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Strain localization phenomenon in soils has been one of the main research
topics in geotechnical engineering for more than 50 years ago. Though
investigations by theoretical and numerical studies can expose some of the strain
localization characteristics but are impeded because of the complexity inside that
localized zones. On the other hand, the experimental studies can obviously
investigate that particular behavior in more details. Both conventional and new
apparatuses, i.e. Gamma-ray, X-ray Computed Tomography and Digital Image
Analysis, have been adopted in the strain localization analyses. However, those
techniques require technical proficiency and experience in the installation,
operation and result interpretation. The bender element test nowadays is becoming
quite popular in geotechnical engineering because of its simplicity, relatively low
cost and nondestructive test. A pair of bender elements has been extensively used
to measure shear wave velocity for the determination of small strain shear modulus
inside the soil sample. This shear wave propagation throughout the soil specimen
influences in the same way by several of the same factors, e.g. void ratio and state
of stress, compared to localization mechanism.

A series of compression triaxial tests implemented by bender element
installation was performed to investigate the occurrence of strain localization in
sand of various types, i.e. local and Silica sand. The results showed that this shear
wave propagation technique can describe to some extent some characteristics of
localization mechanism. The shear wave velocity tends to decrease from its
maximum value at a certain strain level, i.e. 0.5 - 3% of global axial strain,
depending on the state of stress as well as the initial packing condition of the
sample. This diminution of shear wave velocity is the initiation of soil non-
uniformity deformation or the onset of strain localization inside the sand specimen.
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LIST OF SYMBOLS
Vs shear wave velocity
o failure stress in compression
o failure stress in tension

Tut  failure stress in pure shear

Tf shear strength per unit area

c cohesion

On normal stress

0] angle of shearing resistance

O¢ normal stress at failure

Te shear stress at failure

¢ angle between the major principal stress direction and shear band

Or inclination angle between shear band and the major principal strain increment
direction

0 inclination angle of the shear bands which include the effects of friction angle

and angle of dilatancy.
o1 major principle stress
o3 minor principle stress
de1 major principal strain increment
des  minor principal strain increment
Y angle of dilatancy
dso mean grain size
U uniformity coefficient
pd dry density
vd™*  maximum specific weight
v4™" minimum specific weight

e void ratio



€min

€maz

€1
Ea
Grmas
L, Llr

Ipp

tcc N T

minimum void ratio

maximum void ratio

relative density

specific gravity

stress ratio

volumetric strain

axial strain

global axial strain

small strain stiffness

tip-to-tip distance between transmitter and receiver of bender element
travel time of the shear wave from transmitter to receiver
first time of arrival

time between first peak to peak

time shift

CCyx(t) cross-correlation function

T
dt
dé

f
Lu

s

total duration of the time record
change in time-of-flight in seconds
change in phase angle in degrees
frequency of the driving wave in Hertz
wave path length

wavelength

slenderness ratio

confining pressure

deviator stress

effective stress in the direction of shear wave propagation
effective stress in the direction of particle motion

mean state of stress

isotropic loading

XX
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a, 3 parameters include contact effects, void ratio, coordination number,
fabric change and the loading history
A effect of grain properties
F(e) influence of packing properties
Cn coordination number
(), © void ratio of the arrangement at constant fabric as well as the packing property
6,5,C, ¥ contact effect and the influence of fabric change
v effect of void ratio
® exponent parameter reflecting the contact behavior under anisotropic loading

q'/p’ principal stress ratio





