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Abstract 
 

In this article, a new distribution for count data analysis is introduced. Firstly, the Discrete Transmuted Generalized 

Inverse Weibull distribution (DTGIW) is constructed. Consequently, some useful sub-models are discussed. Secondly, the Zero-

Truncated Discrete Transmuted Generalized Inverse Weibull distribution (ZT-DTGIW) is introduced. We present probability 

mass function of the proposed distribution and some plots of those functions for illustration the behaviors of the distribution. We 

employed the maximum likelihood estimation (MLE) technique for model parameter estimation. For the purpose of verification 

of the MLE performance, the simulation study of parameter estimation using MLE is illustrated. Finally, some real data sets are 

applied to illustrate the goodness of fit of the proposed distribution, which is compared with the zero-truncated discrete inverse 

Weibull and zero-truncated Poisson distributions. 

 

Keywords: zero-truncated distribution, discrete distribution, DTGIW, ZT-DTGIW, maximum likelihood, count data,  

                zero-truncated data 

 

 

1. Introduction 
 

In probability theory, zero-truncated distributions 

are certain discrete distributions whose support is a set of 

positive integers. When the data to be modeled are generated 

excluding zero counts, zero-truncated distributions are more 

suitable than discrete distribution with zero counts. A typical 

example where zero-truncated discrete distributions are useful 

comes from medical science: modeling or studying duration of 

hospital stays in days where each patient's stay will be 

recorded for at least one day. In ecology, zero-truncated 

discrete distributions are used to model data relating to the 

counts, such as the number of flower heads, fly eggs, 

European red mites, or the number times Hares Caught of 

snowshoe hares captured over seven days. In sociology, these 

distributions are used for modeling data such as the group size 

of humans at park, beach or public places. Thus, zero-

truncated distributions have applications in almost every

 
branch of knowledge including biological science, medical 

science, psychology, demography, political science, etc 

(Shanker, 2017; Shanker & Shukla, 2017). 

 In 1960, a Zero-Truncated Poisson (ZT-P) 

distribution was proposed by Cohen (1960). Many researchers 

proposed zero-truncated distributions based on discrete 

distributions, i.e., the Zero-Truncated Negative Binomial 

(Arrabal, dos Santos Silva, & Bandeira, 2014), the Zero-

Truncated Poisson-Garima (Shanker & Shukla, 2017), the 

Zero-Truncated Poisson-Amarendra (Shanker, 2017). 

In this paper, a new zero-truncated distribution is 

proposed. Firstly, a new discrete distribution is introduced. It 

is obtained from a discretized continuous distribution based on 

the Transmuted Generalized Inverse Weibull (TGIW) 

distribution developed by Merovci, Elbatal, and Ahmed 

(2014), namely the Discrete Transmuted Generalized Inverse 

Weibull (DTGIW) distribution. Some useful sub-models of 

the DTGIW distribution are discussed. Secondly, the zero-

truncated version of the new discrete distribution is proposed. 

The probability mass function (pmf) of the proposed 

distributions and plot some of those functions for illustration 

the behaviors of the distributions. Consequently, some useful 
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sub-models are discussed. We employed the maximum 

likelihood estimation (MLE) technique for model parameter 

estimation. The simulation study of parameter estimation is 

illustrated for verification of the MLE performance before the 

real data analysis. Finally, some real data sets are applied to 

illustrate the goodness of fit of the proposed distributions, 

which is compared with other distributions. 

 

2. The Discrete Transmuted Generalized Inverse  

    Weibull Distribution 
 

 In practice, we frequently come across variables that 

are discrete in nature. Generally one associates the lifetime of 

the product with continuous non-negative lifetime 

distributions, however, in some situations, the lifetime can be 

best described through non-negative integer-valued random 

variables e.g. life of the equipment is measured by the number 

of cycles completes or the number of times it is operated prior 

to failure, life of a weapon is measured by the number of 

rounds fired until failure (Hussain & Ahmad, 2014). For 

example, in survival analysis, one may be interested in 

recording the number of days that a patient has survived since 

therapy or the number of days from remission to relapse. In 

these cases, the lifetimes are not measured on a continuous; 

because they are counted, they are discrete random variables. 

Not many of the known discrete distributions can provide 

accurate models for both times and counts (Alamatsaz, Dey, 

Dey, & Harandi, 2016). For example, the Poisson distribution 

is used to model counts but not times. The negative binomial 

distribution is not considered to be a good model for 

reliability, failure times, counts, etc. Discretization of a 

continuous lifetime model is an interesting and intuitively 

appealing approach to derive a lifetime model corresponding 

to the continuous one (Jayakumar & Sankaran, 2018). This 

has led to the development of new discrete distributions based 

on a continuous model for reliability, failure times, etc. 

(Alamatsaz et al., 2016).  

 First, we provide a general definition of the 

proposed distribution that will subsequently reveal its 

probability function (Alamatsaz et al., 2016; Roy, 2003, 2004) 

as in Theorem 1. 

 

 

Definition 1. Let X be a random variable which has distributed a lifetime distribution with the cumulative density function (cdf) 

G(x).  We have the pmf of the discretized lifetime distribution as  

      f (x) S(x) S(x 1),x 0,1,2,...            (1) 

where S(x)  is a survival function of X i.e., S(x) 1 G(x).    

 In this section, we proposed a new discrete distribution for modelling count data based on the TGIW distribution. Let X 

be a TGIW random variable with the cdf as follows: 

       TGIWG (x) exp ( x) 1 exp ( x) , x 0              
     (2) 

where the parameters , , 0     and 1 1.    The TGIW distribution is a very flexible model that approaches different 

distributions when its parameters are changed. It has eight sub-models as follows (Merovci et al., 2014). (a) If 1  , they obtain 

the Transmuted Inverse Weibull (TIW) distribution (Khan, King & Hudson, 2013). (b) If 0   and 1,    the TGIW 

distribution reduces to the Inverse Weibull (IW) distribution (Khan, Pasha, & Pasha, 2008). (c) If 1   and 1,   the TGIW 

distribution refers to the Transmuted Inverse Exponential (TIE) distribution (Oguntunde & Adejumo, 2015). (d) If 0, 1      

and 1,   they get the Inverse Exponential (IE) distribution (Keller, Kamath, & Perera, 1982). (e) If 2   and 1,   they 

have the Transmuted Inverse Rayleigh (TIR) distribution (Ahmad, Ahmad, & Ahmed, 2014). (f) If 0, 2     and 1,   

they get the Inverse Rayleigh (IR) distribution (Voda, 1972). (g) If 1   they get the Transmuted Fréchet (TF) distribution 

(Geetha & Poongothai, 2016). Finally, (h) if 1   and 0   they get the Fréchet (F) distribution which was developed by 

Maurice Fréchet in 1927 (Oguntunde, Khaleel, Ahmed, & Okagbue, 2019). 

 Next, in Theorem 1, we show a new distribution for modelling count data called the Discrete Transmuted Generalized 

Inverse Weibull (DTGIW) distribution. 

 

Theorem 1. Let X be a random variable that has the DTGIW distribution with the parameters , ,    and ,  which will be 

denoted by X~DTGIW ( , , , )    . Then the pmf of X is  

     
 

 

DTGIWf (x) (1 ) exp ( x ) exp ( x)

exp 2 ( x ) exp 2 ( x) ,

 

 

              

              

      (3) 

where x 0,1,2,..., , , 0      and 1 1.     

 

Proof. From Definition 1 and 
TGIWG (x)  in equation (2), we replace 

TGIWS(x) 1 G (x)   as in equation (1). Then, the pmf of X 

as follows: 



1142 A. Rattanalertnusorn & S. Aryuyuen / Songklanakarin J. Sci. Technol. 43 (4), 1140-1151, 2021 

 
 
 

      

 

 

 

 

DTGIWf (x) exp ( x ) 1 exp ( x )

exp ( x) 1 exp ( x)

(1 ) exp ( x ) exp ( x)

exp 2 ( x ) exp 2 ( x) .

 

 

 

 

              

            

              

              

 

 Figure 1 illustrates the pmf behaviors of the DTGIW distribution for several values of , ,    and .  The DTGIW 

pmf has various behaviors, such as a reverse J-shaped distribution (Figure 1: (a)-(b)) and   a unimodal distribution (Figure 1: (d)-

(f)), and a right-skewed shape (Figure 1: (a)-(f)). In addition, we have the sub-models of the DTGIW distribution as follows: 
 

   

   
Figure 1. The pmf plot of X~DTGIW ( , , , )     with the specified parameters 

 

Corollary 1. If X~DTGIW ( , , , )     and 1,   then it reduces to the Discrete Transmuted Inverse Weibull (DTIW) 

distribution with pmf 

      
 

 

DTIWf (x) (1 ) exp ( x ) exp ( x)

exp 2( x ) exp 2( x) ,

 

 

              

            

     

where x 0,1,2,..., , 0     and 1 1.    

 

Proof. We get the DTIW pmf by replacing 1   as in equation (3). In the same way, it is obtained by replacing the TIW 

survival function, i.e., 
TIW 0S 1 (1 )exp ( x)       

 
0 0exp 2( x) , 1 0        

 as in equation (1), where the TIW 

distribution was proposed by Khan et al. (2013). 

 

Corollary 2. If X~DTGIW ( , , , )     when 0   and 1,   then it reduces to the Discrete Inverse Weibull (DIW) 

distribution with the pmf as follows 

      
DIWf (x) exp ( x ) exp ( x) , x 0,1,2,..., , 0                 

    

where the DIW distribution was proposed by Jazi, Lai, and Alamatsaz (2010). 
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Proof. The pmf of the DIW distribution is obtained by replacing 0   and 1   as in equation (3), or by replacing the IW 

survival function of 
IW 0S 1 exp ( x) ,     

 
0 1 0     as in equation (1), where the IW distribution was proposed by 

Khan et al. (2008). 

 

Corollary 3. If X~DTGIW ( , , , )     for 1   and 1,   then it reduces to the Discrete Transmuted Inverse Exponential 

(DTIE) distribution with pmf as 

     
    

    

DTIEf (x) (1 ) exp 1 ( x ) exp 1 ( x)

exp 2 ( x ) exp 2 ( x) ,

       

      

  

where x 0,1,2,..., 0    and 1 1.     

 

Proof. We get the pmf of the DTIE distribution by replacing the survival function of 
TIE 0 0S (x) 1 (1 )exp( x) exp( 2 x)       

TIE 0 0S (x) 1 (1 )exp( x) exp( 2 x)        where 
0 1 0     as in equation (1), or by replacing 1    as in equation (3), where the TIE distribution 

was proposed by Oguntunde and Adejumo (2015). 

 

Corollary 4. If X~DTGIW ( , , , )     for 0, 1     and 1,   then it reduces to the Discrete Inverse Exponential (DIE) 

distribution with pmf as 

         DIEf (x) exp 1 ( x ) exp 1 ( x) ,          

where x 0,1,2,...  and 0.    

 

Proof. We get the DIE pmf by replacing 1    and 0   as in equation (3) or by replacing the survival function of the IE 

distribution, i.e., 
TIE 0S (x) 1 exp( x)    and 

0 1 0     as in equation (1), where the IE distribution was proposed by 

Keller et al. (1982). 

Corollary 5. If X~DTGIW ( , , , )     for 2   and 1,   it reduces to the Discrete Transmuted Inverse Rayleigh (DTIR) 

distribution with pmf as 

       

 

2 2

DTIR

2 2

f (x) (1 ) exp 1 ( x ) exp 1 ( x)

exp 2 ( x ) exp 2 ( x) ,

              

            

     

where x 0,1,2,..., 0    and 1 1.    

 

Proof. We have the DTIR pmf by replacing the survival function of the TIR distribution, i.e.,  2 2

TIR 0 0 0S 1 exp ( x) 1 exp ( x) , 1 0                 
 

 2 2

TIR 0 0 0S 1 exp ( x) 1 exp ( x) , 1 0                 
 as in equation (1) or by replacing 2    and 1    as in equation (3), where the TIR 

distribution was proposed by Ahmad et al. (2014). 

 

Corollary 6. If X~DTGIW ( , , , )     for 0, 2     and 1,   it reduces to the Discrete Inverse Rayleigh (DIR) 

distribution (Hussain & Ahmad, 2014) with pmf as      

      2 2

DIRf (x) exp 1 ( x ) exp 1 ( x) ,            
  

where x 0,1,2,...  and 0.    

 

Proof. We have the pmf of the DIR distribution by replacing 0,   2   and 1   as in equation (3), or by replacing the 

survival function of 2

IR 0S 1 exp ( x) ,     
 

0 1 0     as in equation (1), where the IR distribution was proposed by 

Voda (1972). 

 

Corollary 7. Let X~DTGIW ( , , , )     and 1,   then it is reduces to the Discrete Transmuted Fréchet (DTF) distribution 

with pmf as 

      
 

 

DTFf (x) (1 ) exp (x 1) exp (x)

exp 2 (x 1) exp 2 (x) ,

 

 

            

            

     

where x 0,1,2,..., , 0     and 1 1.     
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Proof. We have the DTF pmf by replacing the survival function of the TF distribution, i.e.,  TF 0 0S (x) 1 exp ( x) 1 exp ( x) ,              
 

 TF 0 0S (x) 1 exp ( x) 1 exp ( x) ,               0 1 0     as in equation (1), where the TF distribution was proposed by Geetha and Poongothai 

(2016). In the same way, it is obtained by replacing 1   as in equation (3).  

 

Corollary 8. Let X~DTGIW ( , , , )     for 0   and 1,   then it reduces to the Discrete Fréchet (DF) distribution with pmf 

as follows 

      
DFf (x) exp (x 1) exp (x) ,           

  

where x 0,1,2,..., 0    and 0.    

 

Proof. We have the DF pmf by replacing 0  and 1   as in equation (3). In the same way, it is obtained by replacing the 

survival function of 
F 0S (x) 1 exp ( x) ,     

 
0 1 0     as in equation (1), where the Fréchet distribution was 

developed by Maurice Fréchet in 1927 (Oguntunde et al., 2019). 

 In some cases, in practice, the data to be modeled originate from a mechanism that generates data excluding zero 

counts; a zero-truncated distribution is a suitable model for such data. A typical example where zero-truncated discrete 

distributions are useful in medical science, specifically, when modeling the duration (in days, months, or years) of patients stays 

in hospitals. Zero-truncated distributions have applications in multiple fields, including biological science, medical science, 

psychology, demography, political science, engineering, etc. (Shanker, 2017). 

 

3. The Zero-Truncated Discrete Transmuted Generalized Inverse Weibull Distribution 
 

 Zero-truncated distributions are suitable models for modeling data when the data to be modeled originate from a 

mechanism that generates data excluding zero counts. Suppose 
xf (x)  is the pmf of the discrete distribution where x 0,1,2,... . 

Then the zero-truncated distribution of X can be (see Shanker and Shukla, 2017; Shanker, 2017) defined as 

      x

x

f (x)
p(x) , x 1,2,3,...

1 f (0)
 


.        (4) 

By replacing the pmf of the DTGIW distribution in equation (3) as in equation (4), we have  

      

 
 

 

ZT DTGIW

1

p (x) (1 ) exp ( x ) exp ( x)

exp 2 ( x ) exp 2 ( x)

1 exp( ) 1 exp( ) ,

 



 


 

              

              

       

      (5) 

where x 1,2,3,..., , , 0      and 1 1   . The random variable X has the Zero-Truncated Discrete Transmuted 

Generalized Inverse Weibull (ZT-DTGIW) distribution with the parameters , ,    and ,  which will be denoted as X~ZT-

DTGIW ( , , , ).     

 Figure 2 illustrates the pmf behaviors of the ZT-DTGIW distribution for some specified values of , ,    and .  Its pmf 

has various behaviors, such as a reverse J-shaped distribution (Figure 2: (a)-(b)), a unimodal distribution (Figure 2: (d)-(f)), and a 

right-skewed shape (Figure 2: (a)-(f). Moreover, we have the special sub-models of the ZT-DTGIW distribution as in Table 1. 

 

4. Parameter Estimation 
  

In this section, we present the MLE to estimate the parameters of the DTGIW and ZT-DTGIW distributions. 

 

4.1 Parameter estimation of the DTGIW distribution 
  

Let 
1 nX , ,X  be a random sample of size n from the DTGIW distribution with the pmf as equation (3), i.e. 

iX ~DTGIW ( , , , )    then the log-likelihood function of 
iX   is given by: 

 

 

n

1 i i

i 1

i i

log L log (1 ) exp ( x ) exp ( x )

exp 2 ( x ) exp 2 ( x ) ,
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Figure 2. The pmf plots of X~ZT-DTGIW ( , , , )    with the specified parameters 

 
Table 1. Special sub-models of the ZT-DTGIW distribution 

 

Parameters Sub-models 

  


        

 


  

1    Zero-Truncated Discrete Transmuted Inverse Weibull (ZT-DTIW) 


  

1 0 Zero-Truncated Discrete Inverse Weibull (ZT-DIW) 


  

1    Zero-Truncated Discrete Transmuted Inverse Exponential (ZT-DTIE) 


  

1 0 Zero-Truncated Discrete Inverse Exponential (ZT-DTIE) 


  

1    Zero-Truncated Discrete Transmuted Inverse Rayleigh (ZT-DTIR) 


  

1 0 Zero-Truncated Discrete Inverse Rayleigh (ZT-DIR) 

1       Zero-Truncated Discrete Transmuted Fréchet (ZT-DTF) 

1    
0 Zero-Truncated Discrete Fréchet (ZT-DF) 

    

 

To estimate the unknown parameters , ,    and ,  we take the partial derivatives of 
1log L  with respect to each parameters 

and equate them to zero, i.e.,   

 

         1 1 1 1log L log L log L log L
0, 0, 0, 0

   
   

   
. 

  

The maximum likelihood estimators (MLEs) of ˆ ˆˆ , ,    and ˆ ,  can be obtained numerically from these non-linear 

equations. In this study, we solve these equations simultaneously using a numerical procedure with the Newton-Raphson method. 

The optim function in the optimr contribution package in R (R Core Team, 2020) is used to find the MLEs. 
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4.2 Parameter estimation of the ZT-DTGIW distribution 
  

Let 
1 nX , ,X  be a random sample of size n from the ZT-DTGIW distribution with the pmf as equation (5), i.e. 

iX ~ZT-DTGIW ( , , , )     then the log-likelihood function of 
iX   is given by:    

      
 

 

 

n

2 i i

i 1

i i

n

i 1

log L log (1 ) exp ( x ) exp ( x )

exp 2 ( x ) exp 2 ( x )

log 1 exp( ) 1 exp( ) ,

 



 

 



              

              

       





 

The maximum likelihood estimates can be obtained numerically solving the equation as      

 2log L
0,





 2log L

0,





 2log L
0,





 2log L

0.





 

The MLEs of ˆ ˆˆ , ,    and ˆ ,  can be obtained by using the optim function in the optimr package in R (R Core Team, 2020). 

 

5. Simulation Study 
  

The simulation study of parameter estimation is illustrated for verification of the MLE performance before application 

to real data is illustrated. We conducted Monte Carlo simulation studies to assess on the finite sample behavior of the maximum 

likelihood estimators of , , , .     All results were obtained from 1000 Monte Carlo replications (T 1000 ) and the simulations 

were carried out using the statistical software package R. In each replication a random sample of size n is drawn from the 

DTGIW ( , , , )     and ZT-DTGIW ( , , , )    . The results of simulation study present the mean maximum likelihood 

estimates of the four parameters, i.e., 
T

t

t 1

1
ˆ ˆ ,

T 

    
T

t

t 1

1ˆ ˆ ,
T 

    
T

t

t 1

1ˆ ˆ ,
T 

    and 
T

t

t 1

1ˆ ˆ ,
T 

  
  

and the Root Mean Squared Errors (RMSE) of estimators, i.e.,  

 
T

2

t

t 1

1
ˆ ˆRMSE( ) ,

T 

     
T 2

t

t 1

1ˆ ˆRMSE( ) ,
T 

      
T 2

t

t 1

1ˆ ˆRMSE( ) ,
T 

     and 

 
T 2

t

t 1

1ˆ ˆRMSE( ) ,
T 

   
 

for sample sizes n 30,60,100  and 200. 

 

5.1 Simulation study of the DTGIW distribution 
  

Based on the cdf of F(x) P(X x) G(x 1)    , see Alamatsaz et al. (2016), and Jayakumar and Babu (2019), we 

have the cdf of the DTGIW distribution as 

       DTGIWF (x) exp ( x ) 1 exp ( x ) .               
 

 Let 
DTGIWF (x) U  where U be a uniform random variable on [0, 1], then the quantile function of the DTGIW 

distribution is 1

X i DTGIW iQ (u ) F (u ) , in which the quantile function has no closed form solution, so we have to use a numerical 

technique to get the quantile. R code for quantile function and the generating of a DTGIW random variable are shown as follows: 

> qDTGIW <- function(p,alpha,beta,lambda,theta){ 

+  n<-length(p); x<-numeric(n); 

+  for (i in 1:n){k<-0; 

+  if(p[i]>=pDTGIW(k,alpha,beta,lambda,theta)){ 

+  while ( p[i]>=pDTGIW(k,alpha,beta,lambda,theta)) #cdf of DTGIW 

+  {k<-k+1}} 

+  x[i]<-k } 

+ return(x)} 

> rdtgiw<-function(n,alpha,beta,lambda,theta){ 

+  x<-numeric(); u<-runif(n); 

+  x<-qDTGIW(u,alpha,beta,lambda,theta); 

+ return(x)} 

> 
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 The true parameter values used in the data generating processes are (i) 2.3,   1.75,   0.5,   0   and (ii) 

2.65,   0.95,   0.80,   0.45   . In Table 2 we notice that the biases and root mean squared errors of the maximum 

likelihood estimators of , ,    and   decay toward zero as the sample size increases, as expected.  

 
Table 2. Statistic values of the DTGIW parameter estimation by using the MLE 

 

n Parameters 

DTGIW (2.3,1.75,0.5,0) DTGIW (2.65,0.95,0.80,-0.45) 

Estimate Bias RMSE Estimate Bias RMSE 

        

30   6.9566 4.6566 8.6110 2.7296 0.0796 0.7950 

   
1.5988 -0.1512 0.3312 0.9764 0.0264 0.0943 

   2.2103 1.7103 3.4201 0.9812 0.1812 0.3420 

   -0.1422 -0.1422 0.3393 -0.3378 0.1122 0.2681 

60   4.0024 1.7024 5.0156 2.6632 0.0132 0.3892 

   
1.7423 -0.0077 0.2917 0.9755 0.0255 0.0694 

   1.0500 0.5500 1.4474 0.9282 0.1282 0.2341 

   -0.0798 -0.0798 0.4681 -0.3723 0.0777 0.2273 

100   2.8565 0.5565 2.7807 2.6712 0.0212 0.3078 

   
1.7642 0.0142 0.2652 0.9742 0.0242 0.0546 

   0.7487 0.2487 0.8304 0.9144 0.1144 0.1816 

   -0.0191 -0.019 1 0.4857 -0.3933 0.0567 0.1756 

200   2.3195 0.0195 0.7175 2.6535 0.0035 0.2169 

   
1.7603 0.0103 0.2292 0.9735 0.0235 0.0454 

   0.6134 0.1134 0.2894 0.8821 0.0821 0.1419 

   0.0622 0.0622 0.5164 -0.4177 0.0323 0.1484 
        

 

5.2 Simulation study of the ZT-DTGIW distribution 
  

 A random variable X is generated from the ZT-DTGIW distribution with the true parameter values of two cases; (i) 

3.45,   0.70,   1.05,   0.35    and (ii) 2.5,   0.5,   2.0,   0.5  . R code for the generating of a ZT-

DTGIW random variable are shown as follows: 

> rztdtgiw<-function(n,alpha,beta,lambda,theta){ 

+  sampl<-c() 

+  while (length(sampl)< n){ 

+  x<-rdtgiw(1,alpha,beta,lambda,theta) 

+  if (x!=0) sampl<-c(sampl,x)} 

+ return(sampl)} 

> 

 In Table 3 we notice that the biases and root mean squared errors of the maximum likelihood estimators of , ,    and 

  decay toward zero as the sample size increases, as expected.  

 

6. Application Study 
  

In this section, applications of the DTGIW and ZT-DTGIW distributions will be discussed with the real data sets and 

its goodness of fit based on the MLE. The Kolmogorov-Smirnov (K-S) and Cramer-von Mises (CVM) tests are used to compare 

fitting distributions, where the smaller values of test statistics give the best fit for the data. Given the cdf 
0F (x)  of the 

hypothesized distribution and the empirical distribution function 
nF (x)  of the n observed data of 

(j)X  where 

(1) (2) (n 1) (n)X X X X .     The test statistics of K-S and CVM tests are, respectively 

 

 
n 0D max | F (x) F (x) |   and 

n

n (j)

j 1

1 2j 1
W F (x ) .

2n 2n

 
   

 
  

In this study, the statistics of D and W are obtained by using the dgof package in R (see Arnold, Emerson, & R Core Team, 

2016).  
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Table 3. Statistic values of the ZT-DTGIW parameter estimation by using the MLE 
 

n Parameters 

ZT-DTGIW (3.45,0.70,1.05,-0.35) ZT-DTGIW (2.5,0.5,2.0,0.5) 

Estimate Bias RMSE Estimate Bias RMSE 

        

30   3.7814 0.3314 2.1692 2.7149 0.2149 0.5505 

   
0.7445 0.0445 0.1870 0.5427 0.0427 0.0804 

   1.1628 0.1128 0.4947 2.1649 0.1649 0.4684 

   -0.2482 0.1018 0.3093 0.1902 -0.3098 0.5172 

60   3.5901 0.1401 0.9632 2.6357 0.1357 0.4423 

   
0.7244 0.0244 0.1183 0.5317 0.0317 0.0632 

   1.1596 0.1096 0.4537 2.1409 0.1409 0.3921 

   -0.2795 0.0705 0.2571 0.2844 -0.2156 0.4672 

100   3.5109 0.0609 0.6654 2.6068 0.1068 0.3790 

   
0.7199 0.0199 0.0911 0.5267 0.0267 0.0608 

   1.1541 0.1041 0.4000 2.1029 0.1029 0.3618 

   -0.2982 0.0518 0.2199 0.3154 -0.1846 0.4648 

200   3.4865 0.0365 0.4063 2.5534 0.0534 0.3327 

   
0.7140 0.0140 0.0678 0.5194 0.0194 0.0502 

   1.1323 0.0823 0.3363 2.0980 0.0980 0.3322 

   -0.3349 0.0151 0.1205 0.3871 -0.1129 0.4025 
        

 

6.1 Application study of the DTGIW distribution 
  

The application of the DTGIW distribution is 

discussed with two real data sets and compared to the Poisson 

distribution with the parameter   and the DIW distribution. 

The first data set is the number of outbreaks of strikes in UK 

coal mining industries (156 observations) in four successive 

week periods from 1948 to 1959 (Ridout & Besbeas, 2004). 

The mean and variance values of these data are 0.9936 and 

0.7419 respectively (under-dispersion count data). Based on 

the minimum D and W values from the goodness of fit with 

the K-S and CVM tests respectively in Table 4, we found that 

the DTGIW distribution gives D and W values less than the 

DIW and Poisson distributions. In addition, the second data 

set is the number of hospital stays by United States residents 

aged 66 and over (see Flynn, 2009), in which the mean and 

variance values are 0.2960 and 0.5571 respectively (over-

dispersion count data). From Table 5, the results show that the 

DTGIW distribution gives D and W values less than the DIW 

and Poisson distributions. Figure 3 shows a comparison 

between real data sets and expected values of the fitted 

distributions, we found that the DTGIW distribution gives a 

better fit than the DIW and Poisson distributions; hence, it can 

be considered an important distribution for modeling data 

such as count data sets.  

 
6.2 Application study of the ZT-DTGIW distribution 
  

Two real data sets, (i) the number of counts of sites 

with particles from Immunogold data reported by Mathews 

and Appleton (1993), and (ii) the number of European red 

mites on apple leaves, reported by Garman (1923), (see 

Shanker & Shukla, 2017), are introduced in Tables 6 and 7, 

respectively. 

According to the results of the goodness-of-fit test 

based on the minimum value of D and W statistics from the 

goodness of fit in Tables 6 and 7, we found that the ZT-

DTGIW distribution gives a better fit than ZT-DIW and the 

ZT-P distributions (Figure 4). Therefore, the ZT-DTGIW 

distribution can be considered a better tool than the ZT-DIW 

and ZT-P distributions for modeling count data excluding 

zero-counts. 

 
7. Conclusions 
 

In this work, the DTGIW and ZT-DTGIW 

distributions are introduced for the analysis of count data and 

count data excluding zero counts, respectively. The MLE is 

applied to estimate the model parameters. To compare the 

performance, a goodness-of-fit based on the K-S and CVM 

tests are employed. The ZT-DTGIW distribution has eight 

sub-models; (i) zero-truncated discrete transmuted inverse 

Weibull, (ii) zero-truncated discrete inverse Weibull, (iii) 

zero-truncated discrete transmuted inverse exponential, (iv) 

zero-truncated discrete inverse exponential, (v) zero-truncated 

discrete transmuted inverse Rayleigh, (vi) zero-truncated 

discrete inverse Rayleigh, and (vii) zero-truncated discrete 

transmuted Fréchet, and (viii) zero-truncated discrete Fréchet 

distributions. From result of simulation study, notice that the 

biases and root mean squared errors of the maximum 

likelihood estimators of , ,    and   decay toward zero as 

the sample size increases, as expected. We also note that there 

is small sample bias in the estimation of the parameters that 

index the DTGIW and ZT-DTGIW distributions. Future 

research should obtain bias corrections for these estimators. 

The result shows that; the DTGIW distribution is a better fit 

than the DIW and Poisson distribution for these real data sets 

of count data. Moreover, the ZT-DTGIW distribution seems to 

have the best efficiency when compared to the ZT-DIW and 

ZT-P distributions for fitting count data excluding zero 

counts. 
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Table 4. MLEs, test statistics, and fitted frequencies of three distributions to the strike outbreak data 
 

Numbers of outbreaks of strikes Observed frequency 

Fitted frequencies of the distributions 

Poisson DIW DTGIW 

     

0 
1 

2 

3 
4 

46 
76 

24 

9 
1 

57.76 
57.39 

28.51 

9.44 
2.35 

44.64 
82.21 

18.29 

5.62 
2.28 

44.53 
81.99 

18.73 

5.66 
2.26 

MLEs (standard error) ̂  0.9936 (0.0798) ̂  2.5966 (0.2263) 

̂  0.9173 (0.0348) 

̂  2.6762 (0.2301) 

̂  0.9350 (19.1958) 

̂  0.7920 (61.4544) 

̂  -0.4298 (0.5824) 

1log L
 

W 

D 

191.94 

0.4155 

0.0754 

191.83 

0.0651 

0.0311 

191.50 

0.0586 

0.0290 
    

 
Table 5. MLEs, test statistics, and fitted frequencies of three distributions to the numbers of hospital stays 

 

Numbers of outbreaks of strikes Observed frequency 

Fitted frequencies of the distributions 

Poisson DIW DTGIW 

     

0 

1 

2 
3 

4 

5 
6 

7 

8 

3541 

599 

176 
48 

20 

12 
5 

1 

4 

3277.13 

970.03 

143.56 
14.17 

1.05 

0.06 
0.00 

0.00 

0.00 

3538.12 

639.38 

127.18 
44.73 

20.63 

11.15 
6.69 

4.32 

2.95 

3537.75 

639.22 

127.78 
44.86 

20.64 

11.13 
6.67 

4.30 

2.93 
MLEs (standard error) ̂  0.2960 

(0.0082) 

̂  2.0424 

(0.0712) 

̂  2.1017 

(0.0661) 

̂  2.0547 

(0.0714) 

̂  1.7594 

(8.7794) 

̂  0.5256 

(5.3844) 

̂  -0.3516 

(0.5040) 

1log L
 

W 

D 

3304.51 

7.9694 

0.0599 

3024.92 

0.0407 

0.0085 

3024.52 

0.0398 

0.0084 
    

 

  
Figure 3. Plots for observed and fitted frequencies of the data; (a) the number of outbreaks of strikes; (b) the number of hospital stays 
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Table 6. MLEs, test statistics, and fitted frequencies of three distributions to the number of site with particles 
 

Number of site with particles 

 

Observed frequency 

 

Fitted frequencies of the distributions 

ZT-P ZT-DIW ZT-DTGIW 

     

1 

2 
3 

4 

5 
>5 

122 

50 
18 

4 

4 
0 

115.86 

57.39 
18.95 

4.69 

0.93 
0.18 

119.48 

57.11 
13.66 

4.29 

1.68 
1.78 

121.42 

53.69 
14.06 

4.70 

1.93 
2.20 

MLEs (standard error) ̂  0.9906 

(0.0871) 

̂  3.6613 

(0.2989) 

̂  0.6026 

(0.0187) 

̂  3.4555 

(0.3924) 

̂  0.6801 

(11.941) 

̂  1.0633 

(143.14) 

̂  -0.3517 

(1.1320) 

2log L  

W 

D 

205.95 
0.0868 

0.0310 

206.67 
0.0232 

0.0383 

206.04 
0.0170 

0.0157 
    

 
Table 7. MLEs, test statistics, and fitted frequencies of three distributions to the number of European red mites on apple leaves 
 

Number of site with particles 

 

Observed frequency 

 

Fitted frequencies of the distributions 

ZT-P ZT-DIW ZT-DTGIW 

     

1 

2 

3 
4 

5 

6 
>6 

38 

17 

10 
9 

3 

2 
1 

28.67 

25.68 

15.34 
6.87 

2.46 

0.74 
0.24 

34.23 

25.00 

10.03 
4.48 

2.27 

1.28 
2.71 

36.67 

22.14 

9.48 
4.51 

2.41 

1.41 
3.38 

MLEs (standard error) ̂  1.7916 

(0.1705) 

̂  2.5536 

(0.2672) 

̂  0.5355 

(0.0289) 

̂  2.3309 

(0.3393) 

̂  1.0530 

(30.974) 

̂  3.2332 

(221.68) 

̂  -0.3530 

(0.7827) 

2log L  

W 
D 

122.79 

0.4150 
0.1166 

122.93 

0.1465 
0.0533 

121.77 

0.0768 
0.0476 

    

  
Figure 4. Plots for observed and fitted frequencies of the data; (a) the number of site with particles, (b) the number of European red mites on 

apple leaves 
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