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Abstract 
 

Due to the digitization of information, organizations have abundant data in databases. Large-scale data are equally 

important and complex hence gathering, storing, understanding, and analyzing data is a problem for organizations. To extract 

information from this superfluous data, the need for dimensionality reduction increases. Soft set theory has been efficaciously 

applied and solved problems of dimensionality, which saves the cost of computation, reduces noise, and redundancy in data. 

Different methods and measures are developed by researchers for the reduction of dimensions, in which some are probabilistic, 

and some are non-probabilistic. In this paper, a non-probabilistic approach is developed by using soft set theory for dimensionality 

reduction. Further, an algorithm of dimensionality reduction through bipartite graphs is also described. Lastly, the proposed 

algorithm is applied to a case study, and a comparison of results indicates that the proposed algorithm is better than the existing 

algorithms. 
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1. Introduction 
 

Due to digitalization, there is a rapid growth in the 

amount of information/data and the effects of this abundance 

lead to difficulty in managing information, which can lead to 

an overload of data that contains irrelevant and redundant data. 

Handling such problems can ravage plenty of time and money.  

To deal with these types of problem, there is a need to eliminate 

irrelevant redundant data by a technique which is known as 

dimensionality reduction. Dimensionality reduction has been a 

prolific topic of study and growth, since the last four to five 

decades. It has been exceptionally beneficial in eliminating 

avoidable and repetitive data, increasingly effectiveness in 

various areas (Gupta & Sharma, 2015). Dimension reduction 

can be useful in reducing cost, redundancy, and noise. Thus, it 

is one of the best tools to deal with real-life problems. 

 
Numerous real-life situations consist of uncertainty 

that cannot be successfully modeled by the classical 

mathematical theories. To handle such problems contemporary 

mathematical/ statistical theories were developed. Probability 

theory (Kolmogorov, 1933), fuzzy sets theory (Zadeh, 1965), 

rough sets theory (Pawlak, 1982), intuitionistic fuzzy sets 

theory (Atansassov, 1986) and vague sets theory (Gau & 

Buehre, 1993) are some of the key notions. Molodtsov (1999) 

pointed out the different limitations of some of these theories. 

The reason for these limitations is possibly the inadequacy of 

the parameterization tool of the theories, and consequently 

Molodtsov (1999) presented the notion of soft theory as a novel 

mathematical tool which overcomes these limitations and 

successfully applied it to the theory of games, measurement 

theory, smoothness of function and Riemann integration.  

Dimensionality reduction can help to solve various 

decision-making problems by reducing attributes of the original 

data using soft set theory.  As far as the standard soft sets are 

concerned, it can be defined as two different equivalence 

classes   of   objects,   thus   confirming   that   Boolean-valued 
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information valued systems can be dealt with by soft sets. 

Maji, Roy and Biswas (2002), defined algebraic 

operations for soft sets and verified binary operations for the 

same. Chen, Tsang, Yeung and Wang (2005), improved the 

method anticipated by Maji et al. (2002). The fuzzy soft 

theoretic approach was developed to solve decision-making 

problems by Roy and Maji (2007). Zhao, Luo, Wong and Yao 

(2007) presented definition of reduct which jointly sufficient 

and individually necessary for preserving the properties of a 

given information table. Kong, Gaoa, Wang and Li (2008) 

derived a heuristic normal method in soft and fuzzy soft sets for 

parameter reduction. Herawan, Rose and Mat Deris (2009) 

developed an approach for reduction of attributes in a multi-

valued information system in a soft theoretic environment, 

which is equivalent to Pawlak’s rough reduction. Alcantud 

(2016) examined relationships amongst the soft sets and other 

theories. Zhan and Alcantud (2017) reviewed soft and fuzzy 

soft based algorithms for parameter reduction.   

Different mathematical theories focus on respective 

aspects such as fuzzy, rough set and soft set theories focusing 

on membership degree, granular and parameterization 

respectively. Many researchers have worked on the soft set 

theory which has a parameterization tool, but certain situations 

involve non-Boolean datasets that require hybridization. Thus, 

authors developed hybrid theories such as fuzzy soft sets 

(Agman, Enginoglu, & Citak, 2011), soft rough sets (Feng et 

al., 2011), fuzzy rough and rough fuzzy sets (Dubois & Prade, 

1990), Soft rough fuzzy(SRF) and soft fuzzy rough (SFR) sets 

(Meng et al., 2011), etc. to deal with such type of data. Zhang 

and Wang (2018) investigated types of soft coverings based on 

rough sets and their properties. Ma, Zhan, Ali & Mehmood 

(2018) reviewed decision making methods based on hybrid 

SRF and SFR sets. Zhang, Zhan and Alcantud (2019) concepts 

of fuzzy soft β-minimal and β-maximal descriptions their β-

coverings and relationships amongst them. Zhang, Zhan and 

Yao (2020) presented covering-based variable precision 

intuitionistic fuzzy rough set models and applied multi-attribute 

decision-making problems of bone transplants. Similarly, the 

two papers of Jiang, Zang, Sun and Alcantud (2020) and Ma, 

Zang, Sun and Alcantud (2020) worked on covering-based 

variable precision fuzzy rough sets and multi-granulation fuzzy 

rough set respectively and applied them to multi-attribute 

decision making.  

There is another non-probabilistic approach known 

as graph theory, helps to model various real-life situations. This 

theory is a suitable tool for solving combinatorial problems in 

different areas such as geometry, algebra, number theory, 

topology, operation research, optimization, and computer 

science, etc. Researchers Rosenfeld (1975), Thumbakara and 

George (2014), and Mohinta and Samanta (2015) combined 

graph theory with the fuzzy, soft set, and fuzzy soft set theory, 

respectively. Smarandache, (2018) generalized soft set to 

hypersoft set by transforming the function F into a multi-

attribute function. Thereafter, introduced the hybridization of 

Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and 

Plithogenic Hypersoft Set. Classical techniques for reduction of 

dimension are principal component analysis and multi-

dimension scaling; both are based on the concept of distance. 

Graphs provide an effective way to encrypt neighborhood 

relations. Burianek, Zaoralek, Snasel, and Peterek (2015) 

studied select dimension reduction techniques and used them to 

draw sensible graphs from initial graphs, and compared 

techniques with the technique of Kamada and Kawai (1989). 

Jatram and Biswas (2015) proposed a multiple dimension 

reduction method of feature space of graphs by using Spectral 

methods for the FANNY clustering algorithm. Qian, Yin, 

Kong, Wang, and Gao (2019) presented an algorithm for low-

rank graph optimization for Multi-View Dimensionality 

Reduction. 

Based on the soft theoretic approach, here, a non-

probabilistic approach in dimensionality reduction is 

developed. Then Boolean-valued information system is 

represented as a bipartite graph and an algorithm is presented 

that can be used for dimensionality reduction. 

 

2. Related Concepts of Soft Sets and Graph Theory 
 

A parameterized mathematical tool; soft set theory 

deals with a collection of objects with categories defined 

approximately.  Each category has two sections - a predicate 

and an estimated/ approximate value set. Since the initial 

portrayal of the object has an approximate nature, the notation 

of exact solution is also not required. The non-appearance of 

any confinements on the approximate depictions, in soft set 

theory, makes it entirely appropriate and just material 

practically speaking. With the assistance of words and 

sentences, real number, function, mapping, etc. any 

parameterization can be utilized. Hence predicament of the 

membership function or any related issue does not exist in the 

soft set theory. 

 

Definition 1 (Soft Sets): Let U represent the initial universe set 

and P represent a set of parameters. Then the ordered set (m, P) 

is known as soft set (on the initial universe, U) if m is a mapping 

defined from P into Pow(U), where Pow(U) represents the 

power set of U, i.e. 

 

m:  P  →  Pow(U). 

 

Clearly, (m, P) on initial universe U represents the family of 

subsets parameterized over U. Also, m(p) represents a set of p-

approximate element, for any p ϵ P for the soft set (m, P). 

 

Example 1.1: Let U = {b1, b2, …….., b5} represents different 

model of bikes and P represents different selection criteria/ 

parameters, P = {p1 = expensive, p2 = beautiful, p3 = cheap, p4 

= in good repair, p5 = good mileage}. Then the attractiveness 

of the bikes can be represented by (m, P) i.e. soft set. 

 

Example 1.2: Let F and mF represent a fuzzy set and its 

membership function respectively i.e., mF : U → [0, 1]. Let P(α) 

= {x ϵ U: mF(x) greater than equal to α}, where α ϵ [0, 1] 

represents family of α- level sets for mF. mF(x) can be defined 

as 𝑚𝐹(𝑥) = 𝑠𝑢𝑝𝛼𝜖[0.1]

𝑥𝜖𝑃(𝛼)

𝛼, where family P is known.  

Thus, every fuzzy set F can be represented as a soft set. 

 

Alternative definition of soft sets: A pair (M, U) is defined as 

a soft set over P where M is a function defined from initial 

universe U to Power set of P. Alternatively in other words, a 

soft set is a family of subsets of the universal parameter sets of 

P. Here U is the set of objects and P is the universal set of 

parameters, where parameters can be properties/ 

characteristics/attributes of objects. 
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Example 1.3: Let U = {b1, b2,…….., b5} be the different sets 

of cars under consideration and P be the set of parameters, P = 

{p1 = price, p2 =looks, p3 = speed, p4 = weight, p5 = average}. 

Then the soft set (M, U) describes the attractive cars. 

 

2.1 Information systems equivalence with soft sets 
 

Definition 2: Let a finite set of objects and attributes be denoted 

by 𝑈 and 𝐴 respectively. Then the quadruple (𝑈, 𝐴, 𝑉, 𝑔) is 

known as an information system, where 𝑔 :𝑈 × 𝐴 → 𝑉 𝑖 is 

known as information function and 𝑉 = ⋃ 𝑉𝑎𝑎∈𝐴 . Also, the 

value of attribute 𝑎 is given by 𝑉𝑎 = {𝑔(𝑥, 𝑎)|𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈
𝑈}. 

Alternatively, An information system is known as a 

knowledge representation/attribute-valued system and can be 

spontaneously represented in the form of an information table 

and it reduces to Boolean-valued information system if 𝑉𝑎 =
{0,1}, for every 𝑎 ∈ 𝐴, in information system 𝑆 = (𝑈, 𝐴, 𝑉, 𝑔). 

 

Proposition 1: Let (𝐹, 𝐸) be any soft set over initial universe 

𝑈, then soft set (𝐹, 𝐸)  can be represented as Boolean-valued 

information system 𝑆 = (𝑈, 𝐴, 𝑉{0,1], 𝑔) and vice versa. 

 

Proof: Consider (𝐹, 𝐸) and define a mapping 

 

𝐹 = {𝑔1 , 𝑔2, … … … … . , 𝑔𝑛}. 
 

Where 

𝑔1 ∶   𝑈 → 𝑉1   𝑎𝑛𝑑    𝑔1(𝑥) = {
1,   𝑥 ∈ 𝐹(𝑒1)

0,   𝑥 ∉ 𝐹(𝑒1)
 

𝑔2 ∶   𝑈 → 𝑉2   𝑎𝑛𝑑    𝑔2(𝑥) = {
1,   𝑥 ∈ 𝐹(𝑒2)

0,   𝑥 ∉ 𝐹(𝑒2)
 

         

………………………………………………. 

         

………………………………………………..  

𝑔𝑛 ∶   𝑈 → 𝑉𝑛   𝑎𝑛𝑑    𝑔𝑛(𝑥) = {
1,   𝑥 ∈ 𝐹(𝑒𝑛)

0,   𝑥 ∉ 𝐹(𝑒𝑛)
 

 

Thus, for 𝐴 = 𝐸 and 𝑉 = ⋃ 𝑉𝑒𝑖𝑒𝑖∈𝐴 , for 𝑉𝑒𝑖
= {0, 1}, then any 

soft set (𝐹, 𝐸) can be considered as a 𝑆 = (𝑈, 𝐴, 𝑉{0,1], 𝑔) which 

is a Boolean-valued information system and vice versa. 

 

Definition 3: Let 𝑆 = (𝑈, 𝐴, 𝑉{0,1], 𝑔) be a binary-value 

information system. Thus (𝐹𝑆, 𝐴) is called the soft set over 𝑈 

induced by 𝑆, where 𝐹𝑆 ∶ 𝐴 → 2𝑈 and for any 𝑥 ∈ 𝑈 and 𝑎 ∈
𝐴, 𝐹𝑆(𝑎) = {𝑥 ∈ 𝑈 | 𝑔(𝑥, 𝑎) = 1 𝑜𝑟 0}. 

Hence, the soft set given in Example 1.1 can be 

denoted as a Boolean-valued information system represented in 

Table 1. 

 

Example 1.4: In example 1.1, 𝑈 and 𝑃 represents the set of 

objects and attributes/ parameters respectively, and we consider 

𝑉 = {0,1} to be the sets of values of those objects which satisfy 

the parametric conditions. Here {1} and {0} represent that 

condition is satisfied and not satisfied respectively. Then we 

define  

 

𝑔(𝑏1, 𝑝1) = 1, 𝑔(𝑏1, 𝑝2) = 1, 𝑔(𝑏1, 𝑝3) = 0,
𝑔(𝑏1, 𝑝4) = 1,       𝑔(𝑏1, 𝑝5) = 0 

𝑔(𝑏2, 𝑝1) = 1, 𝑔(𝑏2, 𝑝2) = 0, 𝑔(𝑏2, 𝑝3) = 0,
𝑔(𝑏2, 𝑝4) = 1,       𝑔(𝑏2, 𝑝5) = 0 

𝑔(𝑏3, 𝑝1) = 1, 𝑔(𝑏3, 𝑝2) = 1, 𝑔(𝑏3, 𝑝3) = 1,
𝑔(𝑏3, 𝑝4) = 1,       𝑔(𝑏3, 𝑝5) = 1 

𝑔(𝑏4, 𝑝1) = 0, 𝑔(𝑏4, 𝑝2) = 1, 𝑔(𝑏4, 𝑝3) = 1,
𝑔(𝑏4, 𝑝4) = 1,       𝑔(𝑏4, 𝑝5) = 1 

𝑔(𝑏5, 𝑝1) = 1, 𝑔(𝑏5, 𝑝2) = 0, 𝑔(𝑏5, 𝑝3) = 0,
𝑔(𝑏5, 𝑝4) = 1,       𝑔(𝑏5, 𝑝5) = 1 

 

2.2 Soft set: Tabular representation  
 

Lin (1998) and Yao (1998) represented soft sets in 

Tabular form. This section signifies analogues representation in 

binary table. Consider the soft set (m, P) for the set of 

parameters P. Soft set in a tabular form can be represented as 

binary table given in Table 1. Binary representation is 

beneficial for storing soft set in computer memory. The tabular 

representation of example1.4 is as 

 
Table 1. Binary representation 

 

U/P p1 p2 p3 p4 p5 

      

b1 1 1 0 1 0 
b2 1 0 0 1 0 

b3 1 1 1 1 1 

b4 0 1 1 1 1 
b5 1 0 0 1 1 

      

 
 

In Table 1, if 𝑏𝑖𝑗 ∈ 𝑚(𝑝𝑖) then 𝑏𝑖𝑗 =  1, 

otherwise 𝑏𝑖𝑗 =  0, where 𝑏𝑖𝑗 are the entries in its table. Here 

entries are in the form of 0 and 1 thus it is known as a Boolean-

valued information system table. 

 

2.3 Graph theory: Some basic concepts 
 

A graph 𝐺 is represented by an ordered pair (𝑉, 𝐸), 

where 𝑉 is consists of a non-empty set of objects called vertices 

and 𝐸 is a set of relation defined between two elements of 𝑉 

called edges. Two vertices 𝑥 and 𝑦 are said to be adjacent if 

{𝑥, 𝑦} ∈ 𝐸. Subgraph of a graph 𝐺 is denoted by 𝐺 ′ = (𝑉 ′, 𝐸′) 

where 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. Two vertices are adjacent in 

subgraph 𝐺 ′ if and only if they are adjacent to G. If all the 

vertices of G are connected to every other vertex then it is 

known as complete graph and represented as 𝐾𝑛 where 𝑛 is 
number of vertices. 

 

Definition 4: A graph 𝐺 is known as bipartite graph if vertex 

set of G can be partitioned in to two sets 𝑉1and 𝑉2such that 

𝑉(𝐺) = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅. A complete bipartite graph is 

a bipartite graph if there exists a unique edge between each 

vertex of 𝑉1and every vertex of 𝑉2. 

 

2.4 Soft graph: 
 

Soft sets can deal with various types of uncertainties 

mathematically. Pictorial representation of soft sets is 

represented by soft graphs. Every simple graph can be 

represented as a soft graph whereas in this section we prove that 
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every soft set can be represented as a bipartite graph. Following 

are some basic concepts: 

Definition 5: A graph G represented by quadruple (𝐺∗, 𝐹, 𝐾, 𝐴) 

is said to be a soft graph if following axioms are satisfied: 

a) 𝐺∗(𝑉, 𝐸) represents a simple graph. 

b) Set 𝐴 represents a non-empty set of parameters. 

c) (𝐹, 𝐴) and (𝐾, 𝐴) both represent soft set on 𝑉 and 𝐸 

respectively. 

d) For all 𝑎 ∈ 𝐴,(𝐹(𝑎), 𝐾(𝑎)) represents subgraph of 

𝐺∗. 

The collection of all subgraphs of G is represented by 𝑆𝐺(𝐺). 
 

Example: Consider the graph 𝐺 = (𝑉, 𝐸) as shown in Figure 

1. Let 𝐴 = {1,5}. Define the set valued function 𝐹 by, 𝐹(𝑥) =
{𝑦 ∈ 𝑉|𝑥 𝑅 𝑦 ⇔ 𝑑(𝑥, 𝑦) ≤ 2}. 

Then 𝐹(1) = {1,2,3}, 𝐹(5) = {3,4,5}. Here 𝐹(𝑥) is a 

connected subgraph of 𝐺, for all 𝑥 ∈ 𝐴. Hence (𝐹, 𝐴) ∈ 𝑆𝐺(𝐺). 
 

Definition 5: Bipartite soft graph is defined as 𝑉(𝐺) = 𝑉1 ∪ 𝑉2 

where 𝑉1 ∩ 𝑉2 = ∅, where 𝑉1 and 𝑉2 represent set of parameters 

and objects respectively such that every edge of 𝐺 joins a vertex 

of 𝑉1 to a vertex of 𝑉2. 

Every simple graph can be represented as a soft set 

and every soft set can be represented as a bipartite graph 

(Hussain et al., 2016). 

 

3. The Proposed Techniques 
 

This section introduces a novel concept for the 

reduction of parameters and objects (Dimensionality 

reduction). Here the idea is to reduce dimensions of data 

without changing the decision. 

 

Definition 7: Let (m, E) represents a soft set,  and 𝑚 is defined 

as 𝑚 ∶ 𝐸 → 𝑃𝑜𝑤(𝑈); where 𝐸 and 𝑈 represent parameters and 

universal set of objects respectively. 

Let 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} and U = {𝑝1, 𝑝2, 𝑝3, 𝑝4} then 

mE(𝑒1) ={𝑝1, 𝑝2, 𝑝3}, mE(𝑒2)= {𝑝3, 𝑝4}, mE(𝑒3) = 

{𝑝1, 𝑝2, 𝑝3, 𝑝4}, mE(𝑒4)= {𝑝1, 𝑝3, 𝑝4}, then we define a 

measure: 

 

𝛾𝐸(𝑒𝑖) =
𝑐𝑎𝑟𝑑(𝑚𝐸(𝑒𝑖))

𝑐𝑎𝑟𝑑(𝑈)
 Where 0 ≤ 𝛾𝐸(𝑒𝑖) ≤ 1 for all 𝑖;  

 

where card(X) represents number of elements in set X. 

Every set mE(ei) for 𝑒𝑖 ∈ 𝐸 from the parameterized 

family of subsets of the set U may be considered as the set of 

ei-elements of the soft set (m, E) or as the set of ei-approximate 

elements of the soft sets.  𝛾𝐸(𝑒𝑖) is the grade of membership of 

ei in universal set U. Here 𝛾𝐸(𝑒1) = 3/4, 𝛾𝐸(𝑒2) = 1/
2, 𝛾𝐸(𝑒3) = 1 and 𝛾𝐸(𝑒4) = 3/4. 

 

Definition 8: Let (M, U) is parameterized valued soft sets then 

𝑀 ∶ 𝑈 → 𝑃𝑜𝑤(𝐸); where 𝑃𝑜𝑤(𝐸) represents power set of 

universal parameterized set E and U is set of objects. 

Let E = {𝑒1, 𝑒2, 𝑒3, 𝑒4}  and U = {𝑝1, 𝑝2, 𝑝3, 𝑝4}  then 

MU(𝑝1) = {𝑒1, 𝑒3, 𝑒4}  , MU(𝑝2) = {𝑒1, 𝑒3}, MU (𝑝3)= 

{𝑒1, 𝑒2, 𝑒3, 𝑒4}   and MU (𝑝4)= {𝑒2, 𝑒3, 𝑒4}  then we define a 

measure: 

 

𝜎𝑈(𝑝𝑖) =
𝑐𝑎𝑟𝑑(𝑀𝑈(𝑝𝑖))

𝑐𝑎𝑟𝑑(𝐸)
 ;  

 
Figure 1. Flowchart for algorithms 

 
where0 ≤ 𝜎𝑈(𝑝𝑖) ≤ 1 for all i; where 𝑐𝑎𝑟𝑑(𝐸) represents the 

number of elements in 𝐸. 

Every set MU(pi) for 𝑝𝑖 ∈ 𝑈 is the subsets of universal 

parametrized set E or as the set of pi-approximate elements of 

the parameterized valued soft sets.  𝜎𝑈(𝑝𝑖), is the grade of 

membership of pi in the parameterized universal set E. Here 

𝜎𝑈(𝑝1) = 3/4, 𝜎𝑈(𝑝2) = 1/2, 𝜎𝑈(𝑝3) = 1, 𝜎𝑈(𝑝4) = 3/4.  

 

3.1 Algorithm for dimensionality reduction by soft set  

      technique 
 

Input: The soft set (m, P) 

(i) Construct table for Boolean-valued information 

system with the help of soft set (m, P). 

(ii) Determine 𝛾𝐸(𝑒𝑖) and 𝜎𝑈(𝑝𝑗). 

(iii) Determine the cluster partition U/E according to the 

value of 𝜎𝑈(𝑝𝑖). 

(iv) Delete those parameters and objects for which  

𝛾𝐸(𝑒𝑖) = 0 𝑎𝑛𝑑 1  and 𝜎𝑈(𝑝𝑗) = 0 respectively. 

(v) Now for reduced parameters and objects go to step 

(ii) and repeat the process. 

(vi) If there is no reduction possible then the Boolean-

valued information system table is our desired 

dimensionality reduced table. 

Figure 1(i) represents flowcharts for the above-mentioned 

algorithm.  
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Output: The dimensionality reduced the Boolean-valued 

information table which gives information in decision making. 

Remark: Assume that the number of objects and attributes in 

the fuzzy soft set (m, P) be n and m respectively. For calculating 

𝛾𝐸(𝑒𝑖)  and calculating 𝜎𝑈(𝑝𝑗)  comparing each entry the 

complexity of computing the table is 𝑂(𝑛2).  

 

3.2 Dimensionality reduction using soft Set  
 

In this section example presented by Maji et al. 

(2002) analyzed which was also discussed by Chen et al. 

(2005). “Let U = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} be a set of six houses, E 

= {expensive, beautiful, wooden, cheap, in green surroundings, 

modern, in good repair, in bad repair} be the set of parameters. 

Let Mr. X is interested to buy a house on the subset of the 

following parameter P = {beautiful, wooden, cheap, in green 

surroundings, in good repair}.” 

Consider the set of parameters P represented by 

{𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} symbolically. Boolean-valued information 

system table gives the soft set as in Table 2(a). Now determine 

𝛾𝑃(𝑝𝑖) and 𝜎𝑈(ℎ𝑖) using Table 2(a) given in Table 2(b). As 

𝛾𝑃(𝑝1) and 𝛾𝑃(𝑝3) both are equal to 1, thus remove 𝑝1 and 𝑝3 

thus Table 2(b) reduces to Table 2(c). In Table 2(c) 𝜎𝑈(ℎ5) = 

0, thus remove ℎ5, now Table 2(c) reduces to Table 2(d). Again 

Table 2(d), 𝛾𝑃(𝑝4) = 1, remove 𝑝4, now it reduced to Table 

2(e), again 𝜎𝑈(ℎ4)=0, remove ℎ4 which reduces to Table 2(f). 

Clearly, further reduction of dimensionality is not possible, so 

this is the desired reduction. Here the proposed algorithm can 

eliminate more parameters without changing the decision 

parameter described by Maji et al. (2002). Thus, proposed 

technique is better than that of Maji et al. (2002).

3.3 Reduction of parameter using bipartite graphs 
 

Each Boolean information soft set can be 

characterized by a bipartite graph. Each finite set of objects and 

set of parameters represented by two vertex sets of bipartite 

graph and list of adjacency contains all the 1’s. To reduce 

dimensionality, the algorithm is as follows:  

  

3.4 Algorithm for dimensionality reduction by soft set  

      technique 
 

Input: The soft set (m, P) 

(i) Construct table for Boolean-valued information 

system by using a soft set (m, P). 

(ii) Construct two bipartite graph one with having 1 as 

adjacency and second with adjacency as 0. (where 

one vertex set is a set of objects and the other vertex 

set is a set of parameters) and name them as 

membership and non- membership graphs. 

(iii) Delete parameter from non- membership graph with 

zero degree. 

(iv) Redraw the membership graph. 

(v) Delete objects with degree zero from the 

membership graph. 

(vi) Redraw both membership and non-membership 

graphs go to step (iii) and repeat the process until no 

reductions possible. 
 

Figure 1(ii) represents flowcharts for the above-mentioned 

algorithm. 

 

Table 2. Dimensionality reduction 
 

Table 
2(a) 

U/P p1 p2 p3 p4 p5  
Table 
2(b) 

U/P p1 p2 p3 p4 p5 𝜎𝑈(ℎ𝑖) 

                

 h1 1 1 1 1 1   h1 1 1 1 1 1 1 
 h2 1 1 1 1 0   h6 1 1 1 1 1 1 

 h3 1 0 1 1 1   h2 1 1 1 1 0 4/5 

 h4 1 0 1 1 0   h3 1 0 1 1 1 4/5 
 h5 1 0 1 0 0   h4 1 0 1 1 0 3/5 

 h6 1 1 1 1 1   h5 1 0 1 0 0 2/5 

         𝛾𝑃(𝑝𝑖) 1 ½ 1 5/6 ½  
                

Table 
2(c) 

U/P p1 p2 p3 p4 p5 𝜎𝑈(ℎ𝑖) 
Table 
2(d) 

U/P p1 p2 p3 p4 p5 𝜎𝑈(ℎ𝑖) 

                

 h1  1  1 1 1  h1  1  1 1 1 

 h6  1  1 1 1  h6  1  1 1 1 

 h2  1  1 0 2/3  h2  1  1 0 2/3 
 h3  0  1 1 2/3  h3  0  1 1 2/3 

 h4  0  1 0 1/3  h4  0  1 0 1/3 

 h5  0  0 0 0  h5       
 𝛾𝑃(𝑝𝑖)  1/2  5/6 ½   𝛾𝑃(𝑝𝑖)  3/5  1 3/5  
                

Table 

2(e) 
U/P p1 p2 p3 p4 p5 𝜎𝑈(ℎ𝑖) 

Table 

2(f) 
U/P p1 p2 p3 p4 p5 𝜎𝑈(ℎ𝑖) 

                

 h1  1   1 1  h1  1   1 1 
 h6  1   1 1  h6  1   1 1 

 h2  1   0 ½  h2  1   0 ½ 

 h3  0   1 ½  h3  0   1 ½ 
 h4  0   0 0  h4       

 h5        h5       

 𝛾𝑃(𝑝𝑖)  3/5   3/5   𝛾𝑃(𝑝𝑖)  3/4   3/4  
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Output: Dimensionality-reduced graph which gives 

information in decision making 

Remark: Assume that the number of objects and 

attributes in the fuzzy soft set (m, P) be n and m respectively. 

For drawing both membership and non-membership graph the 

complexity is 𝑂(𝑛). Since graphs are redrawn for maximum of 

'm' attributes, resulting in the complexity of algorithm as 

𝑂(𝑛2). 

 

3.5 Dimensionality reduction using bipartite graph 
 

This section discusses the example in section 3.2 

using bipartite. Let U = {House 1(h1), House 2(h2), House 

3(h3), House 4(h4), House 5(h5), and House 6(h6)} be a set of 

six houses, Let Mr. X is interested to buy a house on the 

following parameters subset P = {beautiful (P1 i.e. 7), wooden 

(P2 i.e. 8), cheap (P3 i.e. 9), in green surroundings (P4 i.e. 10), 

in good repair (P5 i.e. 11)}. Let {7,8,9,10,11} graphically 

represents parameters.  

Consider the set of parameters and objects into the 

two disjoint sets of vertices of bipartite graph and edges shows 

the relationship between them. By using Table 2, we draw two 

types of bipartite graph as represented in Figure 2 (i) 

membership graph and Figure 2(ii) non-membership graph 

below: 
 

 
 

Figure 2. (i) Membership graph (ii)Non-membership graph 

 

Here Figure 2(i) represents sets of those objects 

which satisfy the parametric conditions and Figure 2(ii) 

represents sets of those objects which does not satisfy the 

related parametric condition. From Figure 2 (ii) we see that 

degree of 7 and 9 is zero, we remove these parameters and again 

draw the bipartite graph shown in Figure 3 reduced 

membership graph. 

 
 

Figure 3. Reduced membership graph 

From Figure 3 we see that house 5 has degree zero, 

so delete house 5 and redraw membership and non-membership 

bipartite graphs Figures 4(i) and 4(ii) respectively. 

 

 
 

Figure 4. (i) Reduced membership graph (ii) Reduced non-
membership graph 

 
From reduced non-membership graph Figure 4(ii) we 

see that parameter 10 has degree zero. Thus parameter 10 can 

be deleted from the graph and the further reduced membership 

graph is represented by Figure 5. 
 

 
 

Figure 5. Reduced membership graph 
 

Again, from Figure 5 it is observed that house 4 has 

degree zero. Again, redraw both membership and non-

membership graph represented by Figures 6(i) and 6(ii). 
 

 
 

Figure 6. (i) and (ii): Final reduced graph 

 

Here Figure 6(i) represents sets of those objects 

which satisfy the parametric conditions and Figure 6(ii) 

represents sets of those objects which does not satisfy the 

related parametric condition. In Figure 6(ii) we see that no 

parameter has degree zero thus there is no parameter removal 

and in Figure 6(ii) no object has zero degree thus there is no 

requirement to remove any object. Thus, no further reduction is 

possible. 
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3.6 Case study and comparative analysis 
 

In this case study, the HOD and faculty of Statistics, 

MDU University, Rohtak, India wants to add any software in 

his curriculum for the students. Suggested software’s are 

{SPSS, C++, R, Matlab, C-language, TORA} considering the 

attributes {Job efficient (JE), Latest(L), Useful in 

Statistics(US), Easy to Learn (EL), Curriculum Related (CR)}. 

Based on experts views a soft-set information table is 

constructed (shown in Table 3). To reduce irrelevant 

information and assisting in to take the right decision, the 

proposed algorithm along with some existing algorithm (Maji 

et al., 2002; Rose et al., 2011) were applied to the case study. 

Results based on aforesaid algorithm are given in Table 3. 

According to proposed algorithm it is concluded that the HOD 

and faculty of the Department may choose SPSS and R as a 

curriculum. Results obtained by using the algorithm by Maji et 

al. (2002) the choice values, the reduct-soft-set can be 

represented in Table 3. Here max ci = c1 or c3. Thus, HOD can 

choose either SPSS or R, whereas based on Rose et al. (2011) 

no column presented as zero significance i.e. no parameter and 

zero significance. Thus, algorithm has not eliminated or deleted 

any parameter thus there is no reduction. On Comparing these 

algorithms, the proposed algorithm and Maji et al. (2002) gave 

same results, but the proposed algorithm eliminates parameters 

as well as objects in the given information. However the Maji 

et al. (2002) removes only parameters, not objects. On the other 

hand, Rose et al. (2011) is not able to reduce dimension. Thus, 

it can be concluded that the proposed algorithm is better than 

algorithms given by both Maji et al. (2002) and Rose et al. 

(2011). 

 

4. Conclusions 
This paper discusses the problems of dimensionality 

reduction using soft sets theory and bipartite graphs. An 

alternative definition of a soft set is discussed, and new 

algorithms of dimensionality reduction are presented by using 

proposed techniques which are based on soft sets theory and 

bipartite graphs. The proposed algorithm eliminates avoidable 

parameters and objects via parameter and object importance 

degree. Here we can say that our proposed technique reduces 

more dimensionality and is easily applicable than the existing 

ones. Hence, these algorithms execute more proficiently. The 

proposed algorithm has also been applied to a case study and 

obtained results were compared with algorithms by Maji et al. 

(2002)  and  Rose et al.  (2011)  and  found  that  the  proposed 

algorithm is more efficient than existing algorithms. But in 

various real-life situations the data are not available in binary 

format of 0 and 1. To overcome this problem, future scope of 

work involves dimension reduction methods involving 

hybridization of soft set with other theories. 
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