 -426 -33 -426 230 -187 237 -650

442 -409 -39 -409 235 -169 235 -639

439 -414 -31 -414 241 -169 244 -649

437 -419 -35 -419 240 -192 230 -650

433 -378 -32 -390 237 -168 237 -627

432 -375 -36 -375 239 -147 249 -613

442 -394 -42 -421 235 -186 231 -661

429 -383 -51 -391 245 -154 245 -613

Figure 29 The data logger

31

Figure 30 shows the data that collect from Chao Phraya basin (C35) at 28

December to 29 December 2010 without change some parameter in trend line of our

flow velocity sensor. Vmean is the data from Mobile Telemetering for Flood Warning.

V2, V1, V0 are the data from our flow velocity sensors. The level of station’s sensor

is the same level as V1. The Error of sensor V0 and V1 come from the leaving in the

river such as garbage, water hyacinth.

The accuracy of our flow velocity sensors compare with the station’s sensor

are shows in Figure 31.the accuracy of them have more than 90%. Figure 32 shows

the data of flow velocities with change some parameter in trend line of our flow

velocity sensor.

Figure 30 The data of flow velocities without change some parameter

Error of sensor V0

Error of sensor V1

Velocity

(m/s)

Time
12.30 8.00

32

a)

b)

c)

Figure 31 The accuracy from low cost flow velocity sensors compare with station’s

 sensor

 a) Vmean VS V2

 b) Vmean VS V1

 c) Vmean VS V0

Vmean

Vmean

Vmean

V2

V1

V0

33

Figure 32 The data of flow velocities with change some parameter

Time

Velocity

(m/s)

12.30 8.00

34

CONCLUSION AND RECOMMENDATION

 Conclusion

 In this thesis, the low cost flow velocity sensor and the low cost flow direction

sensor for hydrological monitoring system is developed. Those sensors used to

measure the flow velocity in various depths and the flow direction of the river.

Our experimental results show that the low cost flow velocity sensors have an

acceptable measure range and a low root mean square error. So, they can measure the

flow velocity in general flow-velocity condition. Furthermore, the measure in various

depths can indicate the error of the sensors because of leaving in the river. In addition,

they need to change some parameter to improve the accuracy. And the low cost flow

direction sensor has an acceptable accuracy but it need to calibration before using.

Furthermore, the pitch and roll of the flow direction sensor has effect to the accuracy.

About the cost, the existing station is 400,000 Baht but our system is about 10,000

Baht. So, our system can spread out for covering a larger area.

Therefore, the low cost sensor nodes which consist of low cost flow velocity

sensors and low cost flow direction sensor have efficiency for using in the

hydrological monitoring station.

 Recommendation

1. The low cost flow velocity sensor has a problem with the leaving from the

river. Therefore the appropriate shield is required to avoid the problem. Setup the net

forward the sensor can reduce the problem but it will effect to the accuracy. So, we

need to modify the parameter of low cost flow velocity sensor after setup the net.

2. The calibration of low cost flow direction sensor in practical field is hard to

handle. So, the self calibration programming is required. About the pitch and roll, it

needs another sensor to detect such as accelerometer.

35

LITERATURE CITED

Danny Hughes, Phil Greenwood, Geoff Coulson and Gordon Blair. 2006. GridStix

supporting flood prediction using embedded hardware and next generation

grid middleware. Proceedings of the 2006 International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM'06). 0-

7695-2593-8/06 2006.

David Harris, David Money Harris, Sarah L. Harris., 2007. “Digital Design and

Computer Architecture”

Jong-uk Lee, Jae-Eon Kim, Daeyoung Kim and Poh Kit Chong. 2008. RFMS: Real-

time Flood Monitoring System with Wireless Sensor Networks. National

Science & Technology Development Agency. 1-4244-2575-4/08 2008. 527-

528

Md. Hasibur Rashid Chayon, Tawhidur Rahman, Md. Forhad Rabbi and Md.

Masum. 2007. Automated River Monitoring System for Bangladesh using

Wireless Sensor Network. IEEE. 1-4244-1550-0/07 2007.

Mikolaj Sawicki, “Myths about Gravity and Tides”, “The Physics Teacher” 37,

October 1999. 438 - 441.

Mobile Telemetering for Flood Warning in Chao Phraya basin.

http://122.155.12.58/index.php?page=3&bid=10&sid=C35

The information of HMC5843. http://www.ssec.honeywell.com/

The Texas Instruments. MSP430 family of ultralow power microcontrollers.

http://focus.ti.com/docs/prod/folders/print/msp430f169.html.

36

Thomas V. Freiberger and Sahra Sedigh Sarvestani. 2007. Hydrological Monitoring

with Hybrid Sensor Networks. International Conference on Sensor

Technologies and Applications. 0-7695-2988-7/07 2007. 484-489

37

APPENDICES

38

Appendix A

The circuit of low cost flow velocity sensor

39

I N

3

O U T

2

G/A

1

U 1

LM1117IMPX-5.0

G N D

1 2 V 5 V

D 1

1 u F

C 2

MBRS120T3

1 u F

C 1

1

2

3

P 1

Connector

1 2 V

Signal

G N D

G N D

Vout

Vcc

1

G N D

2

Signal

3

U 2

Hall Effect Sensor

5 V

OUT1

1

1IN-

2

1IN+

3

G N D

4

2IN+

5

2IN-

6

2OUT

7

VCC

8

U 3

LM358DR

5 V

G N D

Vout

1 0 k

R 1

1 M

R 2

1 0 k

R 3

1 0 k

R 4

5 V

G N D

1 0 k

R 5

1 M

R 6

G N D

2 2 k

R 7

1 0 k

R 8

5 V

G N D

1 0 k

R 9

2 2 k

R10

Signal

40

Appendix B

The circuit of low cost flow velocity sensor

41

1

2

3

4

H 1

Connector

1 2 V

G N D

Rx1

Tx1

1

2

3

4

H 4

Header 1x4

1 2 V

G N D

Rx1

Tx1

R1/I

1 3

R2/I

8

T1/I

1 1

T2/I

1 0

R1/O

1 2

R2/O

9

T1/O

1 4

T2/O

7

C1+

1

C2+

4

C1-

3

C2-

5

VCC

1

6

2

6

G

N

D

1

5

U 1

MAX3232CPE+

3.3V

Rx1

Tx1

G N D

0.1uF

C 1

G N D

0.1uF

C 2

G N D

0.1uF

C 3

0.1uF

C 4

0.1uF

C 6

P3.7

P3.6

1 2 V

I N

3

O U T

2

G/A

1

U 2

LM1117IMPX-3.3

G N D

4 7 u F

C15

0.1uF

C13

0.1uF

C14

3.3V

4 7 u F

C16

D 1

Diode 1N4001

12V+

1 2

JM2

Jumper

1 2

JM3

Jumper

G N D G N D

G N D G N D

1

2

3

4

H 3

Compass Sensor

3.3V

G N D

P3.1

P3.3

1 2

JM1

Jumper

1 0 K

R 2

1 0 K

R 3

3.3V

3.3V

1 2

3 4

5 6

7 8

9 1 0

1 1 1 2

1 3 1 4

H 2

J-tag

3.3V

1

2

Crystal2

32.768KHz

1 0 p F

C11

1 0 p F

C12

G N D

G N D

G N D

SW1

Reset

1 0 n F

C 5

G N D

1 0 u F

C10

0.1uF

C 9

G N D

4 7 K

R 1

1

2

Crystal1

7.3728MHz

1 0 p F

C 7

1 0 p F

C 8

G N D

P3.1 P3.3

DVcc

1

P6.3/A3

2

P6.4/A4

3

P6.5/A5

4

P6.6/A6/DAC0

5

P6.7/A7/DAC1/SVSIN

6

Vref+

7

XIN

8

X O U T

9

VeREF+

1 0

Vref-/VeREF-

1 1

P1.0/TACLK

1 2

P1.1/TA0

1 3

P1.2/TA1

1 4

P1.3/TA2

1 5

P1.4/SMCLK

1 6

P1.5/TA0

1

7

P1.6/TA1

1

8

P1.7/TA2

1

9

P2.0/ACLK

2

0

P2.1/TAINCLK

2

1

P2.2/CAOUT/TA0

2

2

P2.3/CA0/TA1

2

3

P2.4/CA1/TA2

2

4

P2.5/Rosc

2

5

P2.6/ADC12CLK/DMAE0

2

6

P2.7/TA0

2

7

P3.0/STE0

2

8

P3.1/SIMO0/SDA

2

9

P3.2/SOMI0

3

0

P3.3/UCLK0/SCL

3

1

P3.4/UTXD0

3

2

P3.5/URXD0

3 3

P3.6/UTXD1

3 4

P3.7/URXD1

3 5

P4.0/TB0

3 6

P4.1/TB1

3 7

P4.2/TB2

3 8

P4.3/TB3

3 9

P4.4/TB4

4 0

P4.5/TB5

4 1

P4.6/TB6

4 2

P4.7/TBCLK

4 3

P5.0/STE1

4 4

P5.1/SIMO1

4 5

P5.2/SOMI1

4 6

P5.3/UCLK1

4 7

P5.4/MCLK

4 8

P5.5/SMCLK

4

9

P5.6/ACLK

5

0

P5.7/TBOUTH/SVSOUT

5

1

XT2OUT

5

2

XT2IN

5

3

TDO/TDI

5

4

TDI/TCLK

5

5

TMS

5

6

T

C

K

5

7

RST/NMI

5

8

P6.0/A0

5

9

P6.1/A1

6

0

P6.2/A2

6

1

AVss

6

2

DVss

6

3

Avcc

6

4

MSP1

MSP430f169

P3.7

P3.6

42

Appendix C

Source code of main microcontroller

43

#include "msp430x16x.h"

void InitData();

void InitPort1();

void InitUART1();

void InitUART0();

int SEN_V[8]; // for count pulse of velocity sensor

int i,m;

unsigned char XH_DATA1, XH_DATA0,

 XL_DATA1, XL_DATA0,

 YH_DATA1, YH_DATA0,

 YL_DATA1, YL_DATA0,

 ZH_DATA1, ZH_DATA0,

 ZL_DATA1, ZL_DATA0;

void main()

{

 WDTCTL = WDTPW + WDTHOLD ; // Stop watchdog timer

 InitData() ; // Initialized data

 InitPort1() ; //Initialized P1 interrupt

 InitUART1() ; //Initialized USART1

 InitUART0() ; //Initialized USART0

 _BIS_SR(LPM1_bits+GIE) ; // LPM3, enable all interrupt

 while(1)

 {

 }

}

44

//======================= SUB

==================================

//----------- InitData ------------

void InitData()

{

 for(i=0;i<8;i++) SEN_V[i] = 0;

 XH_DATA1 = 0x00; XH_DATA0 = 0x00;

 XL_DATA1 = 0x00; XL_DATA0 = 0x00;

 YH_DATA1 = 0x00; YH_DATA0 = 0x00;

 YL_DATA1 = 0x00; YL_DATA0 = 0x00;

 ZH_DATA1 = 0x00; ZH_DATA0 = 0x00;

 ZL_DATA1 = 0x00; ZL_DATA0 = 0x00;

}

//----------- InitPort1 Interrupt ------------

void InitPort1()

{

 P1IE = 0xFF ; // P1 interrupt enabled

 P1IES = 0x00 ; // P1 Hi/lo edge

 P1IFG &= ~0xFF ; // P1 IFG cleared

}

//----------- InitUART1 Interrupt ------------

void InitUART1()

{

 P3SEL |= 0xC0 ; // P3.6,7 = USART1 TXD/RXD

 ME2 |= UTXE1 + URXE1 ; // Enable USART1 TXD/RXD

 UCTL1 |= CHAR ; // 8-bit character

 UTCTL1 |= SSEL0 ; // UCLK = ACLK

 UBR01 = 0x03 ; // 32k/9600 - 3.41

45

 UBR11 = 0x00 ;

 UMCTL1 = 0x4A ; // Modulation

 UCTL1 &= ~SWRST ; // Initialize USART state machine

 IE2 |= URXIE1 ; // Enable USART1 RX interrupt

}

//----------- InitUART0 Interrupt ------------

void InitUART0()

{

 P3SEL |= 0x30 ; // P3.4,5 = USART0 TXD/RXD

 ME1 |= UTXE0 + URXE0 ; // Enable USART0 TXD/RXD

 UCTL0 |= CHAR ; // 8-bit character

 UTCTL0 |= SSEL0 ; // UCLK = ACLK

 UBR00 = 0x03 ; // 32k/9600 - 3.41

 UBR10 = 0x00 ;

 UMCTL0 = 0x4A ; // Modulation

 UCTL0 &= ~SWRST ; // Initialize USART state machine

}

// Port 1 interrupt service routine

#pragma vector=PORT1_VECTOR

__interrupt void Port_1int()

{

 int buffer ;

 buffer = P1IFG ;

 for(int m =0;m<8;m++)

 {

 if((buffer&0x01)==0x01)

 SEN_V[m] += 1 ;

 buffer >>=1 ; // Shift right 1 bit

 }

 P1IFG &= ~0xFF ; // P1 IFG cleared

46

}

//USART1 interrupt service routine

#pragma vector=USART1RX_VECTOR

__interrupt void usart1_rx (void)

{

 while (!(IFG1 & UTXIFG0)); // USART0 TX buffer ready?

 TXBUF0 = 0x20; // Sent Space

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 XH_DATA1 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 XH_DATA0 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 XL_DATA1 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 XL_DATA0 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 YH_DATA1 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 YH_DATA0 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 YL_DATA1 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 YL_DATA0 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 ZH_DATA1 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 ZH_DATA0 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 ZL_DATA1 = RXBUF0;

 while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?

 ZL_DATA0 = RXBUF0;

47

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = XH_DATA1;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = XH_DATA0;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = XL_DATA1;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = XL_DATA0;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = YH_DATA1;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = YH_DATA0;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = YL_DATA1;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = YL_DATA0;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = ZH_DATA1;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = ZH_DATA0;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = ZL_DATA1;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = ZL_DATA0;

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av7=0x30,bv7=0x30,cv7=0x30,dv7=0x30;

48

 av7=av7+(SEN_V[7] % 10);

 bv7=bv7+((SEN_V[7]/10)%10);

 cv7=cv7+((SEN_V[7]/100)%10);

 dv7=dv7+((SEN_V[7]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv7; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv7; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv7; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av7; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av6=0x30,bv6=0x30,cv6=0x30,dv6=0x30;

 av6=av6+(SEN_V[6] % 10);

 bv6=bv6+((SEN_V[6]/10)%10);

 cv6=cv6+((SEN_V[6]/100)%10);

 dv6=dv6+((SEN_V[6]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv6; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv6; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv6; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av6; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av5=0x30,bv5=0x30,cv5=0x30,dv5=0x30;

49

 av5=av5+(SEN_V[5] % 10);

 bv5=bv5+((SEN_V[5]/10)%10);

 cv5=cv5+((SEN_V[5]/100)%10);

 dv5=dv5+((SEN_V[5]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv5; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv5; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv5; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av5; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av4=0x30,bv4=0x30,cv4=0x30,dv4=0x30;

 av4=av4+(SEN_V[4] % 10);

 bv4=bv4+((SEN_V[4]/10)%10);

 cv4=cv4+((SEN_V[4]/100)%10);

 dv4=dv4+((SEN_V[4]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv4; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv4; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv4; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av4; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av3=0x30,bv3=0x30,cv3=0x30,dv3=0x30;

50

 av3=av3+(SEN_V[3] % 10);

 bv3=bv3+((SEN_V[3]/10)%10);

 cv3=cv3+((SEN_V[3]/100)%10);

 dv3=dv3+((SEN_V[3]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv3; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv3; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv3; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av3; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av2=0x30,bv2=0x30,cv2=0x30,dv2=0x30;

 av2=av2+(SEN_V[2] % 10);

 bv2=bv2+((SEN_V[2]/10)%10);

 cv2=cv2+((SEN_V[2]/100)%10);

 dv2=dv2+((SEN_V[2]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv2; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv2; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv2; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av2; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av1=0x30,bv1=0x30,cv1=0x30,dv1=0x30;

51

 av1=av1+(SEN_V[1] % 10);

 bv1=bv1+((SEN_V[1]/10)%10);

 cv1=cv1+((SEN_V[1]/100)%10);

 dv1=dv1+((SEN_V[1]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv1; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv1; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv1; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av1; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 int av0=0x30,bv0=0x30,cv0=0x30,dv0=0x30;

 av0=av0+(SEN_V[0] % 10);

 bv0=bv0+((SEN_V[0]/10)%10);

 cv0=cv0+((SEN_V[0]/100)%10);

 dv0=dv0+((SEN_V[0]/1000)%10);

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = dv0; //1000

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = cv0; //100

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = bv0; //10

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = av0; //1

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

 TXBUF1 = 0x20; // Sent Space

 while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?

52

 TXBUF1 = 0x0A; // new line

 InitData(); // Initialized data

}

53

Appendix D

Source code of microcontroller in low cost flow direction sensor

54

#include "msp430x16x.h"

void InitData();

void InitUART1();

void InitI2C();

void TX_byte();

void RX_byte();

unsigned char check(unsigned char);

int i=0x30,j,k;

unsigned char XH_DATA, XL_DATA, YH_DATA, YL_DATA, ZH_DATA,

ZL_DATA,temp;

void main()

{

 WDTCTL = WDTPW + WDTHOLD ; // Stop watchdog timer

 InitData() ; // Initialized data

 InitUART1() ; //Initialized USART1

 InitI2C() ; //Initialized I2C

 _BIS_SR(LPM1_bits+GIE) ; // LPM3, enable all interrupt

 while(1)

 {

 }

}

//======================= SUB

==================================

//----------- InitData ------------

void InitData()

55

{

 XH_DATA = 0x00;

 XL_DATA = 0x00;

 YH_DATA = 0x00;

 YL_DATA = 0x00;

 ZH_DATA = 0x00;

 ZL_DATA = 0x00;

}

//----------- InitUART1 Interrupt ------------

void InitUART1()

{

 P3SEL |= 0xC0 ; // P3.6,7 = USART1 TXD/RXD

 ME2 |= UTXE1 + URXE1 ; // Enable USART1 TXD/RXD

 UCTL1 |= CHAR ; // 8-bit character

 UTCTL1 |= SSEL0 ; // UCLK = ACLK

 UBR01 = 0x03 ; // 32k/9600 - 3.41

 UBR11 = 0x00 ;

 UMCTL1 = 0x4A ; // Modulation

 UCTL1 &= ~SWRST ; // Initialize USART state machine

 IE2 |= URXIE1 ; // Enable USART1 RX interrupt

}

//----------- InitI2C ------------

void InitI2C()

{

 P3SEL |= 0x0A ; // Set I2C pins P3.1=SDA,P3.3=SCL

 U0CTL |= I2C + SYNC ; // Switch USART0 to I2C mode

 U0CTL &= ~I2CEN ; // Disable I2C module :I2CEN=0

 I2CTCTL = I2CSSEL_2 ; // Clock source SMCLK

 I2CSCLH = 0x03 ; // Shift CLK. High period of SCL = 5x(1.333us)

 I2CSCLL = 0x03 ; // Shift CLK. Low period of SCL = 5x(1.333us)

56

 I2CSA = 0x1E ; // Slave address

 U0CTL |= I2CEN ; // Enable I2C, 7 bit addr,

}

//------------ TX Data -----------

void TX_byte (void)

{

 j = 0;

 U0CTL |= MST; // Master mode

 I2CTCTL |= I2CSTT+I2CSTP+I2CTRX; // Initiate transfer

 while ((I2CIFG & TXRDYIFG) == 0){j++; if(j>99) break;}; // Wait for transmitter

to be ready

 I2CDRB = 0x02;

 j = 0;

 while ((I2CIFG & TXRDYIFG) == 0){j++; if(j>99) break;}; // Wait for

transmitter to be ready

 I2CDRB = 0x00;

 j = 0;

 while((I2CTCTL & I2CSTP) == 0x02){j++; if(j>99) break;}; // Wait for Stop

Condition

}

//------------ RX Data -----------

void RX_byte (void)

{

 k = 0;

 U0CTL |= MST; // Master mode

 I2CTCTL &= ~I2CTRX;

 I2CTCTL |= I2CSTT+I2CSTP; // Initiate transfer

57

 while ((I2CIFG & RXRDYIFG) == 0){k++; if(k>99) break;}; // Wait for Receiver

to be ready

 XH_DATA += I2CDRB;

 k = 0;

 while ((I2CIFG & RXRDYIFG) == 0){k++; if(k>99) break;}; // Wait for Receiver

to be ready

 XL_DATA += I2CDRB;

 k = 0;

 while ((I2CIFG & RXRDYIFG) == 0){k++; if(k>99) break;}; // Wait for Receiver

to be ready

 YH_DATA += I2CDRB;

 k = 0;

 while ((I2CIFG & RXRDYIFG) == 0){k++; if(k>99) break;}; // Wait for Receiver

to be ready

 YL_DATA += I2CDRB;

 k = 0;

 while ((I2CIFG & RXRDYIFG) == 0){k++; if(k>99) break;}; // Wait for Receiver

to be ready

 ZH_DATA += I2CDRB;

 k = 0;

 while ((I2CIFG & RXRDYIFG) == 0){k++; if(k>99) break;}; // Wait for Receiver

to be ready

 ZL_DATA += I2CDRB;

 k = 0;

 while((I2CTCTL & I2CSTP) == 0x02){k++; if(k>99) break;}; // Wait for Stop

Condition

}

//------------ check -----------

unsigned char check (unsigned char buff)

{

 int count = 0;

58

 if((buff & 0x01) == 1) count++;

 buff >>= 1;

 if((buff & 0x01) == 1) count= count + 2;

 buff >>= 1;

 if((buff & 0x01) == 1) count= count + 4;

 buff >>= 1;

 if((buff & 0x01) == 1) count= count + 8;

 if(count == 0) return (0x30);

 if(count == 1) return (0x31);

 if(count == 2) return (0x32);

 if(count == 3) return (0x33);

 if(count == 4) return (0x34);

 if(count == 5) return (0x35);

 if(count == 6) return (0x36);

 if(count == 7) return (0x37);

 if(count == 8) return (0x38);

 if(count == 9) return (0x39);

 if(count == 10) return (0x41);

 if(count == 11) return (0x42);

 if(count == 12) return (0x43);

 if(count == 13) return (0x44);

 if(count == 14) return (0x45);

 if(count == 15) return (0x46);

 return(0x5A);

}

//USART1 interrupt service routine

#pragma vector=USART1RX_VECTOR

__interrupt void usart1_rx (void)

{

// while(1){

// for(int dd=1; dd<10000;dd++){}

59

 I2CNDAT = 0x02 ; // Read 2 bytes

 TX_byte() ; // Go Sub-Program TX data

 I2CNDAT = 0x06 ; // Read 6 bytes

 RX_byte() ; // Go Sub-Program TR data

// }

 temp = XH_DATA;

 temp >>= 4;

 while (!(IFG2 & UTXIFG1)) ; // Check USART1 TX buffer ready?

 TXBUF1 = check(temp) ; // Sent data

 while (!(IFG2 & UTXIFG1)) ; // Check USART1 TX buffer ready?

 TXBUF1 = check(XH_DATA) ; // Sent data

 temp = XL_DATA;

 temp >>= 4;

 while (!(IFG2 & UTXIFG1)) ; // Check USART1 TX buffer ready?

 TXBUF1 = check(temp) ; // Sent data

 while (!(IFG2 & UTXIFG1)) ; // Check USART1 TX buffer ready?

 TXBUF1 = check(XL_DATA) ; // Sent data

 temp = YH_DATA;

 temp >>= 4;

 while (!(IFG2 & UTXIFG1)) ;// Check USART1 TX buffer ready?

 TXBUF1 = check(temp) ;// Sent data

 while (!(IFG2 & UTXIFG1)) ;// Check USART1 TX buffer ready?

 TXBUF1 = check(YH_DATA) ;// Sent data

 temp = YL_DATA;

 temp >>= 4;

 while (!(IFG2 & UTXIFG1)) ;// Check USART1 TX buffer ready?

 TXBUF1 = check(temp) ;// Sent data

 while (!(IFG2 & UTXIFG1)) ;// Check USART1 TX buffer ready?

 TXBUF1 = check(YL_DATA) ;// Sent data

60

 temp = ZH_DATA;

 temp >>= 4;

 while (!(IFG2 & UTXIFG1)) ;// Check USART1 TX buffer ready?

 TXBUF1 = check(temp) ;// Sent data

 while (!(IFG2 & UTXIFG1)) ;// Check USART1 TX buffer ready?

 TXBUF1 = check(ZH_DATA) ;// Sent data

 temp = ZL_DATA;

 temp >>= 4;

 while (!(IFG2 & UTXIFG1)) ;//Check USART1 TX buffer ready?

 TXBUF1 = check(temp) ;// Sent data

 while (!(IFG2 & UTXIFG1)) ;//Check USART1 TX buffer ready?

 TXBUF1 = check(ZL_DATA) ;// Sent data

 InitData(); // Initialized data

}

61

CIRRICULUM VITAE

NAME : Mr. Rattanasak Kasettham

BIRTH DATE : July 28, 1985

BIRTH PLACE : Nakhonsawan, Thailand

EDUCATION : YEAR INSTITUTE DEGREE/DIPLOMA

 2008 Kasetsart Univ.

B.Eng.

(Electrical Engineering)

 2011 Kasetsart Univ. M.Eng.

(Information and

Communication Technology

for Embedded Systems)

POSITION/TITLE
 : -

WORK PLACE : -

SCHOLARSHIP/AWARDS : TAIST ICTES Master Degree Scholarship

PUBLICATIONS ICTICTES2010 and ICTICTES2011

