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Abstract 
 

Recent studies have expanded the focus of machine learning methods like random forests beyond prediction. They have 

found utility in the area of causal inference by using it to estimate propensity scores. It has also been established in the literature 

that tuning the hyperparameter values of random forests can improve the estimates of causal treatment effects. We thus address 

the issue of getting the best out of random forest models by proposing to tune the random forest hyperparameters while 

maximizing covariate balance. We consider variants of tuning based on a model fit criterion and compare with tuning to chase 

covariate balance. In a simulation study and empirical application in two case studies, we studied the performance of different 

tuning implementations, relative to the random forest with default hyperparameters. We find that tuning to chase balance rather 

than model fit when estimating propensity scores induced better balance in the covariates and produced more accurate treatment 

effect estimates. 
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1. Introduction 
 

Randomized control trials (RCTs) are typically the 

best research design to learn if a treatment is effective. 

However, a well-designed randomized trial may be neither 

ethical nor affordable to conduct. In many applied studies, 

there is an increasing interest in the utilization of 

observational data for estimating causal treatment effects. 

Unlike RCTs, the baseline characteristics of the treatment 

groups often differ systematically in observational studies, 

thereby introducing selection bias or confounding. 

Propensity score (PS) methods have by far been the 

most popular approach to minimizing confounding when 

estimating causal treatment effects (Austin, 2014; Dehejia & 

Wahba, 2002; Guo, Barth, & Gibbons, 2006; Guo & Fraser, 

2010; Hirshberg & Zubizarreta, 2017). The popularity of 

propensity scores gave rise to several methodological 

approaches to its estimation. These methods include, but are 

 
not limited to, logistic regression, machine learning methods 

(Breiman, 2001; Hill, 2011; McCaffrey, Ridgeway, & Morral, 

2004; Pirracchio, Petersen, & van der Laan, 2015), entropy 

balancing (Hainmueller, 2012), and covariate balancing 

propensity scores (Imai & Ratkovic, 2014).  

In recent times, machine learning techniques, which 

can be viewed as best suited for prediction problems, have 

also been expanded into the area of statistical inference; i.e. 

estimating treatment effects with corresponding precision. 

Because machine learning techniques are data-adaptive and do 

not require any prior assumptions about the correct functional 

form of the model, they do not rely on the correct 

specification of the PS model. Further, some studies (Austin, 

2012; Lee, Lessler, & Stuart, 2010) showed that ensemble-

based methods, which include random forests (Breiman, 

2001) and generalized boosted models (McCaffrey et al., 

2004) outperformed the traditional logistic regression for 

estimating propensity scores. 

Machine learning algorithms involve several 

hyperparameters that control their model complexities and 

performance. Hyperparameters are preset parameter values of 

a machine learning algorithm. A systematic selection of these 
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hyperparameters, also referred to as hyperparameter tuning, is 

usually done to improve model fit. Though hyperparameter 

tuning has been extensively studied for prediction problems, 

clear guidance is missing for causal inference problems. In 

this study, we mainly focus on random forests. Random 

forests, like generalized boosted models, have been relatively 

more utilized in estimating propensity scores, especially in the 

context of PS weighting.  

The standard method for tuning random forest 

models, like other machine learning techniques, is to select the 

hyperparameters which yield the best model fit. Specifically, 

for random forests, the best model fit usually refers to the 

smallest out-of-bag prediction error estimated using cross-

validation or a holdout sample. Another approach we are 

proposing is to set the tuning parameter so that the resulting 

random forests and associated weights minimize covariate 

imbalance between treatment groups.  

It is pertinent to provide clarity on how model 

tuning impacts covariate balance, as well as accuracy and 

precision of treatment effect estimates. Thus, this paper aims 

to determine the optimal tuning of the random forest model in 

terms of estimation of causal treatment effects. We addressed 

the objective with a small-scale simulation study, and 

previously illustrations with two empirical case studies. 

 

2. Materials and Methods 
 

2.1 Overview of random forests  
 

Random forests are a type of ensemble-based 

methods, which builds on the classification and regression 

trees (CART) algorithm for growing unit trees. Further details 

on CART can be found elsewhere (James, Witten, Hastie, & 

Tibshirani, 2013; Lemon, Roy, Clark, Friedmann, & 

Rakowski, 2003). Random forests aggregate many trees into a 

robust ensemble by taking repeated bootstrap samples from 

the study sample. It then grows a CART-like tree in each of 

these bootstrap samples. However, the respective individual 

trees are restricted to consider only a random subset m of the p 

predictors at each split point. For each study subject or units, 

the estimated outcome is then obtained from averaging the 

predictions from the grown trees (if the goal is regression) or 

from a majority vote (if classification is the goal).   

 

2.2 Estimation of propensity score weights with  

      random forests  
 

Let us assume a binary indicator variable T of 

treatment, and X is a vector of observed covariates. The 

propensity score, defined by π (X) = P (T = 1 | X), 0 < π (X) < 

1, is the probability of a subject or unit receiving the treatment 

of interest, given the observed baseline covariates. The 

propensity scores π (X) are estimated as prediction 

probabilities from the random forest procedure described in 

the preceding section. Additionally, for clarity, a CART 

model of the covariates X on treatment assignment T is 

estimated using the data from each random sample selected 

with replacement. The units or subjects’ propensity scores are 

estimated from each CART model. These propensity scores 

are then averaged across all the individual decision tree 

models to obtain the random forest propensity score for each 

participant. Since the treatment variable is binary, our random 

forest model was based on a classification tree; hence, the 

propensity scores are estimated from the fitted classification 

trees as classification probabilities of the most occurring class. 

Under the assumption of selection on observables, we can 

then use π (X) to estimate the causal estimand of interest.  

Our causal estimands of interest in this study are the average 

treatment effect on the population (ATE) and the average 

treatment effect among the treated (ATT). Given that we aim 

to utilize propensity scores in weighting, the ATE weights, 

also known as the inverse probability of treatment weighting, 

was given by  for the treated group, while  

was assigned for the control group. ATT weights, also known 

as weighting by the odds, were assigned a value of 1 for the 

treated group, while the weights of the control group were 

estimated as  . 

 
2.3 Tuning the random forest model for the  

      estimation of treatment effects 
 

Tuning is the process of searching the optimal 

hyperparameters of a learning algorithm for a considered 

dataset. Though several hyperparameters control the 

randomness of random forests, 3 basic parameters stand out: 

mtry, node size, and sample size. Out of these 3 parameters, 

mtry has the most substantial impact (Probst, Wright, & 

Boulesteix, 2019; van Rijn & Hutter, 2018). mtry denotes the 

number of a randomly drawn subset of variables considered at 

each split in the tree. The node size is the minimum number of 

observations in a terminal node. The sample size is the 

number of randomly drawn observations for training each 

tree.  

The number of trees is not tunable in the classical 

sense; it should be set as high as possible. Other parameters 

are left in their default values of the randomForest package 

(Liaw & Wiener, 2002). For example, the splitting rule 

consists of selecting, out of the mtry candidate variables, the 

split that minimizes the Gini impurity (Berk, 2005). 

In tuning for model fit, we applied an automatic 

tuning procedure that iteratively assessed the cross-validated 

performance of the random forest over a range of plausible 

mtry values. We then chose the mtry value that yielded the 

minimum cross-validated out-of-bag prediction error. This 

was done using the tuneRF function of the randomForest 

package (Liaw & Wiener, 2002) in R (Team, 2016). 

  As stated in the introduction section, we can 

alternatively tune for maximizing covariate balance. It 

involves specifying a metric for assessing covariate balance. 

Here, we utilized the absolute standardized mean difference 

(ASMD) between the two treatment groups for each covariate. 

Some authors suggested that ASMD values above 0.1 may be 

indicative of covariate imbalance (Mamdani et al., 2005; 

Normand et al., 2001). Depending on whether the ATE or 

ATT is of interest, the ASMD is standardized by the standard 

deviation of the pooled sample, and the standard deviation of 

the treated group only. In tuning for optimal covariate 

balance, we select the mtry value that minimized the 

maximum ASMD of the covariates. We achieved this with the 

randomForest package, together with our user-defined 

function in R.  
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2.4 Simulation study 
 

We conducted Monte Carlo simulation experiments 

to examine the performance of the different tuned random 

forest models, relative to random forests using default 

hyperparameters. We replicated a data generating process 

(DGP) with settings similar to previous studies that provide a 

flexible simulation structure and mimics practical problems 

(Abdia, Kulasekera, Datta, Boakye, & Kong, 2017; Leacy & 

Stuart, 2014). Our DGP assumed there were 10 multivariate 

normal distributed baseline covariates X = (X1, …, X10), with 

zero means, unit variance, and varying degrees of correlation 

(0.2 and 0.9) between pairs of covariates. It involves complex 

and non-linear relationships between the treatment indicator T 

and X, as well as outcome Y and X. The assumed true 

propensity score function was generated as 
 

Logit π (X) =  + + + +  +  + 

 + ,                  (1) 

 

where ( ) = (log (1.25), log 

(1.5), log (1.75), log (1.25), log (1.5), log (1.75), log (2)), 

which introduced varying small to large effect sizes, and   

was chosen to ensure that approximately 33% of the 

population received the treatment. Outcome model was of the 

form: 

 

Y =  +  T+  T +  (1- T)  +  (1- T) 

+ εi, εi ~ N (0, ), 

 

where ( , , , , ) = (0, 2, 3, 2, -4).   

We simulated 100 datasets of size 1000 and 

estimated the propensity scores from the different methods 

linearly using all the 10 covariates, even though only a subset 

impacted the true propensity scores. 

We estimated both the ATE (corresponding true 

ATE = 1.99) and ATT (corresponding true ATE = 2.536). For 

each method, we calculated the bias (% deviation from the 

true estimate), root mean squared error (RMSE), standard 

deviation, model-based standard error, and the 95% nominal 

coverage rates (the proportion of times the estimated 95% 

confidence interval includes the true treatment effect). 
 

3. Results 
 

We present the results for the simulation 

experiments according to each of the performance metrics 

explained in the earlier section. We present results under each 

of the ATT and ATE. Figure 1 shows show box plots for the 

maximum ASMD from the ten covariates used in the 

simulation DGP. Our proposed method of tuning to chase 

balance performed best in terms of balance, with maximum 

ASMDs generally lower (range: 0.005 – 0.115; median: 

0.043), regardless of whether interest lies in estimating ATE 

or ATT. However, model fit tuning was much better than no 

tuning. Better covariate balance was generally achieved when 

ATE was of interest than when ATT was estimated.  

When estimating ATE, Table 1 shows that tuning by 

chasing balance outperformed the alternatives in terms of bias, 

standard deviation, and RMSE of the estimated treatment 

effects. The biggest accuracy gain in the two tuning strategies, 

relative to the default random forest model was in the bias of 

ATE. Specifically, tuning by chasing balance and tuning for 

model fit reduced the bias by 64% and 45%, respectively. 

Though there were no substantial differences in the random 

forests models in terms of standard errors and 95% coverage 

rates, tuning for model fit produced the smallest standard 

error.  

When estimating ATT, substantial differences in the 

tuning strategies were only observed in the bias. Model fit 

tuning appeared to have competed favourably in this setting; 

however, model fit tuning did not substantially outperform 

tuning to chase balance. 

 

4. Empirical examples 
 

We present and discuss results from two distinct 

examples estimating ATE and ATT, which illustrate the utility  

 
Table 1. Treatment effect estimates from the simulation study 

 

  

Default 

value 

Tuned value 

(model fit) 

Tuned value 

(chasing balance) 

 

    

ATE % bias 9.54 3.43 5.23 

 
RMSE 0.172 0.158 0.171 

 

Std.Dev 0.143 0.155 0.163 

 

Mean SE 0.326 0.326 0.32 

  
95% CI 
coverage  

100 100 100 

ATT % bias 5.58 7.36 6.82 

 
RMSE 0.236 0.269 0.263 

 

Std.Dev 0.23 0.259 0.255 

 

Mean SE 0.394 0.394 0.38 

  
95% CI  
coverage 

100 100 99 

     

. 

Note: The results are averaged over the simulation runs 
 

ATE 

 

ATT 

 
 

 
 

Figure 1. Maximum ASMD of the covariates in the simulation study. The results are averaged over the simulation runs. 
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of tuning random forests with different approaches to achieve 

accurate and precise estimation of treatment effects. Due to 

computational simplicity, we tuned only the mtry parameter in 

the simulation study. However, here, we extended our tuning 

for model fit to a sequential model-based optimization 

(SMBO) procedure, simultaneously tuning the 3 parameters 

mtry, sample size and node size. We chose the area under the 

ROC curve (AUC) as our performance metric to be optimized. 

This was achieved using the more comprehensive R 

tuneRanger package (Probst et al., 2019). In summary, we 

compared three model fit tuning strategies, namely, tuning 

mtry only for model fit (tuneRF1), SMBO tuning for model fit 

(tuneRF2), and tuning to chase balance (balRF).  We used the 

default hyperparameters of the random forest model (defRF) 

to benchmark our results. 

Like the simulation study, we estimated propensity 

scores from the different methods using all available 

covariates. For each tuning strategy, 1000 trees were used to 

train the random forest. Performance evaluation was based on 

covariate balance and outcome estimation. 

 

4.1 Case study for ATE 
 

We used the different tuning strategies to estimate 

ATE by reanalyzing the Lindner dataset from the R package 

twang (Ridgeway et al., 2020). The dataset comprises 

information on 996 patients who received an initial 

Percutaneous Coronary Intervention (PCI) received at the 

health facility at that time. The treated group are patients who 

received the PCI with additional treatment, abciximab - an 

expensive, high-molecular-weight IIb/IIIa cascade blocker, 

while the control group are those who received the PCI alone. 

Covariates include height, number of vessels involved in 

initial PCI (ves1proc), an indicator for recent acute 

myocardial infarction (acutemi), left ventricle ejection fraction 

(ejecfrac), an indicator for coronary stent insertion (stent), a 

diabetic indicator (diabetic), and gender (female). One of the 

outcome variables was the treatment cost for the first 6 

months. The Lindner study aimed to determine the cost-

effectiveness of abciximab. 

Optimal hyperparameter values for the different 

random forests are as follows: tuneRF1 (mtry = 2), tuneRF2 

(mtry = 5, node size = 17, sample size = 0.514), balRF (mtry = 

2). For tuneRF1 and balRF, their corresponding 

hyperparameters coincided. Figure 2 shows that the three 

tuning strategies performed remarkably well in reducing 

covariate imbalances, with ASMD values well below the 0.1 

threshold. However, balRF and tuneRF2 both performed best 

(max ASMDs = 0.037). Our estimates for the cost difference 

of the first 6 months after treatment was roughly between 623 

and 763 dollars, although tuneRF2 had a higher standard error 

(Table 2). Hence, regardless of the method used to tune the 

random forest models, the abciximab treatment of the first six 

months appears to increase cost, although confidence intervals 

include zero.  

 

4.2 Case study for ATT 
 

To illustrate the estimation of ATT, we used data 

from a merger of the 185 treated group participants from the 

experimental National Supported Work Demonstration 

(NSW) program (LaLonde, 1986) and the 15992 Current 

Population Survey (CPS) control group participants. The 

dataset, which can be found in https://users.nber.org/~ 

rdehejia/data/.nswdata2.html, included the following 

covariates: real earnings in 1974 (re74) and 1975 (re75), age 

(age), number of years of education (edu), indicator variables 

for unemployment in 1974 (u74) and 1975 (u75), marital 

status (married), hispanic race (hisp), and black race (black), 

no high school diploma/degree (nodeg). The NSW program 

aimed to determine if the postintervention earnings increased. 

Optimal hyperparameter values for the different random 

forests are as follows: tuneRF1 (mtry = 2), tuneRF2 (mtry = 3, 

node size = 6, sample size = 0.406), balRF (mtry = 5). Figure 

3 shows that only balRF successfully induced balance in all  
 

 
Figure 2. Covariate balance assessment in the Lindner case study 

 

 
 

Figure 3. Covariate balance assessment in the Lalonde case study 
 

Table 2. Treatment effect estimates for the Lindner case study 

 

 
Rfdef tuneRF1 tuneRF2 balRF 

     

Estimated treatment effect 688 623 763 688 
SE 986 1024 1032 986 

Maximum ASMD 0.045 0.037 0.086 0.037 

95% CI [-1243, 2620] [-1383, 2629] [-1260, 2786] [-1383, 2629] 
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Table 3. Treatment effect estimates for the Lalonde case study 

 

 
Rfdef tuneRF1 tuneRF2 balRF 

     

Estimated treatment effect 552 612 1334 1812 

SE 635 635 674 830 
Maximum ASMD 0.348 0.325 0.152 0.094 

95% CI [-693, 1796] [-633, 1857] [13, 2655] [185, 3439] 
     

 

the covariates, with ASMD values well below 0.1 )max 

ASMD = 0.094(. Our estimates for the increased difference in 

earnings for the year 1978 was in the range of 635 and 830. 

Like the simulation results, balRF had the highest standard 

error )Table 3(. Only balRF and tuneRF2 suggest that among 

the participants assigned to the job training group, the job 

training intervention effect on earnings was statistically 

significant. 
 

5. Discussion 
 

In this study, we examine an important issue in the 

implementation of random forests to estimate propensity score 

weights: optimal tuning of the hyperparameters of a random 

forest model. Do we tune to optimize model fit or tune to 

optimize covariate balance? Results from our simulation and 

reanalysis of data from two case studies suggest that tuning 

random forest models to obtain the best model fit does not 

necessarily result in the best balance in the treatment groups 

and bias reduction in the treatment effect estimates. These 

findings support the findings of previous studies (Griffin, 

McCaffrey, Almirall, Burgette, & Setodji, 2017; Westreich, 

Cole, Funk, Brookhart, & Stürmer, 2011). 

In terms of accuracy of treatment effect estimates, 

our results favoured tuning to chase balance when estimating 

ATE. At the same time, our findings are less clear for ATT 

estimation. However, in terms of precision, the results for 

inferences are less clear. Whether the interest lies in 

estimating ATE or ATT, no method of tuning random forests 

provides smaller standard errors and better coverage than the 

others. Thus, even though the results on inferences do not 

favour any tuning strategy, tuning to chase covariate balance 

may still be preferable because it produces more accurate 

treatment effect estimates. 

This study has its caveats. First, our simulations 

were relatively simple and limited. There is a need to extend 

our simulation study with different but challenging data-

generating processes and scenarios. In particular, the effect of 

increasing confounders, sample size, and noise variables could 

change the direction of this study. Secondly, when tuning for 

model fit in the empirical examples, other performance 

measures could have been used. For example, in the 

sequential model-based optimization (SMBO) tuning, Brier 

score or logarithmic loss could potentially replace AUC.  

As far as we know, this is the very first study to 

investigate the optimal tuning of random forests in the area of 

causal inference. Future studies may consider the use of the 

super learning methodology, which runs a weighted 

combination of several machine learning algorithms to 

estimate propensity scores (Pirracchio et al., 2015; van der 

Laan, Polley, & Hubbard, 2007). It might further be of interest 

to study the gains in improving the performance of this 

method by tuning it to select the optimal combination of 

machine-learners that yields the best balance. 

 

6. Conclusions 
 

In summary, we found that tuning random forests to 

estimate causal treatment effects warrants consideration in 

applied analyses. In particular, the proposed method of tuning 

to chase balance resulted in estimates of average treatment 

effects with low bias. 

 

References 
 

Abdia, Y., Kulasekera, K., Datta, S., Boakye, M., & Kong, M. 

(2017). Propensity scores based methods for 

estimating average treatment effect and average 

treatment effect among treated: A comparative 

study. Biometrical Journal, 59(5), 967-985.  

Austin, P. C. (2012). Using ensemble-based methods for 

directly estimating causal effects: an investigation of 

tree-based G-computation. Multivariate behavioral 

research, 47(1), 115-135.  

Austin, P. C. (2014). A comparison of 12 algorithms for 

matching on the propensity score. Statistics in 

Medicine, 33(6), 1057-1069.  

Berk, R. (2005). An introduction to ensemble methods for 

data analysis. Paper 2005032701, Department of 

Statistics Papers, 2005. Retreived from: http://repo 

sitories.cdlib.org/uclastat/papers/2005032701. 

Breiman, L. (2001). Random forests. Machine learning, 45(1), 

5-32.  

Dehejia, R. H., & Wahba, S. (2002). Propensity score-

matching methods for nonexperimental causal 

studies. Review of Economics and Statistics, 84(1), 

151-161.  

Griffin, B. A., McCaffrey, D. F., Almirall, D., Burgette, L. F., 

& Setodji, C. M. (2017). Chasing balance and other 

recommendations for improving nonparametric 

propensity score models. Journal of Causal 

Inference, 5(2).  

Guo, S., Barth, R., & Gibbons, C. (2006). Propensity score 

matching strategies for evaluating substance abuse 

services for child welfare clients. Children and 

Youth Services Review, 28, 357–383.  

Guo, S., & Fraser, M. W. (2010). Propensity score analysis: 

Statistical methods and applications. Thousand 

Oaks, CA: SAGE Publications. 

Hainmueller, J. (2012). Entropy balancing for causal effects: 

A multivariate reweighting method to produce 

balanced samples in observational studies. Political 

analysis, 20(1), 25-46.  

Hill, J. L. (2011). Bayesian nonparametric modeling for causal 

inference. Journal of Computational and Graphical 

Statistics, 20(1), 217-240.  



L. Amusa et al. / Songklanakarin J. Sci. Technol. 43 (4), 1000-1009, 2021  1009 

 

Hirshberg, D. A., & Zubizarreta, J. R. (2017). On Two 

Approaches to weighting in causal inference. 

Epidemiology, 28(6), 812-816.  

Imai, K., & Ratkovic, M. (2014). Covariate balancing 

propensity score. Journal of the Royal Statistical 

Society: Series B (Statistical Methodology), 76(1), 

243-263.  

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An 

introduction to statistical learning (Volume 112). 

Berlin, Germany: Springer. 

LaLonde, R. J. (1986). Evaluating the econometric 

evaluations of training programs with experimental 

data. The American Economic Review, 604-620.  

Leacy, F. P., & Stuart, E. A. (2014). On the joint use of 

propensity and prognostic scores in estimation of 

the average treatment effect on the treated: a 

simulation study. Statistics in Medicine, 33(20), 

3488-3508.  

Lee, Lessler, & Stuart. (2010). Improving propensity score 

weighting using machine learning. Statistics in 

Medicine, 29(3), 337-346.  

Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & 

Rakowski, W. (2003). Classification and regression 

tree analysis in public health: methodological 

review and comparison with logistic regression. 

Annals of Behavioral Medicine, 26(3), 172-181.  

Liaw, A., & Wiener, M. (2002). Classification and regression 

by random forest. R News, 2(3), 18-22.  

Mamdani, M., Sykora, K., Li, P., Normand, S.-L. T., Streiner, 

D. L., Austin, P. C., . . . Anderson, G. M. (2005). 

Reader's guide to critical appraisal of cohort studies: 

2. Assessing potential for confounding. Bmj, 

330(7497), 960-962.  

McCaffrey, Ridgeway, & Morral. (2004). Propensity score 

estimation with boosted regression for evaluating 

causal effects in observational studies. 

Psychological Methods, 9, 403-425.  

Normand, S.-L. T., Landrum, M. B., Guadagnoli, E., Ayanian, 

J. Z., Ryan, T. J., Cleary, P. D., & McNeil, B. J. 

(2001). Validating recommendations for coronary 

angiography following acute myocardial infarction 

in the elderly: A matched analysis using propensity 

scores. Journal of Clinical Epidemiology, 54(4), 

387-398.  

Pirracchio, R., Petersen, M. L., & van der Laan, M. (2015). 

Improving propensity score estimators' robustness to 

model misspecification using super learner. 

American Journal of Epidemiology, 181(2), 108-

119.  

Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). 

Hyperparameters and tuning strategies for random 

forest. Wiley Interdisciplinary Reviews: Data 

Mining and Knowledge Discovery, 9(3), e1301.  

Ridgeway, G., McCaffrey, D., Morral, A., Griffin, B. A., 

Burgette, L. & Cefalu, M. (2020). Twang: Toolkit 

for weighting and analysis of nonequivalent groups. 

R package version 1.6 Retreived from https:// 

CRAN.R-project.org/package=twang 

Team, R. C. (2016). R: A language and environment for 

statistical computing. Vienna, Austria: R 

Foundation for Statistical Computing. 

van der Laan, M., Polley, E., & Hubbard, A. (2007). Super 

learner. Statistical Applications of Genetics and 

Molecular Biology, 6, Article 25. 

van Rijn, J. N., & Hutter, F. (2018). Hyperparameter 

importance across datasets. Proceedings of the 24th 

ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining. 

Westreich, D., Cole, S. R., Funk, M. J., Brookhart, M. A., & 

Stürmer, T. (2011). The role of the c‐statistic in 

variable selection for propensity score models. 

Pharmacoepidemiology and Drug Safety, 20(3), 

317-320. 


