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Abstract

This paper uses the Stein-Chen method to obtain uniform and non-uniform bounds in the Poisson approximation for the
n-dimensional unit cube random graph. These bounds are re-established under the restriction of Poisson mean 4 =1. One bound
is for the distance of two probability functions and the two other bounds are for the distance of two cumulative distribution
functions. Furthermore, the last two bounds of this study are sharper than those proposed in Teerapabolarn (2014).
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1. Introduction

In the context of graph theory, a unit cube graph or a unit hypercube graph is a cube graph or a hypercube graph whose
edges have length one unit. Consider the n-dimensional unit hypercube graph or n -dimensional unit cube [0,1]" graph with 2"

vertices, each of degree n, with an edge joining pairs of vertices that differ in exactly one coordinate. However, this study focuses
on n -dimensional unit cube random graph by assuming that each of the n2"!edges to be randomly and independently assigned
an inward direction, or outward direction, with the probability of l, and the interesting point of this focusing is the number of
vertices at which all n edges point inward, which is similar to that presented in Arratia, Goldstein and Gordon (1989).

Let Q be the set of all 2" vertices and |Q| size of O and for each jcQ, let I; be the indicator random variable
defined by

_ |1, if vertex i has all of its edges directed inward, (1.1)
" 10, otherwise.
The probability of |; =1 is

p=Pi=)==. (1.2)
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Let X :Z- 0 l; be the number of vertices at which all n edges point inward. However, X is also a non-negative
1€

integer-valued random variable, that is, its value is not certainty. Therefore, the aim of this topic is to estimate the value of X via
probability approximation to the distribution of X. It is noted that if n is large or all pi are small, then the distribution of X can be
approximated by a Poisson distribution with mean 4 = E(X) =1. In the past few years, there have been some research papers

related to the topic of Poisson approximation to the distribution of X, which can be found in Arratia et al. (1989), Teerapabolarn
and Santiwipanont (2007) and Teerapabolarn (2014, 2015). Additionally, the obtained results of all authors mentioned above
were determined by the Stein-Chen method. In the first research paper of this topic proposed by Arratia et al. (1989), they gave a
uniform bound for approximating the distribution of X by a Poisson distribution in the form

olA(x,z)szin (L3)

for every set Ac{0,..2"'}, where Z is the Poisson random variable with mean A1=1 and
dA(X,z) = |P(X eA)-P(Z e A)| is the distance between the distributions of X and Z. The bound in (1.3) was improved to be
a non-uniform bound with the same method by Teerapabolarn and Santiwipanont (2007) as follows:
L JiFM 4 <1,

n

da(X,2)< (2.4)

e ifM,>2,
2" (M a+)

n-1 max{x|C, c A}, if 0 A
where Ac{0,...,2" "}, MA:{min{x|x;A} 0eA

bound in (1.4) to be a sharper bound in the form

' and C, ={0,...,x}. Later, Teerapabolarn (2015) improved the

n . —
dA(X,Z)sz—nmln{l—e L, (15)

max{x|C, c A},if 0 A,
min{x|xe A}-1,if 0 ¢ A
Itis noted that, for A={x, | x, =0,..., 2”*1}, the result in (1.5) becomes

where X, is taken to be 1 when x, =0 and for x, >0, x, ={

-1
D) i x,=0,1,2,
dy (X,Z2)<q 2 . (1.6)
u Cif X, =3,...,2",
2"(%-1) %o
where dx0 (X,Z)=|P(X =X,)—P(Z —x0)| is the distance between the probability functions of X and Z. In the case of

A:CXO, xoe{O,___,zn‘l}, Teerapabolarn (2014) also gave a non-uniform bound on approximation of the cumulative

distribution function of X by a Poisson cumulative distribution function with mean 1 =1 as follows:

-1
dco(x,z)se n (1.7)

2n

and

n_. -1 2(e-2
dCXO(X,Z)SZ—nmln{l—e 1,%,%}, (1.8)

where X, e{L,..., 2"}, From (1.6) and (1.7), a uniform bound for the Komolgorov distance dy (X,Z) is of the form

-1
dK(x,Z)sw, (1.9)
where d, (X,Z)=sup |P(X <xy)—P(Z <x)|-

0<xp<2"t
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In this paper, we also use the Stein-Chen method to obtain the following results: (i) a new non-uniform bound on
Poisson approximation to the probability function of X by improving the bound in (1.6), (ii) new non-uniform and uniform
bounds on Poisson approximation to the cumulative distribution function of X by improving the bounds in (1.8) and (1.9),
respectively, and (iii) comparing all new bounds with the corresponding bounds in (1.6), (1.8) and (1.9).

2. Methods

The Stein-Chen method is the tool for determining the main results. In this study, the main idea of the method is to
determine a new bound in (1.6) and improve the bounds in Teerapabolarn (2014, 2015) by setting A =1 in all steps of this
methodology as follows. The first step, we start with Stein’s equation for Poisson distribution with mean A =1, for given h,

h(x)—-R.(h) = f (x+1) —xf (x), (2.1)

where pl(h) :e’li h(k)% and f and h are bounded real valued functions defined on N_{0} (Chen, 1975). With the
k=0

equation (2.1), the following steps are needed to give new bounds of the main results. For A< NU{0}, let ha:NU{0} >R

be defined by

1,if xeA
ha()=1 " ' 2.2)
A {O,if xe A
From Barbour, Holst and Janson (1992), the solution fA of (2.1) can be expressed as
() = (x=D'e[R (ha~c, ) -RM)R(c )], if x>1, 23
0  if x=0,
where X € N. Similarly, for A={x,} and A= CX0 as X, € NU{0}, fX0 = f{XO} and fcxo can be expressed as
~CX R, ) L if x<x,
o 00 =1 52 RA=he ), if x>, (2.4)
0 ,if x=0
and
(x-Dte[Ry(h, )R@-he, )] . if x<xg,
fe,, () =1 (x=DlelR(hc, JRA-hc, )] ,if x>x, 2.5)

0 if x=0,
respectively. Let Af, (x) = f, (x+1)-f, (x) and Af% (x)= f% (x+1) - fCXO (x). The following lemma gives a

non-uniform bound for ‘AfXO ‘ with respect to the Poisson mean 4 =1, that is used to obtain the first result in the next section.

Lemma 2.1. Let X, € N {0}, then we have the following:

‘AfXO (x)‘ < 5,(%) 2.6)

for every X € N, where
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et if x,=0,

1-et | if xp =1, 2.7)
51()(0): Lot .

T y |f XO = 2,

% , if % >3.

Proof. It can be obtained from Teerapabolarn and Neammanee (2005) when x, = 0. For x, >1, it follows from Barbour et

al. (1992) that fX0 is a negative and decreasing function in X e{l,..., XO} and fx0 is a positive and increasing function in

X e{Xy+1,...}, we then have

|Af, () < fy (%0 +1) = Ty (%)
=R, )+ R )by @24)
14N o1, et x0—11 2.8
=€ Z m'ﬁ‘x—o m ( . )
k=xp+1 k=0
Because
1 0O 1 1 %1 1 1 0 Xo—1
- 1,e" 1 - 1 1
er D at o 2Lk <€ 2wt
k=xp+1 k=0 k=xp+1 k=0
X 1 0 1
-5 X %
k=1 k:X0+l
=1-¢! (2.9)
and

ol
x
o
>
&
P
Il
o
=
I
x
o
=
I
o

-1
__1 1 et
Hence, from (2.8)-(2.10), we obtain
1 1 1 C
i —_e L 1 e
‘AfXO(x)‘ <minil-e”, Lo 1+Xokz -
=0

for every X e N, which yields (2.6).
The bound in (2.6) is used to determine a new non-uniform bound for approximating the probability function of X by a

Poisson probability function. In the next step, we improve the non-uniform bound of Afc with the Poisson mean 4 =1.
X0

Lemma 2.2. Let X,X, € N, then Af. isan increasing functionin X e{X, +1...}.
X
Proof. We have to show that Af. (Xx+1) —Afe  (X) <O forevery x e{x,+1,...}. It follows from (2.5) that
X X
AchO (x+1)- AchO x) = x!ePl(thO I(x+DRA-he ) -R@-hc )]
—-(x-1) !epl(hcXO JIxRA-he )-RQA-he )]
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M

= (x-1)! T{X IECEENEED) (X‘j)ﬂ
0 j=x+2 j=x+1

k

D — . & o
=(x—1)!zek—!{x > (x+1- j)%+ > (x+1- j)j%:l

k=0 j=x+2 j=x+2
=<x—1>!2°ek—‘i[ > (x—j)(x+1—j)ﬂ

k=0 j=x+2

> 0.
Hence, AfCX is an increasing function in x e {x; +1,...}.
0

Lemma 2.3. For X, € N {0}, then the following inequalities hold:

‘Af% (x)‘ < 8,(%) (2.11)

for every x e N, where

-1

e , if % =0,

1-2¢7t if X =1, (2.12)
5,(%) = P

3(1-2.5e77), if x; =2,

ﬁ ,if %5 >3

and

sup |Af¢ (x)‘Se’l. (2.13)
Xp=0 0

Proof. First, we shall show that (2.11) holds for X, >1. Following Teerapabolarn (2008), we have that

x=D!eP (1-h xR, -PR(h >0 ,if x<Xg,
e 0 {( JleR (-, )R (h,) - Rk, ,)] 0 01

(x-1)teR (he, )IRA-he ) -RA-h )<0, if x>,
From (2.14), by using Teerapabolarn (2014) and Lemma 2.2, it follows that Afc is a positive and increasing function in
X

xe{l..., Xy} and Afoo is a negative and increasing function in X e {X, +1,...}. Thus, for x <x,, we have

[afe,, 0] < (%o ~DIeR (L, JDoR (e, ) ~Pilhe, )]
R Yo o0
=(o-Dle D %2 -2 5
j=Xo+1 k=0 k=0
R X049 4
=(%-Dle > ej—[(x0 —1)2’1—,+%} (2.15)
=Xt -
and for X > X, we obtain

[afe,, (9] < X0 teRi(he, RA-Me, )~ (o +DRA-he, )]
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:XO!eieT!{ i ek__ +1) Z k']

j=0 k=xg+1 k=xp+2

N o o®
=!I Y (k—%-DE

j=0  k=xp+2
__ 1 - 2 3
= o D(%+2) Z(:) 5t {1+ e Rl e T ey R }
J:

1 - 1,1
= To D672 Z(:)GT!{“TWL }
J:

e-1 < et
= o067 -~ (2.16)
j=

From which, it follows that for x,;=1, ‘Afc (x)‘<max{1 Zeflle} 1-2¢7% for Xo =2,

‘Af% (x)‘ < max {3(1_25@1) %} 3(1 2 5e~ ) and for X, > 3, from inequality (2.15), we have

(x0 Dxy et i

Xo

(Xo 1)Xo|+ 1
{1 Xo+2 (%0+2)(%+3) L}

(X —1)Xo'+e 1
<— {1 o2t (XO+2)2 +L
|:(XO 1)Xo e l](xo +2)
Xo (Xo +D (%o +1)!
1 {(xOfl)(wa) L Xot2 }

- XO +1 Xo (%o +1) exo (Xo+1)!
st it
Xo +1 exo(X+D)!  Xo(Xo+1)
< ) (2.17)
X +1
X0+2
The last term of (2.17) is obtained from the fact that wz ;?e+2'<1 for every x, e N, this yields
Xg (xg+1) i
= X(O:il)u < (X0+1) <0. Thus, from the  both inequalities in  (2.16) and (2.17), we have
oo+ X
-1 X et 1 |__1 ich impli i i i
‘Afcm (X)‘ < max {m j=Oej_!’m} =% which implies that (2.11) holds. For the inequality (2.13), by following

(2.11), a uniform bound for the supremum of

Afe,, (x)‘ overall steps X, >0 is max {e‘1,1—2e‘1,3(1—2.5e‘1),%,%,...} e,

which gives the inequality (2.13).
The bounds in (2.11) and (2.13) are used to determine new non-uniform and uniform bounds for approximating the
cumulative distribution function of X by a Poisson cumulative distribution with mean A =1.
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3. Main Results

The desired results of this study are uniform and non-uniform bounds for dx0 (X , Z), dc (x , z) and d (X , z),
X0

respectively. The following theorem gives a new non-uniform bound for dx0 (X , Z)_

Theorem 3.1. Let X, € {0, e 2”‘1}, then we have the following:

dXO(X,Z)sM, (3.1)
2n

where 6, (X,) is defined in (2.7).

Proof. Let W, :ZjeBi\{i}Ij’ Y,=X-1; =W, = ZJ'EBi I; and X; =X -1, Substituting X and h by X and h{Xo}

respectively, and taking expectation to (2.1), we obtain

d,, (X.Z) =|E[f(X +D)-Xf(X)], (3.2)

where f = fxO is defined in (2.4). Because each |; takes a value on 0 and 1, we have

E[XFf (X)] =D E[I; f(X; +1)]
ieQ
:Z EL1; f(Y; +1)]+ZE[Ii(f(Wi +Y; +1) - f(Y; +D)]
ieQ ieQ
and

E[f(X+1)—Xf(X)] = > ELpi f (X +D]= 2 [ f (¥ +D)]
—EE[Ii(f (W, +Y, +1I)gj f(Y; +1))]
:E{E[pi(f(x +1)— £ (Y; +1))]
—;Tli(fwi +Y; +)— F (Y +D))[+E[pi f (Y +D) - 1 £ (Y; +D)]}.

Therefore, from (3.2), we obtain

e (X, Z) < SE[p(F(X +1) = £ (Y +1)] - E[1;(F W; +Y; +1) — £ (Y; +1))]

ieQ
+E[pi f (Y +D -1 F (Y +D)]. (3.3)

Following Arratia et al. (1989), for each i e Q, we set B; ={j e Q:|i— j|=1 < Q to be the neighborhood of i
such that |; and | are independent for every j g B;. Itimplies that |, is independent of | ; with |i— j[>1. For |i—j|=1,
because P(I;, =1,1; =1)=0, it gives E(l;1;)=0. From these facts, we have E[pi fOG+D -1 (Y, +1)]=0 and
E[1;(f W, +Y; +1)— f(Y; +1))] =0, then the result in (3.3) becomes

dy, (X,Z) <3 E[pi(f(X +D)— f(¥; +D))|
ieQ
<sup|Af () D] piE[l; +W;]
x21 ieQ
<6, (%) D] pE[; +W] by (2:6))

ieQ
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Because ZieQ P E[|i +Wi] =" npi2 = 21”' the result in (3.1) is obtained.

New non-uniform and uniform bounds for d (X , Z) and dy (X , Z) are also obtained as follows:
X0

Theorem 3.2. With the above definitions, we have the following inequalities:

de (X,Z)SM (3.4)

X0 2n !

where X, €{L,...,2" '} and 5,(x,) is defined in (2.12), and

eln

(3.5)
2!’]

dg (X,Z2)<

Proof. Let W, :ZjeBi\{i}Ij’ Y, =X 1, =W, ZijBi I; and X;=X~1I;. Substituting X and h by X and hCXO

respectively, and taking expectation to (2.1), we obtain
de (X,Z) = E[f X +1)— Xfe (X }
0o (X2)  =[E[ fe, (X +D-Xfc, (X)
Using the same arguments detailed in the proof of Theorem 3.1, we have

de, (X,Z)  <sup|af ()| pELL; +W]
x>1

ieQ

=sup|Af (x)|

n
x>1 2_n
s% (by (2.11))
and

dy (X,2) < sup ARO[ pEL + W]

0<xp<2" ™t x>1 ieQ
-1
<® N by
2I’I

which gives both results (3.4) and (3.5).

Remark. 1. The results in Theorems 3.1 and 3.2 give accurate Poisson approximations when n is large.
2. Because e 1<l—el % <1-e™! for Xp =0,2 and Xi < ﬁ for x, =3,...,2" the bound in Theorem
0 0~
3.1 is sharper than that expressed in (1.6).

3. Because &, (X,) < min{l_e—1 2(e=2) 1

T X

} and efl <1—e71, the bounds in Theorem 3.2 are sharper than those

proposed in (1.8) and (1.9) that are in Teerapabolarn (2014).

4. Numerical Examples

We give two numerical examples for each bound on Poisson approximation of the results in Theorems 3.1 and 3.2. We
compare the bounds in Theorems 3.1 and 3.2 with the corresponding bounds in (1.6), (1.8) and (1.9). For percentages of

old bound—new bound
old bound

measuring each improvement of the approximation.

improvement for each comparison, we use

x100% , denoted by improvement (%), to be the formula for
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Example 4.1. For n = 4, non-uniform and uniform bounds together with percentages of each improvement on Poisson
approximation to the distribution of the number of vertices at which all 4 edges point inward are presented in the following table.

Table 1.
Non-uniform bounds Uniform bounds
Xo Improvement Improvement Improvement
(1.6) (3.1) %) 1.8) (3.9 %) (1.9) (3.5) %)
0 0.158030 0.091970 41.80 0.091970  0.091970 0
1 0.158030  0.158030 0 0.158030 0.066060 58.20
2 0.158030 0.113990 27.87 0.119714  0.060226 49.69
3 0.125000 0.083333 33.33 0.083333  0.062500 25.00
4 0.083333  0.062500 25.00 0.062500  0.050000 20.00 0.158030 0.091970 41.80
5 0.062500  0.050000 20.00 0.050000 0.041667 16.67
6 0.050000 0.041667 16.67 0.041667 0.035714 14.29
7 0.041667 0.035714 14.29 0.035714  0.031250 12.50
8 0.035714 0.031250 12.50 0.031250 0.027778 11.11

Example 4.2. For n = 6, non-uniform and uniform bounds together with percentages of each improvement on Poisson
approximation to the distribution of the number of vertices at which all 6 edges point inward are as follows:

Table 2.
Non-uniform bounds Uniform bounds
Xo Improvement Improvement Improvement
(1.6) (3.1) %) (1.8) (3.9 %) (1.9) (3.5) %)
0 0.059261  0.034489 41.80 0.034489  0.034489 0
1 0.059261  0.059261 0 0.059261  0.024773 58.20
2 0.059261 0.042746 27.87 0.044893  0.022585 49.69
3 0.046875  0.031250 33.33 0.031250 0.023438 25.00
4 0.031250  0.023438 25.00 0.023438 0.018750 20.00
5 0.023438  0.018750 20.00 0.018750 0.015625 16.67
6 0.018750  0.015625 16.67 0.015625 0.013393 14.28
7 0.015625 0.013393 14.28 0.013393  0.011719 12.50
8 0.013393  0.011719 12.50 0.011719 0.010417 11.11
9 0.011719  0.010417 1111 0.010417  0.009375 10.00
10 0.010417  0.009375 10.00 0.009375  0.008523 9.09
11 0.009375  0.008523 9.09 0.008523 0.007813 8.33
12 0.008523  0.007813 8.33 0.007813  0.007212 7.69
13 0.007813  0.007212 7.69 0.007212  0.006696 7.15
14 0.007212  0.006696 7.15 0.006696  0.006250 6.66
15 0.006696  0.006250 6.66 0.006250  0.005859 6.26
16 0.006250  0.005859 6.26 0.005859  0.005515 5.87
17 0.005859  0.005515 5.87 0.005515  0.005208 5.57 0.059261  0.034489 41.80
18 0.013393  0.011719 12.50 0.011719  0.010417 1111
19 0.005208 0.004934 5.26 0.004934  0.004688 4.99
20 0.004934  0.004688 4.99 0.004688  0.004464 4.78
21 0.004688 0.004464 4.78 0.004464  0.004261 4.55
22 0.004464  0.004261 455 0.004261 0.004076 4.34
23 0.004261  0.004076 4.34 0.004076  0.003906 4.17
24 0.004076  0.003906 4.17 0.003906 0.003750 3.99
25 0.003906  0.003750 3.99 0.003750  0.003606 3.84
26 0.003750  0.003606 3.84 0.003606 0.003472 3.72
27 0.003606  0.003472 3.72 0.003472  0.003348 3.57
28 0.003472  0.003348 3.57 0.003348 0.003233 3.43
29 0.003348 0.003233 343 0.003233  0.003125 3.34
30 0.003233  0.003125 3.34 0.003125 0.003024 3.23
31 0.003125 0.003024 3.23 0.003024  0.002930 3.11
32 0.003024  0.002930 3.11 0.002930 0.002841 3.04
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The numerical results in Examples 4.1 and 4.2 are
indicated that each Poisson approximation to be quite efficient
when n is large, which satisfies the remark mentioned above.
By comparing the new and old bounds, see the three columns
of improvement (%) in Tables 1 and 2, it is seen that the non-
uniform bound in Theorem 3.1 is sharper that reported in (1.6)
and the bounds in Theorem 3.2 are sharper than those
proposed in (1.8) and (1.9) or in Teerapabolarn (2014).

5. Conclusions

The uniform and non-uniform bounds in the Poisson
approximation for the n-dimensional unit cube random graph
were re-established under the Poisson mean A4 =1 by using
the Stein-Chen method. All results of this study give three
improvements of Poisson approximation as follows:

(i). For probability function approximation, the new
bound is sharper than the old bound with percentages of
improvement 41.8%, 0%, 27.87% for X =012 and %%%

for x, > 3.

(ii). For cumulative probability approximation, the
new non-uniform bound is sharper than the old non-uniform
bound with percentages of improvement 58.20%, 49.69% for
100%
Xg+1
uniform bound is also sharper than the old uniform bound
with percentage of improvement 41.80%.

Moreover, for cumulative probability
approximation, the two bounds in this study, non-uniform and
uniform bounds, are sharper than those proposed in
Teerapabolarn (2014), including both theoretical and
numerical results.

x0=1,2 and for Xp23. In addition, the new
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