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Abstract 
 

This paper investigates solutions of a recurrence differential equation (RDE) of the form: 
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for 1,2,..., 2k K   and any positive integer 3K ³  subject to the initial conditions (0)
i i

A R= Î R  for 1,2,...,i K=  where 

, ,
i i i

b c aÎ ÎC R  and  
i j

a a¹  for i j¹ . Firstly, we apply Laplace transform to the RDE to obtain a difference equation in 

Laplace space. Our success in performing Laplace inverse transform leads to an explicit solution of the RDE. Finally, we present 

an application of our results by deriving closed-form formulas for the conditional moment, variance, covariance, and correlation 

of quadratic variance diffusion processes which are commonly used for studying model variance or interest rate processes in 

financial engineering. 
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1. Introduction 
 

In this paper we investigate solutions of the 

recurrence differential equation (RDE) of the form: 
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     (1.1) 

 

for 1,2,..., 2k K   and any positive integer 3K ³  subject 

to the initial condition  

 

(0)
i i

A R= Î R    (1.2) 
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for 1,2,...,i K=  where , ,
i i i

b c aÎ ÎC R  and 
i j

a a¹  

for i j¹  and we denote R is the set of real numbers and C  

is the set of complex numbers. 

 Solving RDE is a key to understand complex 

systems. RDE appears in many problems in engineering and 

finance. Multidimensional modeling of diesel engine is 

explained as a system of ordinary differential equation which 

is in an RDE form (Belardini, Bertoli, Corsaro, & D’Ambra, 

2005). Mathematical models of chemical kinetics are in the 

form of RDE (Gobbert, 1970; Edsberg, 1974; Nyengeri, 

Ndenzako, & Nizigiyimana, 2019; Rehman, 2018).  A closed-

form formula for the conditional moments of the extended 

CIR process have been derived by solving an RDE (Rujivan, 

2016). 

 Solutions of a sequence of recurrence relations for 

first-order ordinary differential equations, which we have call 

an RDE, have been investigated by Batukhtin et al. (2017). 

They achieved solutions of a slightly different form of RDE 

compared to RDE (1.1) with a method of successive 

integration. Rujivan (2016) and Thamrongrat and Rujivan 

(2020) adopted a direct integration method to solve RDE (1.1) 

for a special case that the coefficients 
2
, 1,2,...,, 2,

k
c j K

+
= -  

are zero. Utilizing a solution of RDE (1.1) subject to the initial 

condition (1.2) as we shall present later on in this paper, one 

can derive closed-form formulas for the nth conditional 

moment for any non-negative integer n, variance, covariance, 

and correlation of quadratic variance diffusion processes 

(QVD processes) introduced by Filipovic, Gourier, and 

Mancini (2016), which are usually found in modelling 

variance or interest rate processes appeared in financial 

engineering. These formulas can be used in pricing financial 

derivatives when the variance and interest rate processes are 

assumed to follow the QVD process. 

There are two possible analytical approaches to 

solve RDE (1.1), investigating the eigenvalues of the matrix 

corresponding to (1.1) (see Chapter1 in Waltman (2004)) and 

using Laplace transformation (see Chapter 2 in Schiff (1999)). 

The former one is hard to handle due to the large size of K x K  

matrix for a fixed positive integer 3K ³ .. Consequently, 

finding a closed-form of the eigenvalues of the matrix K x K 

corresponding to (1.1) which are used to represent the solution 

is a very difficult task. Alternatively, our proposed method is 

started by applying Laplace transform to RDE (1.1) under the 

initial condition (1.2) to obtain a difference equation in 

Laplace space. Then we apply the solution of linear difference 

equations with variable coefficients presented in Mallik 

(1998) to derive an explicit solution of the obtained difference 

equation. We next simplify the solution and then employing 

Laplace inversion to obtain an explicit solution of RDE (1.1).        

The paper is organized as follows. In Section 2, we 

derive an explicit solution of RDE (1.1) subject to the initial 

condition (1.2). Our results in this section can be used to 

construct Mathematica codes which help us to double check 

the accuracy of the theorems. Examples shown in Section 2 

illustrate how the theorems can be applied. Solution in each 

example can be achieved by our Mathematica programming 

codes or by manual calculation. Applications are given in 

Section 3 including closed-form formulas for the conditional 

moment, variance, covariance, and correlation of QVD 

processes. The conclusions of the paper are stated in Section4. 

 
2. Main Results 

 

We first introduce the index sets used in Mallik (1998) 

to present an explicit solution of RDE (1.1) subject to the initial 

condition (1.2).   

 

Definition 2.1  
 

Let i  and r  be positive integers and k be a non-

negative integer such that 1i k£ +  and 2r k i£ + - . 

We define the following: 

 

   (2.1) 
 

The index 
, ,i k r

L  is the set of r partitions of 2k i+ -  where each entry of the partition is an integer 1 or 2. To illustrate 

the definition, we provide the following examples: 
 

3,4,1 1,1,2

3,4,2

3,4,3

{(1,2),(2,1)}

{(1,1,1)}.

L L

L

L

f= =

=

=

 

 

In terms of programming, each index set can be computed by a computer programme. For fixed positive integers 

, 0,i k   and r, 
, ,i k r

L can be found by using Code 2.1 written by using Mathematica provided in Appendix. 

The important result in Mallik (1998) which is used in this paper is stated as follows. 

 

Proposition 2.1 (Mallik, 1998) 

 
The solution of the difference equation  
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of  2N   with complex coefficients 
, , 1, ,k ja j N , complex forcing term k Nx  , and complex initial values 

1, , Ny y         

is given by  

 

 
 

where  

 

 
for  2 , , , 1.j k N k    

The next theorem provides a solution of RDE (1.1) under the initial condition (1.2). 

 

Theorem 2.1 

 

A solution of RDE (1.1) subject to the initial condition (1.2) can be expressed as 

     (2.2) 

for 0,1,..., 2k K   and any positive integer 3K ³  where    

 
 

and  

 

2

,1

2

,k

k

k

b
d

s a

+

+

=
-

2

,2

2

,k k

k k

k k

c R
d x

s a s a

+

+

= =
- -

. 

 

Proof.  Let 3K ³  be a positive integer. For 1,2, , 2,k K= -K  we let  

2

,1

2

,k

k

k

b
d

s a

+

+

=
-

2

,2

2

,k k

k k

k k

c R
d x

s a s a

+

+

= =
- -

 

where we set 
0 0x  . 

 

 Let ( )
i

y s  be Laplace transform of the unknown function ( )
i

A t ; i.e., 

 
where s is a complex number frequency parameter. Hence, solving RDE (1.1) subject to the initial condition (1.2) is equivalent 

to solving the difference equation with variable coefficients in Laplace space such that 
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1 1

2 ,1 1 ,2 2

( )

( ) ( ) ( )
k k k k k k

y s x

y s d y s d y s x
+ + +

=

= + +
 

 

for 0,1,..., 2k K  . The above linear difference equation with variable coefficients can be solved by using Proposition 2.1 with 

2N   to obtain an explicit solution as   

 

                           (2.3) 

where  

 

 
 

Equation (2.3) can be rewritten as follows: 

 

        (2.4) 

for 0,1,..., 2k K  .  

 

Note that  

 

 

Since 
q r

a a¹ for all q r¹ , the denominators of 

1
,

m

m n mn
k l l l

d
=

+ - å
are distinct.  Moreover, each denominator of 

1
,

m

m n mn
k l l l

d
=

+ - å
cannot be 

i
s a-  because 

1
2

m

m nn
k l l i

=
+ - > -å . Then 

 

       (2.5) 

 

where  

 

 
 

Using the similar idea of getting (2.5), we have 

 

       (2.6) 

where  

 

. 
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By substituting (2.5) and (2.6) in (2.4) and then applying Laplace inverse transformation, we then obtain   

 

 

for 0,1,..., 2k K  . It easy to check that 1

1 1
( )

a t
A t R e= . Therefore, RDE (1.1) subject to the initial condition (1.2) has an 

explicit solution as shown in (2.2).                                                                 

In terms of programming with Mathematica, Code 2.2 provided in Appendix can be used to derive 

( ), 1, 2, ,
k

A t k K= K  as written in (2.2) where we compute ( )
k

A t  by using the module A[k_,t_,La_,Lb_,Lc_,LR_]  in Code 

2.2 such that   

 

 
 

Example 2.1 

 

Consider an RDE with complex coefficients as follows: 

 

 
 

subject to the initial conditions 

 

1 2 3
(0) 1, (0) 2, (0) 3A A A= = =  

where 1i   .  It is obvious that 2

1
( ) tA t e= .  Under index set 

1,0,1L , 
2,1 and 

1,1 can be computed by using Theorem 2.1 as 

follows:   

 

 
 

We then have 

 

 

As shown in (2.2) of Theorem 2.1, 
3
( )A t depends upon the index sets 

2,1,1 1,1,1,L L , and 
1,1,2L . Since 

1,1,2L  is the empty 

set, we get 

 

 
 

By Theorem 2.1, we have the following: 

 Under index set 
2,1,1L , we have 

3

1

2

i



 , 

2 1 i   , 
3

1

2

i



 . 

 Under index set 
1,1,1L , we have 

3,1

1

2
  , 

1,1

1

2
   . 

 Under index set 
2,1,1L , we have 

3,2 2(1 )i   , 
2,2 2(1 )i    . 

Hence,  
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By applying Code 2.2, we have  

 

 
 

The results from Code 2.2 are the same as computed directly from Theorem 2.1.                   

 We note here that the condition 
i j

a a¹  for i j¹  in Theorem 2.1 is sufficient to get Equation (2.5). Without the 

condition, (2.5) will not have a closed simple form because the expression 

1
,

1

m

m n mn

r

k l l l
m

d
=

+ -
= å

Õ in the proof of Theorem 2.1 can be 

written as 

( ) j

j

k
j

j

l

s a-
Õ

 if we have 
j

k  numbers of 
j

a with constant 
j

l .  Although we can write the product of 

( ) j

j

k

j

l

s a-

as the 

summation we obtained in (2.5), the procedure produces a complicated formula, which is not suitable to be written in a limited 

space, due to the partial fraction having to be determined carefully case by case. Therefore, we let the case when some 
j

a  are 

equal to be our future work. 

For some special cases of initial conditions (1.2) that shall be applied to derive a closed-form formula for the 

conditional moments of QVD process in the next section, we deduce the following corollary.  

 

Corollary 2.1 

 

The RDE 

 
'

1 1 1

'

2 2 2 2 1

'

2 2 2 2 1 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
k k k k k k k

A t a A t

A t a A t b A t

A t a A t b A t c A t
+ + + + + +

=

= +

= + +

        (2.7) 

for 1,2,..., 2k K   and any positive integer 3K ³  subject to the initial conditions  

 

          (2.8) 

where , ,
i i i i j

b c a and a a for i jÎ Î ¹ ¹C R ,  has a solution in the form  

 

       (2.9) 
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Proof. The proof is rather trivial by using Theorem 2.1, thus omitted here.          

                    

Example 2.2 

 

Consider an RDE 

 
'

1 1

'

2 2 1

'

3 3 2 1

( ) 2 ( )

( ) 3 ( ) ( )

( ) 4 ( ) ( ) ( )

A t A t

A t A t A t

A t A t A t A t

=

= +

= + +

 

subject to the initial conditions 

 

1 2 3
(0) 1, (0) (0) 0A A A= = = . 

 

By Corollary 2.1,  

 

 
 

3. Application in Determining the Conditional Moments of QVD Processes 
 

Firstly, we derive an explicit solution of a partial differential equation (PDE) by applying Corollary 2.1.  

 

Theorem 3.1 

 

Let n be a positive integer, 0T >  and ( )( , )nu v t be a solution of the PDE: 

 

      (3.1) 

 

for ( , ) (0, ) [0, ]v Tt Î ¥ ´  subject to an initial condition  

 
( )( , 0)n nu v v=            (3.2) 

 

 
 

          (3.3) 

in which the coefficient functions 
1
( ), 0,..., ,

k
A k nt

+
=  satisfy the RDE (2.7) and the initial conditions (2.8) by setting 

 

         (3.4) 

         (3.5) 
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         (3.6) 

 

Proof. We first suppose that  

 

                                                                                                  (3.7) 

Since 
( )( , )nu v t must satisfy the initial condition (3.2). This implies that the coefficient functions 

1
( ), 0,..., ,

k
A k nt

+
=  

satisfy the initial conditions 

 

         (3.8) 

 

By adopting the method proposed in Rujivan (2016), we compute the partial derivatives of  ( )( , )nu v t  appeared in the PDE (3.1) 

based on the formula (3.7) as 

 

           (3.9) 

 

          (3.10) 

 

       (3.11) 

 

Next, we insert the partial derivatives (3.9)-(3.11) into the PDE (3.1) and then collecting the coefficients of 

,n kv -
0, 1, ...k = ± , gives us 

 

       (3.12) 

where 
1 1
, ,

k k
a b

+ +
 and 

1k
c

+
 are given in (3.4)-(3.6), respectively.  

 

 
 

The right-hand side of the last equation has only one term because 
1
( )

N
n k

k
k N

A vt -

+
= -

å has neither ( )NA 
nor

1( )NA  
. From (3.5)-

(3.6), we have that the coefficients 
2 2

0
n n

b c
+ +

= = . From the initial conditions (3.8), it follows that 
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2 1 1 0
( ) ( ) 0 ( ) ( )

n N N
A A A At t t t

+ + -
= = = = = =L L . 

Thus, instead of considering 
1
( )

N
n k

k
k N

A vt -

+
= -

å  where N Î ¥  and 1N n> + , we can just consider 
1

0

( )
n

n k

k
k

A vt -

+
=

å . This 

implies that (3.7) can be rewritten as follows:  

 

 

Hence, the solution of the PDE (3.1) is in the form (3.3) where the coefficient functions 
1
( ), 0, , ,

k
A k nt

+
= K solve the RDE 

(2.11) subject to the initial conditions (2.12). Since b and c are positive real numbers, we have 
i j

a a¹  for i j¹ .  Hence, 

the coefficient functions 
1
( ), 0, , ,

k
A k nt

+
= K can be derived by using (2.9) in Corollary 2.1.   

In terms of financial modelling, QVD processes have been used to model the stochastic behaviours of interest rates as 

proposed in Filipovic et al. (2016). The QVD process 
0

( ( ))
t t

v w
³

can be described by a stochastic differential equation (SDE). 

 

         (3.13) 

 

                                                                                                                                                  is a standard Brownian motion under 

a probability space ( , , )F PW with a filtration  
0
.t t

F


 In some cases of pricing financial derivatives based on a stochastic interest 

rate model, we need to calculate an thn  conditional moment of the variance or interest rate process in the form of 

 

[ | ] [ | ]P n P n

T t T t
E v F E v v v= =  

 

 
 

         (3.14) 

 
 

Applying the Feynman–Kac theorem as presented in Rujivan (2016) but to the QVD process (3.13), we have that 
( )( , )nu v t  satisfies the PDE (3.1) subject to the initial condition (3.2).  It should be remarked here that the initial condition (3.2) 

is required for determining the conditional expectation (3.14) when .t T=  Therefore, an thn  conditional moment of the QVD 

process (3.13) can be derived by using (2.9) in Corollary 2.1 in which the coefficient functions
1
( ), 0, , ,

k
A k nt

+
= K  solve the 

RDE (2.7) subject to the initial conditions (2.8).  

 It should be noted that the QVD process (3.13) becomes the Cox-Ingersoll-Ross (CIR) process when the parameters a  

and c  vanish. In this case, Theorem 2.4 in Rujivan (2016) provides a closed-form formula for the thn conditional moment of CIR 

process for any non-negative integer n. On the other hand, Theorem 3.1 in this paper can be used to derive the conditional 

moment, variance, covariance, and correlation of QVD processes for any real number a and positive real number c  as shown in 

the following examples. 

 

Example 3.1   

 

By applying Theorem 3.1, the 1st conditional moment of QVD process (3.13) can be expressed as 

 

      (3.15) 

 

for T tt = -  and 0 t T£ £ where the coefficient functions can be computed by using   Code 2.2 with setting (3.4)-(3.6) as 
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                                                                        (3.16) 

          (3.17) 

 

Similarly, the 2nd conditional moment of QVD process (3.13) can be expressed as 

 

    (3.18) 

for 0,v > T tt = -  and 0 t T£ £  where the coefficient functions can be computed by using Code 2.2 with setting 

(3.4)-(3.6) as  

 

          (3.19) 

         (3.20) 

 (3.21) 

  

It should be remarked here that when we set , ,b k b k= = -  and 
2a s= for 0s > , the QVD process (3.13) 

becomes a CIR process as presented in Rujivan (2016): 

 

 
 

With the parameter setting, the 1st and 2nd conditional moments of the CIR process can be immediately obtained by using (3.15) 

and (3.18), respectively, where  

 

 
 

and  

 

 
 

 

 

One can verify that our results obtained above are the same as produced by using Theorem 2.4 in Rujivan (2016) for the 1st and 

2nd conditional moments of the CIR process.                   

                                                                                                                                

Example 3.2 
 

The conditional variance of QVD process (3.13) is defined by 
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        (3.22) 

for 0 t T£ £  By the definition of the conditional variance, one can show that 

 

        (3.23) 

for 0v >  and T tt = -   where 
(1)( , )u v t  and 

(2)( , )u v t  are given in  (3.15) and (3.18), respectively. 

 

Example 3.3 
 

The conditional covariance of QVD process (3.13) is defined by 

 

      (3.24) 

for 
1 2

0 t T T£ < £ .  We first consider 

 

   (3.25) 

By using the tower property for the conditional expectation (see on page 29 in Brzezniak and Zastawniak (2000)), we have 

 

        (3.26) 

 

Applying Theorem 3.1, we have 

      (3.27) 
where 

2 2 1
.T Tt = - Inserting (3.17) into (3.16) gives us                                                                                 

 

    (3.28) 

for 0v >  where 
1 1

.T tt = -  By using (3.15)-(3.18), we now obtain      

 

     (3.29) 

where (1)

1
( , )u v t  and (1)

2
( , )u v t  can be computed by using (3.15).                                           

 

Example 3.4 
 

The conditional correlation of QVD process (3.13) is defined by 

 

       (3.30) 

or 
1 2

0 t T T£ < £ By applying (3.23) and (3.29), we immediately obtain that  

    (3.31) 

 

for 0v > where and  
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4. Conclusions 
 

In this paper we have derived an explicit solution of 

RDE (1.1) subject to the initial condition (1.2) by using 

Laplace transform method and solution of difference equation 

proposed by Mallik (1998).  Moreover, we have provided 

Mathematica codes for computing the solutions of RDE (1.1) 

with several examples. Finally, we have demonstrated an 

application of our results by deriving closed-form formulas for 

the conditional moments, variance, covariance, and 

correlation of QVD processes. 
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Appendix 
 

Code 2.1 
L[i_,k_,r_]:=If[k==0,Catenate[Permutations/@IntegerPartitions[k+2- 

i,{r},Range[1,2]]],Catenate[Permutations/@IntegerPartitions[k+2-i,{r},Range[Max[3-i,1],2]]]]; 

 

Code 2.2 

L[i_,k_,r_]:=If[k==0,Catenate[Permutations/@IntegerPartitions[k+2-i,{r},Range[1,2]]],Catenate[Permutations/@IntegerPartitions[k+2-
i,{r},Range[Max[3-i,1],2]]]]; 

 

G1[k_,t_,a_,b_,c_,R_]:=Sum[Sum[Sum[Limit[(R[[1]]/(S-a[[1]]))(b[[2]]/(S-a[[2]]))(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])Product[If[l[[m]]==1,(b[[k+2+l[[m]]-
Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])),(c[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-
Sum[l[[n]],{n,1,m}]]]))],{m,r}]Exp[a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]t],S->a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]]+Limit[(S-a[[1]])(R[[1]]/(S-a[[1]]))(b[[2]]/(S-
a[[2]]))Product[If[l[[m]]==1,(b[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])),(c[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-
Sum[l[[n]],{n,1,m}]]]))],{m,r}]Exp[a[[1]]t],S->a[[1]]]+Limit[(S-a[[2]])(R[[1]]/(S-a[[1]]))(b[[2]]/(S-a[[2]]))Product[If[l[[m]]==1,(b[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-
a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])),(c[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]))],{m,r}]Exp[a[[2]]t],S-
>a[[2]]],{m,1,r}],{l,L[2,k,r]}],{r,1,k}]; 
 

G2[k_,t_,a_,b_,c_,R_]:=R[[k+2]]Exp[a[[k+2]]t]+Sum[Sum[Sum[Limit[(R[[i]]/(S-a[[i]]))(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])Product[If[l[[m]]==1,(b[[k+2+l[[m]]-
Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])),(c[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-
Sum[l[[n]],{n,1,m}]]]))],{m,r}]Exp[a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]t],S->a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]]+Limit[(S-a[[i]])(R[[i]]/(S-
a[[i]]))Product[If[l[[m]]==1,(b[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]])),(c[[k+2+l[[m]]-Sum[l[[n]],{n,1,m}]]]/(S-a[[k+2+l[[m]]-
Sum[l[[n]],{n,1,m}]]]))],{m,r}]Exp[a[[i]]t],S->a[[i]]], {m,1,r}],{l,L[i,k,r]}],{i,1,k+1},{r,1,k+2-i}]; 
 

A[k_,t_,La_,Lb_,Lc_,LR_]:=If[k==1,LR[[1]]Exp[La[[1]]t],G1[k-2,t,La,Lb,Lc,LR]+G2[k-2,t,La,Lb,Lc,LR]]; 


