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Abstract 
 

This paper presents an analytical formula for pricing interest rate swaps (IRSs) in terms of bond prices in which the 

interest rates are assumed to follow the extended Cox-Ingersoll-Ross model. Furthermore, we analytically investigate some 

asymptotic properties of the fair price of IRSs. Numerical tests are provided to demonstrate the accuracy and efficiency of our 

current approach compared with the Monte-Carlo simulations. 
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1. Introduction 
 

An interest rate swap (IRS) is essentially a forward 

contract in which a company agrees to pay cash flows equal to 

interest at a predetermined fixed rate on a notional principal 

for a number of years. At the maturity time of the forward 

contract, the company receives interest at a floating rate on the 

same notional principal for the same period of time. The 

floating rate in many interest rate swap agreements is the 

London Interbank Offer Rate (LIBOR).   

There are various types of IRSs depending on the 

agreement between two companies to exchange cash flows in 

the future (see for example in Fat & Pop, 2015; Hull, 2002; 

Mallier & Alobaidi, 2004; Xiaofeng, Jinping, Shenghong, 

Cristoforo, & Xiaohu, 2010).  This paper focuses the one 

described by Hull (2002), such that an IRS can be 

characterized as the difference between two bonds. In other 

words, the value of the IRS to a company receiving floating 

and paying fixed, denoted by 
swap

V  , satisfies

 

swap fl fix
V B B= -    (1.1) 

where 
fl

B   and 
fix

B  are the values of floating-rate and fixed-

rate bond underlying the swap, respectively.  

We can reasonably assume that the value of this 

swap is zero, i.e., 
swap

0V =  when it is first initiated.  After it 

has been in existence for some time, its value may become 

positive or negative. To calculate the value, we can regard the 

swap either as a long position in one bond combined with a 

short position in another bond or as a portfolio of forward rate 

agreements, whereas banks and other financial institutions 

usually discount cash flow in the over-the-counter market at 

LIBOR rates of interest. In either case, we use LIBOR zero 

rates for discounting. Therefore, 
fix

B  can be written as 

  (1.2)  
for some positive integer 2N ³  where 

0
t  is the initiated time 

of  the IRS, 
i

t  is the time until i th payments are exchanged 

for 1,2, ..., ,i N= L  is the notional principal in swap 
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agreement, 
i

k  is the fixed payment made on payment time 
i

t , and 
i

t
r is the LIBOR zero rate corresponding to maturity time 

i
t . 

 As for the floating-rate bond, we have immediately after a payment date that 
fl

B L= . On the other hand, for the other 

payment dates, we can use the fact that 
fl

B  will equal to L immediately after the next payment date. That is, 
fl 0

B L k= + , 

where 
0

k  is the floating-rate payment (already known) that will be made on the next payment date.  In our setting, the time until 

the next payment date is 
1

t . This implies that the value of the swap today is its value just before the next payment discounted at 

rate 
1

t
r  for time 

1
t :       

                                 

          (1.3) 

By applying (1.2) and (1.3) to (1.1), the value of the swap at time 
N

t can be written as 

  (1.4) 

for 2, 3, ...,N = where 
1 0 1

,K L k k= + -  ( ),
N N

K k L= - + and 
i i

K k= - for 2, 3,..., 1.i N= -  

 

In this paper, we assume that the LIBOR zero rate at time t , denoted by 
t

r  , is a random variable described by the 

extended Cox-Ingersoll-Ross (ECIR) process: 

 

      t t t tdr t t r dt t r dW        (1.5) 

for 
0

[ , ]t t TÎ , 
N

T t= , and 
0 1

0 t t£ < where 
tW is a standard Brownian motion under a probability space  , ,F P  with 

a filtration  
0

.t t t
F


  

In addition, in order to ensure that the stochastic differential equation (SDE) (1.5) has a path-wise unique strong 

solution, in which 
tr  avoids zero a.s. P  for all  0 ,t t T ,  we further assume that    , t    , t and  t  are strictly positive 

smooth and bounded time dependent parameter functions on  0,T  such that the inequality  

 

   

 2

1

2

t t

t

 


    (1.6) 

 holds for all  0, .t T   

 In the context of forward contract pricing when the underlying process is assumed to follow the ECIR process (1.5), the 

fair price of an IRS corresponding to (1.4) at date 
0

t  is defined by the conditional expectation of 
swap

V  with respect to the 

probability measure P as 

 

0

0 0

( )

swap 0 0 swap 0

1

FIRS ( , ; ) : [ ( ) | ] [ | ]i ti

N
t t rP P

t i t

i

r t N E V n F K E e r r
 



      (1.7) 

for the predetermined dates 
0 1 2 3

0
N

t t t t t T£ < < < < < =L  and  LIBOR zero rate 
0 0r   at date 

0
t  where we denote by 

 | ,P

tE X F  the conditional expectation of a random variable X  with respect to the probability measure P  and   field .tF  

It should be noted from (1.7) that the problem of IRS pricing is in fact reduced to computing the conditional 

expectations of the interest rate process 
t

r  of the form:  

 

0

0

( )

0[ | ]i ti
t t rP

tE e r r
 

    (1.8) 

for 1,..., .i N=  

The computation of the conditional expectation (1.8) is non-trivial because it contains a nonlinear function (exponential 

function) of the random variable 
i

t
r  with the result that the distribution of 0

( )
i ti

i

t t r

t
y e

- -

=  might be unavailable in closed form. 

As explained in Thamrongrat and Rujivan (2019), we need to solve the forward Kolmogorov equation associated with the 
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process 
i

t
y in order to determine its transition probability density. The approaches proposed in Rujivan (2009) and Rujivan 

(2010) can be adopted to derive a closed-form expansion for the transition probability density.  However, this is a difficult and 

complicated task in general for arbitrary real-valued functions   , t    , t and  t . Fortunately, we thank for the work of 

Sutthimat, Mekchay, and Rujivan (2019) who extended the results proposed in Rujivan (2016) for computing the conditional 

moments of ECIR processes, to obtain a closed-form formula for the conditional expectations of product of polynomial and 

exponential function of the ECIR process (1.5). 

There are two major contributions of the present paper. First, we provide an analytical formula for the fair price of an 

IRS in which the interest rates are assumed to follow the ECIR model (1.5). More specifically, our analytical approach produces 

the exact values of the conditional expectations in the RHS of (1.7) and avoids the utilization of Monte Carlo (MC) simulations. 

As shown in our numerical results, this can substantially reduce the computational burden which is a major drawback of MC 

methods. Second, our current analytical formula has a simple form, which can be easily used by practitioners. With these 

contributions, our formula presented in the paper should be valuable in both theoretical and practical senses. 

The paper is organized as follows. In Section 2, we present an analytical formula for pricing IRSs under the ECIR 

model (1.5) and derive some asymptotic properties of the fair prices of IRSs. In Section 3, we demonstrate the accuracy and 

efficiency of our current approach compared with the MC simulations. The conclusion is provided in Section 4. 

 

2. An Analytical Formula for Pricing IRSs under the ECIR Model 
 

According to (1.7), we denote  
swap 0 0FIRS ( , ; )r t N  by 

swap 0 0FIRS ( , ; )E r t N  if 
t

r  follows the ECIR model. On the other 

hand, if 
t

r  follows the CIR process that is   ,t     ,t  and  t   for some positive values ,q  ,k  and s , then we 

write 
swap 0 0FIRS ( , ; )C r t N  instead of 

swap 0 0FIRS ( , ; )E r t N . 

 

Theorem 2.1 Suppose that 
t

r  follows the ECIR process (1.5). Then, 

 

0 0

0

( ) ( ; , )

swap 0 0 0

1 1

FIRS ( , ; ) [ | ] ( ; , )i ti i i i

N N
t t r B t t t rE P

i t i i i i

i i

r t N K E e r r K A t t t e
   

 

        (2.1) 

where 
0i i

t t tD = -  and  

 

   (2.2) 

   (2.3) 

for 0, 0,tt ³ > and a Î ¡ . 

 

Proof. First, we compute the conditional expectations of the nonlinear function of the interest rate process as expressed in (1.8). 

By applying Theorem 2 proposed by (Sutthimat et al., 2019) by setting 0, , 0,
i i

n t ta b t= = - D = = D  and  
0

v r= , 

we immediately yield 

 

0 0

0

( ) ( ; , )

0[ | ] ( ; , ) .i ti i i i
t t r B t t t rP

t i i iE e r r A t t t e
   

           (2.4)                          

We replace 0

0

( )

0[ | ]i ti
t t rP

tE e r r
 

  in (1.7) with the RHS of (2.4) to complete the proof.  

Next, we derive some asymptotic properties of the fair price of an IRS as follows. 

 

Corollary 2.1 Suppose that 
t

r  follows the ECIR process (1.5). Then, 

1)
0

swap 0 0
0

1

lim FIRS ( , ; ) ( ; , )
N

E

i i i i
r

i

r t N K A t t t




   .    (2.5) 
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2)
0

swap 0 0lim FIRS ( , ; ) 0.E

r
r t N


           (2.6) 

 

Proof. We directly get (2.5) by taking 0
0r +®  in (2.4). Moreover, from (2.3), we have ( ; , )i i iB t t t   is always be negative 

and this implies (2.6) holds since 

 

    (2.7) 

for all 1,2,..., .i N=   

 

In the case that the model parameters of the ECIR process (1.5) become constants, we simplify the formula (2.1) for the 

CIR process as shown in the following theorem. 

 

Theorem 2.2 Suppose that 
t

r  follows the ECIR process (1.5) such that   ,t     ,t  and  t   for some positive 

values , ,q k  and s satisfying the inequality 2 / 2  .  Then, 

 

2
0 22 2

2
2 2

(2 )

swap 0 0 2 2
1

2
FIRS ( , ; )

(2 )

i i
ti

i i

i

t t
rN

t e tC

i t
i i i

r t N K e
t e t




 


  





  



   
 

    




 
  

    
   (2.8) 

 

where                         . 

 

 

Proof. We apply Theorem 4 proposed by Sutthimat et al. (2019) under the CIR model by setting 

0, , 0,
i i

n t ta b t= = - D = = D  , and  
0

v r= . Thus, we obtain  

 

2
0 22 2

0

0

2
2 2

( ) (2 )

0 2 2

2
[ | ] .

(2 )

i i

ti
i t i ii

i

t t
r

t t r t e tP

t t

i i

E e r r e
t e t




 


  





  



   
 

      



 
   

    

  (2.9) 

To complete the proof, we replace 0

0

( )

0[ | ]i ti
t t rP

tE e r r
 

  in (1.7) with the RHS of (2.9).               

Next, we present some interesting properties of 
swapFIRSE . 

 

Corollary 2.2 Suppose that 
t

r  follows the ECIR process (1.5) such that   ,t     ,t  and  t   for some positive 

values , ,q k  and s satisfying the inequality 2 / 2  .     Assume 1 0
.k k L- ³
 Then swap 0 0FIRS ( , ; )C r t N

is always negative for 

all 0
0.r >

 Moreover, swap 0 0FIRS ( , ; )C r t N
is a strictly increasing function with respect to r0 on (0, )¥ . 

 

 

Proof. Since  
1 0

,k k L- ³  this implies 
1

0.K £  On the other hand, 0
i

K <  for all 2,..., ,i N=  and the inequality  

2

2

2 2

2
1

(2 )it

i it e t









  

 
 

    

holds for 0.
i

tD ³  Therefore, we can conclude from (2.8) that 

swap 0 0FIRS ( , ; ) 0C r t N   for all 
0

0.r >  Next, one can easily verify by applying the first-derivative test  to show that 

swap 0 0FIRS ( , ; )C r t N  is a strictly increasing function with respect to 
0

r on (0, )¥  

 
3. Numerical Tests and Discussions 

 

In this section, we investigate the accuracy of our analytical formula (2.1) through numerical experiments. 

Theoretically, there would be no need to discuss the accuracy of the formula and present numerical results. However, some 

comparisons with the MC simulations may give readers a sense of verification for the newly found solution. This is particularly 
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for some practitioners who are familiar with the MC method and would not trust analytical solutions that may contain algebraic 

errors unless they have seen numerical evidence of such a comparison.  

In our numerical tests, we consider the ECIR process: 

 

   (3.1) 

where 
1

224

0
( )

t
t de

s

k
q s=  and 

1

0
( )

t
t e

s
s s=  with 

0
, ,dk s  and  are positive constants. In our MC simulations, we have 

employed the simple Euler–Maruyama discretization for the ECIR process (3.1) 

 

  (3.2) 

for 1,2,...,i m= , a sample path ,w Î Wand /t T mD =  for some positive integer m , where 
i

t
z is a standard normal 

random variable. We generate M sample paths of 
t

r  on the interval [0, ]T  with 1T =  by setting 
0

0t =  and the parameters 

0.03,k = 0.34,d =  
0

0.01,s = and      We remark here that the current parameter setting makes the inequality (1.6) 

holds for all  0,t T . This implies that the SDE (3.1) has a path-wise unique strong solution, in which tr  avoids zero a.s. P 

for all  0,t T .   

Next, we use M sample paths to compute an approximate of 
swap 0 0FIRS ( , ; )E r t N  defined by  

 

0( ) ( )

swap 0 0 swap

1 1 1

1 1
FIRS ( , ; , ) : ( ) i t ki

M M N
t t rM

i

k k i

r t N M V N K e
M M

 

  

 
   

 
                          (3.3) 

for any sample path .
k

w Î W  We set L = 100 (the notional principal in swap agreement)  and 
0

0k =  and 

1, 1, ...,
i

k i N= = (the fixed payment made on payment time 
i

t ).  

 In our MC simulations with M = 10,000, N is varied from 2, 4, and 12 which refer to a half-year, quarterly, and 

monthly payment in one year, respectively. As displayed in Figure 1, we can clearly observe that the results obtained from our 

formula (2.1) perfectly match the results from the MC simulations for 20 sample points of 
0

(0, 20]r Î  and 2, 4,12N = .  

Moreover, it should be pointed out from Figure 1 

that 
swap 0 0FIRS ( , ; )E r t N  approaches zero as 

0
r  increases to 

infinity for 2, 4,12N = . These results are confirmed by (2.6) 

in Corollary 2.1 such that an IRS is worth zero when the 

interest rate becomes very high.   

In terms of efficiency of our approach, we compare 

the computational times of implementing (2.1) and the MC 

simulations (3.3) for computing averages of relative errors 

(%) from approximating 
swap 0, 0FIRS ( , ;12)E

ir t  by 

swap 0,FIRS ( ,0;12, )M

ir M with 100 sample points, 1

0, 5
,

i
r i=  

for 1,2,...,100.i =  The values of the model parameters are 

kept to be the same as in the previous setting except 
1

s  is 

increased by 4 in order to measure the efficiency. Table 1 

illustrates the computational times for different values of 

sample paths (M) in MC simulations. In contrast to formidable 

computational time of 3131.03 seconds using the MC 

simulations with M = 100,000 to obtain 0.39 % for average of 

relative errors, our implementing (2.1) just consumed 0.12 

seconds; a roughly 25,088 fold reduction in computational 

time for the sample points. Obviously, our approach can 

substantially reduce the computational burden by using the 

MC method and can be implemented efficiently. 

 
 

Figure 1. Comparisons of the fair prices of IRSs obtained by formula 

(2.1) and the MC simulations (3.3) 
 

Table 1. Averages of percentage relative errors and computational 

times of MC simulations 

 

No. of sample 

paths (M) 
Averages of percentage 

relative errors (%) 

Computational 

time (seconds) 

   

10,000 0.62 327.76 

50,000 0.43 1648.12 

100,000 0.39 3131.03 
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4. Conclusions 
 

The paper has provided an analytical formula for 

pricing IRSs in terms of bond prices in which the interest rates 

are assumed to follow the ECIR model. Utilizing our current 

analytical formula, we analytically investigate some 

asymptotic properties of the fair price of IRSs when the initial 

interest rate approaches zero and infinity.  Furthermore, we 

have simplified our IRS pricing formula based on the CIR 

model and derived a monotonic property.  The accuracy and 

efficiency of the current approach have been tested 

demonstrating its superiority over the MC method in terms of 

computational time and effort. 
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