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Abstract 
 

This paper uses the Stein-Chen method to obtain uniform and non-uniform bounds in the Poisson approximation for the 

n-dimensional unit cube random graph. These bounds are re-established under the restriction of Poisson mean 1.   One bound 

is for the distance of two probability functions and the two other bounds are for the distance of two cumulative distribution 

functions. Furthermore, the last two bounds of this study are sharper than those proposed in Teerapabolarn (2014). 
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1. Introduction 
 

In the context of graph theory, a unit cube graph or a unit hypercube graph is a cube graph or a hypercube graph whose 

edges have length one unit. Consider the n-dimensional unit hypercube graph or n -dimensional unit cube [0,1]n  graph with 2n  

vertices, each of degree n, with an edge joining pairs of vertices that differ in exactly one coordinate. However, this study focuses 

on n -dimensional unit cube random graph by assuming that each of the 12nn  edges to be randomly and independently assigned 

an inward direction, or outward direction, with the probability of 
1
2

, and the interesting point of this focusing is the number of 

vertices at which all n edges point inward, which is similar to that presented in Arratia, Goldstein and Gordon (1989).  

Let   be the set of all 2n  vertices and | |  size of   and for each ,i let 
iI  be the indicator random variable 

defined by  

 

1  , if vertex  has all of its edges directed inward, 

0 , otherwise.
i

i
I


 


        (1.1) 

The probability of 1iI   is  

 
1

2
( 1) .

ni ip P I             (1.2) 
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Let 
ii

X I


 be the number of vertices at which all n edges point inward. However, X is also a non-negative 

integer-valued random variable, that is, its value is not certainty. Therefore, the aim of this topic is to estimate the value of X via 

probability approximation to the distribution of X. It is noted that if n is large or all pi are small, then the distribution of X can be 

approximated by a Poisson distribution with mean ( ) 1.E X    In the past few years, there have been some research papers 

related to the topic of Poisson approximation to the distribution of X, which can be found in Arratia et al. (1989),  Teerapabolarn 

and Santiwipanont (2007) and Teerapabolarn (2014, 2015). Additionally, the obtained results of all authors mentioned above 

were determined by the Stein-Chen method. In the first research paper of this topic proposed by Arratia et al. (1989), they gave a 

uniform bound for approximating the distribution of X by a Poisson distribution in the form  

 

 ,
2

A n

n
d X Z                      (1.3)  

for every set 1{0,..., 2 }nA  , where Z is the Poisson random variable with mean 1   and 

 , ( ) ( )Ad X Z P X A P Z A     is the distance between the distributions of X and Z. The bound in (1.3) was improved to be 

a non-uniform bound with the same method by Teerapabolarn and Santiwipanont (2007) as follows: 

 

 
 

 

2

2 ( 1)

         , if 1,

,
, if 2,

n

n
A

n
A

A en
A

M

M

d X Z
M



 


 




                  (1.4) 

 where 1{0,..., 2 },nA   
max{ | } , if 0 ,

min{ | }     , if 0

x
A

x C A A
M

x x A A

 
 

 

 and {0,..., }.xC x  Later, Teerapabolarn (2015)  improved the 

bound in (1.4) to be a sharper bound in the form   

  

   1 1, min 1 , ,
2 A

A xn

n
d X Z e                    (1.5) 

where Ax  is taken to be 1 when 0Ax   and for 0,Ax   
max{ | } , if 0 ,

min{ | } 1, if 0 .

x
A

x C A A
x

x x A A

 
 

  

 

It is noted that, for 1
0 0{ | 0,..., 2 },nA x x   the result in (1.5) becomes 

    

 

1

0

0

(1 ) 
0

2

1
0

2 ( 1)

 ,  if  0,1,2,
,

 ,  if  3,..., 2 ,

n

n

n e

x nn

x

x
d X Z

x







 


 




         (1.6) 

where  
0 0 0, ( ) ( )xd X Z P X x P Z x     is the distance between the probability functions of X and Z. In the case of 

0
,xA C

1
0 {0,..., 2 },nx   Teerapabolarn (2014) also gave a non-uniform bound on approximation of the cumulative 

distribution function of X  by a Poisson cumulative distribution function with mean 1   as follows: 

 
 

 

 
0

1

,
2

C n

e n
d X Z



                     (1.7) 

and 

 

   
0 00

2( 2)1 1
1

, min 1 , , ,
2x

e
C x xn

n
d X Z e




                  (1.8) 

where 
1

0 {1,..., 2 }.nx   From (1.6) and (1.7), a uniform bound for the Komolgorov distance  ,Kd X Z  is of the form  

  

 
1(1 )

, ,
2

K n

e n
d X Z


                   (1.9) 

where  
1

0

0 0
0 2

, sup ( ) ( ) .
n

K
x

d X Z P X x P Z x
 

     
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In this paper, we also use the Stein-Chen method to obtain the following results: (i) a new non-uniform bound on 

Poisson approximation to the probability function of X by improving the bound in (1.6), (ii) new non-uniform and uniform 

bounds on Poisson approximation to the cumulative distribution function of X by improving the bounds in (1.8) and (1.9), 

respectively, and (iii) comparing all new bounds with the corresponding bounds in (1.6), (1.8) and (1.9). 

 

2. Methods 
  

The Stein-Chen method is the tool for determining the main results. In this study, the main idea of the method is to 

determine a new bound in (1.6) and improve the bounds in Teerapabolarn (2014, 2015) by setting 1   in all steps of this 

methodology as follows. The first step, we start with Stein’s equation for Poisson distribution with mean 1  , for given h,  

  

1( ) ( ) ( 1) ( )h x P h f x xf x    ,               (2.1)  

where 1 1
1 !

0

( ) ( )
k

k

P h e h k






   and f and h are bounded real valued functions defined on N {0}  (Chen, 1975). With the 

equation (2.1), the following steps are needed to give new bounds of the main results. For N {0}A  , let : N {0} RAh    

be defined by 

  

1  , if  ,
( )

0 , if  .
A

x A
h x

x A


 



                  (2.2) 

From Barbour, Holst and Janson (1992), the solution Af  of (2.1) can be expressed as 

                   

1 11 1 1( 1)! [ ( ) ( ) ( )] , if  1,
( )

0                                                            , if  0,

x xA C A C

A

x e P h P h P h x
f x

x

   
 



          (2.3) 

where N.x  Similarly, for 
00{ } and xA x A C  as 

0 N {0}x   , 
0 0{ }x xf f  and 

0xCf
 can be expressed as 

  

 

10

0 10

( 1)!
1 0!

( 1)!
1 0!

( )  , if  ,

( ) (1 ), if  ,

 0                        , if  0

x

x

x
Cx

x
x Cx

P h x x

f x P h x x

x









 



  





           (2.4) 

and 

  

1 0

10 0

1 1 0

1 1 0

( 1)! [ ( ) (1 )]  , if  ,

( ) ( 1)! [ ( ) (1 )]  , if  ,

 0                                             , if  0,

x x

x x x

C C

C C C

x e P h P h x x

f x x e P h P h x x

x





  


   




     (2.5) 

respectively. Let 
0 0 0
( ) ( 1) ( )x x xf x f x f x     and 

0 0 0
( ) ( 1) ( ).

x x xC C Cf x f x f x     The following lemma gives a 

non-uniform bound for 
0

,xf  with respect to the Poisson mean 1,  that is used to obtain the first result in the next section. 

 

Lemma 2.1. Let 
0 N {0},x    then we have the following: 

 

0 1 0( ) ( )xf x x                 (2.6) 

for every N,x  where  
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1

0

1
0

1
0

1 0 1
03

1
0

       ,   0,

1   ,   1,
( )

    ,   2,

        ,   3.

e

x

e if x

e if x
x

if x

if x

 







 

 

 





          (2.7) 

 

Proof. It can be obtained from Teerapabolarn and Neammanee (2005) when 0 0.x   For 
0 1,x   it follows from Barbour et 

al. (1992) that 
0xf  is a negative and decreasing function in 

0{1,..., }x x  and 
0xf  is a positive and increasing function in 

0{ 1,...},x x   we then have 

 

0
( )xf x  

0 00 0( 1) ( )x xf x f x    

   
100 0

1
1 1(1 ) ( )

x xC Cx
P h P h


   (by (2.4)) 

   
0

1

0

0

1
1 1 1

! !
1 0

.
x

e
k x k

k x k

e





  

          (2.8) 

Because  

              
0

1

0

0

1
1 1 1

! !
1 0

x
e

k x k
k x k

e





  

   
0

0

1
1 1 1

! ( 1)!
1 0

x

k k
k x k

e





  

 
  

  
   

    
0

1 1

0

! !
1 1

x
e e
k k

k k x

 


  

 
  
  
   

    11 e            (2.9) 

and  

              
0

1

0

0

1
1 1 1

! !
1 0

x
e

k x k
k x k

e





  

   

0
1 1

0 0

0

1
1 1

1 ! !
0

x
e e
x k x k

k x k

 



 

    

    
0 0

1 1

0 0

1 1
1 1

1 ! !
0 0

1
x x

e e
x k x k

k k

 
 


 

 
    

 
   

    
0

1

0 0

1
1 1

1 !
0

1 .
x

e
x x k

k







 
   

 
       (2.10) 

Hence, from (2.8)-(2.10), we obtain  

                 
0
( )xf x  

0
1

0 0

1
1 1 1

1 !
0

min 1 , 1
x

e
x x k

k

e








   
     

   
  

for every N,x  which yields (2.6).           

The bound in (2.6) is used to determine a new non-uniform bound for approximating the probability function of X by a 

Poisson probability function. In the next step, we improve the non-uniform bound of 
0xCf  with the Poisson mean 1  . 

 

Lemma 2.2. Let 0, N,x x    then 
0xCf is an increasing function in 0{ 1,...}.x x   

Proof. We have to show that 
0 0

( 1) ( ) 0
x xC Cf x f x     for every 

0{ 1,...}.x x   It follows from (2.5) that 

 

0 0
( 1) ( )

x xC Cf x f x    
10

1 1 1! ( )[( 1) (1 ) (1 )]
x x xC C Cx eP h x P h P h


      

        
10

1 1 1( 1)! ( )[ (1 ) (1 )]
x x xC C Cx eP h xP h P h


      
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0

1
1 1

! ! !
0 2 1

( 1)! ( 1 ) ( )
x

e
k j j

k j x j x

x x x j x j


 

    

 
      

  
    

    
0

1
1 1

! ! !
0 2 2

( 1)! ( 1 ) ( 1 )
x

e
k j j

k j x j x

x x x j x j j


 

    

 
       

  
    

    
0

1
1

! !
0 2

( 1)! ( )( 1 )
x

e
k j

k j x

x x j x j




  

 
     

  
   

    0.  

Hence, 
0xCf is an increasing function in 

0{ 1,...}.x x          

 

Lemma 2.3. For 
0 N {0},x    then the following inequalities hold: 

 

0
2 0( ) ( )

xCf x x               (2.11) 

for every N,x  where  

 

0

1
0

1
0

2 0 1
0

1
01

                ,   0,

1 2          ,   1,
( )

3(1 2.5 ) ,   2,

              ,   3
x

e if x

e if x
x

e if x

if x











 

 

 
 




        (2.12) 

and 

 

 
0

0

1

0

sup ( ) .
xC

x

f x e



             (2.13) 

 

Proof. First, we shall show that (2.11) holds for 0 1.x   Following Teerapabolarn (2008), we have that  

         

0
( )

xCf x  10

10

1 1 1 0

1 1 1 0

( 1)! (1 )[ ( ) ( )] 0      ,  if  ,

( 1)! ( )[ (1 ) (1 )] 0 ,  if  .

x x x

x x x

C C C

C C C

x eP h xP h P h x x

x eP h xP h P h x x





    
 

     

   (2.14) 

From (2.14), by using Teerapabolarn (2014) and Lemma 2.2, it follows that 
0xCf is a positive and increasing function in 

0{1,..., }x x  and 
0xCf is a negative and increasing function in 

0{ 1,...}.x x   Thus, for 
0,x x  we have 

 

0
( )

xCf x
10 0 0

0 1 0 1 1( 1)! (1 )[ ( ) ( )]
x x xC C Cx eP h x P h P h


      

  
0 0

1 1 1

0

1

0 0! ! !
1 0 0

( 1)!
x x

e e e
j k k

j x k k

x e x
  



   

 
   

  
        

  
0

1 1 1

0

0

0 0! ! !
1 0

( 1)! ( 1)
x

e e e
j k x

j x k

x e x
  



  

 
    

  
         (2.15) 

and for 0,x x  we obtain 

 

0
( )

xCf x
10 0 0

0 1 1 0 1! ( )[ (1 ) ( 1) (1 )]
x x xC C Cx eP h P h x P h


        
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0

1 1 1

0 0

0 0! ! !
0 1 2

! ( 1)
x

e e e
j k k

j k x k x

x e x
  

 

    

 
   

  
     

   
0

1

0

1
0 0! !

0 2

! ( 1) .
x

e
j k

j k x

x k x




  

             

    
0

1

0 0 0 0 0

31 2
( 1)( 2) ! 3 ( 3)( 4)!

0

1
x

e
x x j x x x

j



    


    L    

    
0

1

0 0

1 1 1
( 1)( 2) ! 2 3!

0

1
x

e
x x j

j



 


    L    

   

0
1

0 0

1
( 1)( 2) !

0

.
x

e e
x x j

j


 



         (2.16) 

From which, it follows that for 
0 1,x    1

0

1 11
3

( ) max 1 2 , 1 2 ,
x

e
Cf x e e

       for 
0 2,x   

    
1

0

2.5(1 )1 1

12
( ) max 3 1 2.5 , 3 1 2.5

x

e
Cf x e e

       and for 0 3,x   from inequality (2.15), we have 

 

        
0

( )
xCf x

0

1
0 0 1

!
0 1

( 1) !
j

j x

x x e

x

 

 

 
   

       
0 0 0

1
0 0 1 1

2 ( 2)( 3)
0

( 1) !
1

x x x

x x e

x



  

 
   L  

     2
0 0

1
0 0 1 1

2 ( 2)
0

( 1) !
1

x x

x x e

x



 

 
   L  

    

1
0 0 0

0 0 0

( 1) ! ( 2)

( 1)( 1)!

x x e x

x x x

   
 

 
 

     0 0 0

0 0 0 0

( 1)( 2) 2

( 1) ( 1)!
0

1

1

x x x

x x ex xx

  

 
 


 

     0

0 0 0 0

2 2
( 1)! ( 1)

0

1
1

1

x

ex x x xx



 
  


 

    

0

1
.

1x



                     (2.17) 

The last term of (2.17) is obtained from the fact that 

20
( 1)!0 0 0

2
0

( 1)0 0

2

2 !
1

x

ex x

x x

x

ex








   for every 

0 N,x   this yields 

0

0 0 0 0

2 2
( 1)! ( 1)

0.
x

ex x x x



 
   Thus, from the both inequalities in (2.16) and (2.17), we have 

 10

0 0 0 00

1 1 1
( 1)( 2) ! 1 10

( ) max , ,
x

xe e
C x x j x xj

f x


   
    which implies that (2.11) holds. For the inequality (2.13), by following 

(2.11), a uniform bound for the supremum of 
0

( )
xCf x  overall steps 

0 0x   is  1 1 1 11 1
4 5

max ,1 2 ,3(1 2.5 ), , ,... ,e e e e       

which gives the inequality (2.13).            

 The bounds in (2.11) and (2.13) are used to determine new non-uniform and uniform bounds for approximating the 

cumulative distribution function of X by a Poisson cumulative distribution with mean 1.   
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3. Main Results 
 

The desired results of this study are uniform and non-uniform bounds for  
0

, ,xd X Z  
0

,
xCd X Z  and  , ,Kd X Z  

respectively. The following theorem gives a new non-uniform bound for  
0

, .xd X Z

  

Theorem 3.1. Let  10 0,..., 2 ,nx    then we have the following: 

 

 

 
0

1 0( )
, ,

2
x n

x n
d X Z


                   (3.1) 

where 
1 0( )x  is defined in (2.7). 

 

Proof. Let 
\{ }

,
i

i jj B i
W I




i
i i i jj B

Y X I W I


     and .i iX X I   Substituting x  and h  by X and 
0{ }xh  

respectively, and taking expectation to (2.1), we obtain 

 

 
0

,xd X Z   ( 1) ( ) ,E f X Xf X         (3.2) 

where 
0xf f is defined in (2.4). Because each 

iI  takes a value on 0 and 1, we have  

 

[ ( )]E Xf X  [ ( 1)]i i

i

E I f X


   

   [ ( 1)] [ ( ( 1) ( 1))]i i i i i i

i i

E I f Y E I f W Y f Y
 

         

and  

 

 ( 1) ( )E f X Xf X   [ ( 1)] [ ( 1)]i i i

i i

E p f X E I f Y
 

      

        [ ( ( 1) ( 1))]i i i i

i

E I f W Y f Y


      

      ( ( 1) ( 1))i i

i

E p f X f Y


     

           ( ( 1) ( 1)) ( 1) ( 1) .i i i i i i i iE I f W Y f Y E p f Y I f Y          

Therefore, from (3.2), we obtain   

 

 
0

,xd X Z    ( ( 1) ( 1)) ( ( 1) ( 1))i i i i i i

i

E p f X f Y E I f W Y f Y


          

                  

    

 ( 1) ( 1) .i i i iE p f Y I f Y                 (3.3) 

 

Following Arratia et al. (1989), for each ,i we set { :| | 1}iB j i j      to be the neighborhood of i  

such that 
iI  and 

jI  are independent for every .ij B  It implies that 
iI  is independent of 

jI  with | | 1.i j   For | | 1,i j   

because ( 1, 1) 0,i jP I I    it gives ( ) 0.i jE I I   From these facts, we have  ( 1) ( 1) 0i i i iE p f Y I f Y     and 

 ( ( 1) ( 1)) 0,i i i iE I f W Y f Y      then the result in (3.3) becomes   

 

 
0

,xd X Z ( ( 1) ( 1))i i

i

E p f X f Y


     

        1

sup ( ) [ ]i i i
x i

f x p E I W
 

  
 

1 0( ) [ ].i i i

i

x p E I W


        (by (2.6)) 
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Because 2

2
[ ] 2 ,

n

n n
i i i ii

p E I W np


  
 

the result in (3.1) is obtained.        

 

New non-uniform and uniform bounds for  
0

,
xCd X Z

 

and  ,Kd X Z  are also obtained as follows:  

 

Theorem 3.2. With the above definitions, we have the following inequalities: 

 

 
0

2 0( )
, ,

2xC n

x n
d X Z


                       (3.4) 

where 1
0 {1,..., 2 }nx   and  

2 0( )x  is defined in (2.12), and 

    
  

 
1  

, .
2

K n

e n
d X Z



                     (3.5) 

 

Proof. Let 
\{ }

,
i

i jj B i
W I




i
i i i jj B

Y X I W I


     and .i iX X I   Substituting X and h by X and 
0

Cx
h  

respectively, and taking expectation to (2.1), we obtain 

 

 
0

,
xCd X Z  

0 0
( 1) ( ) .

x xC CE f X Xf X   
 

  

 

Using the same arguments detailed in the proof of Theorem 3.1, we have 

 

 
0

,
xCd X Z

 1

sup ( ) [ ]i i i
x i

f x p E I W
 

    

1

sup ( )
2n

x

n
f x



 

 

2 0( )

2n

x n
     (by (2.11)) 

and    

 

 ,Kd X Z  
1

00 2 , 1

sup ( ) [ ]
n

i i i
x x i

f x p E I W
   

  
 

  

         

1  
,

2n

e n

   (by (2.13)) 

which gives both results (3.4) and (3.5). 

 

Remark. 1. The results in Theorems 3.1 and 3.2 give accurate Poisson approximations when n is large. 

2. Because 
1 11 ,e e    

1 11
3

1e e
     for 

0 0, 2x   and 
0 0

1 1
1x x 

  for 1
0 3,..., 2 ,nx   the bound in Theorem 

3.1 is sharper than that expressed in (1.6).  

3. Because  
0 0

2( 2)1 1
2 0 1
( ) min 1 , ,

e

x x
x e




   and 

1 11e e   , the bounds in Theorem 3.2 are sharper than those 

proposed in (1.8) and (1.9) that are in Teerapabolarn (2014).  

 

4. Numerical Examples 
 

 We give two numerical examples for each bound on Poisson approximation of the results in Theorems 3.1 and 3.2. We 

compare the bounds in Theorems 3.1 and 3.2 with the corresponding bounds in (1.6), (1.8) and (1.9). For percentages of 

improvement for each comparison, we use old bound new bound 
old bound

100%  , denoted by improvement (%), to be the formula for 

measuring each improvement of the approximation.      
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Example 4.1. For n = 4, non-uniform and uniform bounds together with percentages of each improvement on Poisson 

approximation to the distribution of the number of vertices at which all 4 edges point inward are presented in the following table. 

 
Table 1. 
 

X0 

Non-uniform bounds Uniform bounds 

(1.6) (3.1) 
Improvement 

(%) 
(1.8) (3.4) 

Improvement 

(%) 
(1.9) (3.5) 

Improvement 

(%) 

          

0 

1 
2 

3 

4 
5 

6 

7 
8 

0.158030 

0.158030 
0.158030 

0.125000 

0.083333 
0.062500 

0.050000 

0.041667 
0.035714 

0.091970 

0.158030 
0.113990 

0.083333 

0.062500 
0.050000 

0.041667 

0.035714 
0.031250 

41.80 

0 
27.87 

33.33 

25.00 
20.00 

16.67 

14.29 
12.50 

0.091970 

0.158030 
0.119714 

0.083333 

0.062500 
0.050000 

0.041667 

0.035714 
0.031250 

0.091970 

0.066060 
0.060226 

0.062500 

0.050000 
0.041667 

0.035714 

0.031250 
0.027778 

0 

58.20 
49.69 

25.00 

20.00 
16.67 

14.29 

12.50 
11.11 

 

 
 

 

0.158030 
 

 

 
 

 

0.091970 
 

 

 
 

 

41.80 

          

 

Example 4.2. For n = 6, non-uniform and uniform bounds together with percentages of each improvement on Poisson 

approximation to the distribution of the number of vertices at which all 6 edges point inward are as follows: 

 
Table 2. 

 

X0 

Non-uniform bounds Uniform bounds 

(1.6) (3.1) 
Improvement 

(%) 
(1.8) (3.4) 

Improvement 

(%) 
(1.9) (3.5) 

Improvement 

(%) 

          

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

0.059261 

0.059261 

0.059261 

0.046875 

0.031250 

0.023438 

0.018750 

0.015625 

0.013393 

0.011719 

0.010417 

0.009375 

0.008523 

0.007813 

0.007212 

0.006696 

0.006250 

0.005859 

0.013393 

0.005208 

0.004934 

0.004688 

0.004464 

0.004261 

0.004076 

0.003906 

0.003750 

0.003606 

0.003472 

0.003348 

0.003233 

0.003125 

0.003024 

0.034489 

0.059261 

0.042746 

0.031250 

0.023438 

0.018750 

0.015625 

0.013393 

0.011719 

0.010417 

0.009375 

0.008523 

0.007813 

0.007212 

0.006696 

0.006250 

0.005859 

0.005515 

0.011719 

0.004934 

0.004688 

0.004464 

0.004261 

0.004076 

0.003906 

0.003750 

0.003606 

0.003472 

0.003348 

0.003233 

0.003125 

0.003024 

0.002930 

41.80 

0 

27.87 

33.33 

25.00 

20.00 

16.67 

14.28 

12.50 

11.11 

10.00 

9.09 

8.33 

7.69 

7.15 

6.66 

6.26 

5.87 

12.50 

5.26 

4.99 

4.78 

4.55 

4.34 

4.17 

3.99 

3.84 

3.72 

3.57 

3.43 

3.34 

3.23 

3.11 

0.034489 

0.059261 

0.044893 

0.031250 

0.023438 

0.018750 

0.015625 

0.013393 

0.011719 

0.010417 

0.009375 

0.008523 

0.007813 

0.007212 

0.006696 

0.006250 

0.005859 

0.005515 

0.011719 

0.004934 

0.004688 

0.004464 

0.004261 

0.004076 

0.003906 

0.003750 

0.003606 

0.003472 

0.003348 

0.003233 

0.003125 

0.003024 

0.002930 

0.034489 

0.024773 

0.022585 

0.023438 

0.018750 

0.015625 

0.013393 

0.011719 

0.010417 

0.009375 

0.008523 

0.007813 

0.007212 

0.006696 

0.006250 

0.005859 

0.005515 

0.005208 

0.010417 

0.004688 

0.004464 

0.004261 

0.004076 

0.003906 

0.003750 

0.003606 

0.003472 

0.003348 

0.003233 

0.003125 

0.003024 

0.002930 

0.002841 

0 

58.20 

49.69 

25.00 

20.00 

16.67 

14.28 

12.50 

11.11 

10.00 

9.09 

8.33 

7.69 

7.15 

6.66 

6.26 

5.87 

5.57 

11.11 

4.99 

4.78 

4.55 

4.34 

4.17 

3.99 

3.84 

3.72 

3.57 

3.43 

3.34 

3.23 

3.11 

3.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.059261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.034489 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41.80 

          



926 K. Teerapabolarn / Songklanakarin J. Sci. Technol. 43 (4), 917-926, 2021 

 
 
 

The numerical results in Examples 4.1 and 4.2 are 

indicated that each Poisson approximation to be quite efficient 

when n is large, which satisfies the remark mentioned above. 

By comparing the new and old bounds, see the three columns 

of improvement (%) in Tables 1 and 2, it is seen that the non-

uniform bound in Theorem 3.1 is sharper that reported in (1.6) 

and the bounds in Theorem 3.2 are sharper than those 

proposed in (1.8) and (1.9) or in Teerapabolarn (2014). 

 

5. Conclusions 
 

The uniform and non-uniform bounds in the Poisson 

approximation for the n-dimensional unit cube random graph 

were re-established under the Poisson mean 1   by using 

the Stein-Chen method. All results of this study give three 

improvements of Poisson approximation as follows:  

(i). For probability function approximation, the new 

bound is sharper than the old bound with percentages of 

improvement 41.8%, 0%, 27.87% for 
0 0,1,2x   and 

0

100%
x

 

for 
0 3.x   

(ii). For cumulative probability approximation, the 

new non-uniform bound is sharper than the old non-uniform 

bound with percentages of improvement 58.20%, 49.69% for 

0 1,2x   and 
0

100%
1x   for 

0 3.x   In addition, the new 

uniform bound is also sharper than the old uniform bound 

with percentage of improvement 41.80%. 

Moreover, for cumulative probability 

approximation, the two bounds in this study, non-uniform and 

uniform bounds, are sharper than those proposed in 

Teerapabolarn (2014), including both theoretical and 

numerical results. 
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