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A field experiment was conducted at the Royal Development Study Center in Khao Hin Son 
from September to November, 2007 to examine the efficiency of AM fungi, Glomus species, in 
promoting growth of baby corn (Zea mays L.) on a sandy soil, Chan Thuek series (Cu) at four rates of 
P fertilizer and two croppings, Crop 1 and Crop 2 were running parallelly at the same period. The 
experimental design was 4 x 2 factorial treatment combinations with 4 replications in a randomized 
complete block design. One factor is rates of P fertilizer application, T1, T2 T3 and T4, which contains 
0, 60, 120 and 240 kg P2O5 ha-1 respectively. The other is arbuscular mycorrhizal fungal inoculation. I1 
was not inoculated and I2 was inoculated with Glomus. Two factor analyses of variance (ANOVA) and 
Duncan multiple range test were used to partition the variance into the main effects and the interaction 
between mycorrhizal colonization and phosphorus fertilizers. 
 
               As to fertilization rate, neither Crop 1 nor Crop 2 had a significant impact from the measured 
soil properties. For Crop 1, inoculation had a highly significant (p<0.01) effect on shoot height and 
fresh weight. And it also had a significant (p<0.05) effect on dry weight. Fertilizer rate had a highly 
significant (p<0.01) effect on shoot height, fresh weight and dry weight. On the other hand, there was 
no significant interaction between AM inoculation and P fertilizer rate. For Crop 2, fertilizer rate had a 
highly significant (p<0.01) effect on shoot height and it also had a significant (p<0.05) effect on shoot 
fresh weight, but there was no significant interaction between AM inoculation and P fertilizer rate. For 
both Crop 1 and Crop 2, there was no significant (p>0.05) interaction between phosphorus fertilizer 
and AM fungi inoculation on nutrient (nitrogen, phosphorus and potassium) uptake.  
 

For further study, comparing native and inoculated AM fungi should be tested under field 
experiment. And T2, T3 and T4 rate should be changed from 60, 120 and 240 kg P2O5 ha-1 to 30, 60 and 
90 kg P2O5 ha-1 respectively to examine the effect of P fertilizer under lower fertility status. 
      /  /  
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EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI 
COLONIZATION ON PHOSPHORUS UPTAKE AND GROWTH 

OF BABY CORN ON A SANDY SOIL 
 

INTRODUCTION 
 

The heavy use of chemical inputs including fertilizers and pesticides has 

resulted in pollution, decreased biodiversity in intensively-farmed regions, and 

environmental degradation linked to the use of chemical inputs is increasingly 

widespread and sometimes irreversible. Beneficial microorganisms, including soil-

borne symbionts, N2-fixing bacteria and arbuscular mycorrhizal (AM) fungi, provide 

minerals to plants and are directly implicated in crop production (Plenchette et al., 

2005). 

 

Though plants require adequate phosphorus (P) from the very early stages of 

growth for optimum crop production (Grant et al., 2001), excess P supply in the soil is 

a major environmental concern (Plenchette et al., 2005). Moreover the reserves of P 

in the world are finite and are gradually being depleted (Tiessen, 1995). Thus there is 

a need to develop agricultural systems based on meeting minimum P requirements for 

crops. 

 

Many soils in the tropics are fragile and prone to degradation. Some 

characteristics of tropical soils put severe constrains on food production. Sanchez et al. 

(2003) proposed a fertility capability soil classification that identifies the major 

attributes that constrain plant production. These constrains include soil moisture stress, 

low nutrient capital, erosion risks, low pH with aluminum (Al) toxicity, high 

phosphorus (P) fixation, low levels of soil organic matter, and a loss of soil 

biodiversity (Irene and Thomas 2006). 

 

Encouragement of AM associations may enhance P uptake by crops early in 

the growing stage, improving crop yield potential and replacing excessive fertilizer P 

applications. Use of effective P management practices, whether through efficient 
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fertilizer use or encouragement of mycorrhizal associations can optimize the 

economics of crop production while avoiding negative effects of P on environmental 

quality (Grant et al., 2005). 

 

For better nutrient management in the tropics, an increased use of biological 

potential is important (Irene and Thomas 2006). Keys to agricultural success in the 

tropics are to use adequate plant species diversity and to use perennial plants to 

maintain soil fertility, to guard against erosion and to fully utilize resources (Altieri, 

2004). 

 

Maize is an important crop in Thailand with over 4.5million tones being 

harvested from 1.2 million hectares in the year 2002/3 (Benchaphun et al., 2004). Its 

production is mostly for the domestic feed industry. Eighty percent of the total land 

area in Thailand has low fertility soils (Miller, 2000; Subramanian, 1997). Hence, 

inorganic and organic fertilizers are essential in order to improve crop production, and 

typically fertilizer containing 5-20 kilograms of P per hectare is recommended for 

maize planting (Nidchaporn, 2005; Miller, 2000).  

 

As many reports have proved that AM fungi inoculation is effective to 

increase crop yield under sterilized soil (Tawaraya et al., 1995; Sato et al., 1998; 

Nidchaporn, 2005), the efficiency of these AM fungi should be tested in the field 

where native AM fungi coexist. When the native AM fungi are effective enough, soil 

and fertilizer management would be more effective technology than AM fungi 

inoculum.  

 

Baby corn grows well in a wide range of soil types but it thrives best in loose, 

well drained soil. A suitable soil for baby corn has a wide pH range, from 5.5 to 7.0. It 

can also grow in very acid soils, but cannot grow in wetlands with low drainage. And 

the plant needs full sunlight for its growth (Land Development Department, 2006). 
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 In order to increase the effective use of applied fertilizer, the native AM fungi 

which can colonize in baby corn roots and promote crop yield should be encouraged 

(Miller, 2000).  
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OBJECTIVES 

 
1. To examine the effect of AM fungi inoculation at different levels of soil 

fertility on baby corn (Zea mays L.) growth and to increase the yield by inoculum in 

low fertility sandy soils. 

 

2. To improve P nutrition of baby corn by enhancing mycorrhizal associations 

and improving P fertilizer use efficiency for suitable crop production. 
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LITERATURE REVIEW 
 

1. Phosphorus (P) Supply to Crops 

  

In soils cultivated for decades, about 75 percent of the total P is in inorganic 

forms, more than 20 percent is organic P and a few percent is in soil microbial 

biomass (Grant et al., 2002). The inorganic P in the soil solution is present as 

orthophosphate ions, usually H2PO4
- or HPO4

2- depending on soil pH (Jaillard et al., 

2001). Replenishment of the ions in soil solution relies on mobilization of P in soil by 

physico-chemical and biological mechanisms (Hinsinger, 1998).  

 

Low P availability limits plant growth in many acid soils of the Tropics. 

Phosphorus deficiency is mainly caused by strong adsorption of H2PO4
- to aluminum 

(Al) and iron (Fe) oxides, turning large proportions of total P into forms that are 

unavailable to plants. Phosphorus in soils is present in pools varying in availability, 

and pools with the lowest availability are the largest in Oxisols (Irene and Thomas, 

2006).   

 

Plant species may differ in their external requirements for P because of the 

differences in their maximum growth rate, in their ability to take up phosphate, or in 

the utilization of phosphate within the plant (Barrow, 1977). The only direct effect of 

AM fungi on plant growth is probably through nutrient uptake (Powell and Bagyaraj, 

1984). 

 

Phosphorus management practices must be designed to address the nutrient 

requirements of the individual crops and the nutrient management goals for the crop 

production systems (Grant et al., 2005). 

 

The depletion of the P ions concentration of the solution at the root surface by 

absorption controls the release of P ions at the soil-solution interface by diffusion and 

their transport by diffusion in solution. The release of P ions from soil solid phase to 

solution varies with time and the gradient of P ion concentration and it can be 
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quantified by sorption-desorption and isotopic dilution methods, which give the same 

results if both variables are taken into account (Schneider and Morel, 2000). 

 

The rate of P uptake is related to the rate of water uptake and P concentration 

in soil solution. The P ions near the root hairs are absorbed quickly, resulting in a 

depletion zone with a decreasing P concentration gradient near the root surface 

(Bagshaw et al., 1972). 

 

The importance of adequate tissue P concentrations during early-season 

growth has been reported in many different crops species (Grant et al., 2001). 

Enhanced early-season P nutrition in corn can increase the dry matter partitioning to 

the grain at later development stages (Gavito and Miller, 1998; Mollier and Pellerin, 

1999). 

 

 A specific role for AM fungi in the uptake of rock phosphate has sometimes 

been discussed (Irene and Thomas, 2006), because mycorrhizal plants are thought to 

be more effective in utilizing rock phosphate than non mycorrhizal plants. But the 

mechanisms involved have received little attention. Ness and Vlek (2000) noted that 

only mycorrhizal maize took up P from hydroxyl-apatite, and that the P was 

subsequently transferred to maize.  

 

Adding easily soluble P fertilizers or rock phosphate might have different 

feedback on mycorrhizal functioning. Addition of triple superphosphate often reduces 

mycorrhizal functioning except under conditions of very severe P limitation, as 

reported for an annual crop on a poor sandy soil (Bagayoko et al., 2000) or coffee 

(Coffea arabica L.) on P fixing soils (Siqueira et al., 1998). In contrast, addition of 

insoluble P sources such as rock phosphate can even increase mycorrhizal 

colonization (Vanlauwe et al., 2000; Alloush and Clark, 2001). 

 

The main strategy to cope with P deficiency in the Tropics has been the 

addition of fertilizers, either in the form of synthetic fertilizer or in the form of rock 

phosphate (Sanchez, 2002), but the use of synthetic fertilizer is relatively inefficient 
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because of P fixation. Most of the fertilizer phosphate in P fixing soils ends up in 

fixed pools, having a recovery of only approximately 10-20 percent (Irene and 

Thomas, 2006). 

 

Even though P is the element that usually limits crop production in the humid 

Tropics, the amount of total inorganic P in tropical soils may not be low (Cardoso et 

al., 2006). The use of deep-rooting trees and shrubs that can take up P from the 

subsoil (Makumba, 2006) and of plants that can mobilize insoluble inorganic P 

sources can be a sustainable strategy, because the depletion due to mining the pools is 

not likely to become problematic in the short term.  

 

2. Arbuscular Mycorrhizal (AM) Fungi 

 

2.1 Nature of Arbuscular Mycorrhizal Fungi 

 

Arbuscular mycorrhizal (AM) fungi are one of the few plant-fungus 

associations with fossil record and may even have facilitated the origin of land flora 

(Morton and Benny, 1990). The estimated origin of arbuscular-like fungi is 353-462 

million years ago, which is consistent with the hypothesis that these fungi were 

instrumental in the colonization of land by ancient plants (Simon et al., 1993). 

 

The fungi that are probably most abundant in agricultural soils are AM 

fungi. They account for 5-50 percent of the biomass of soil microbes (Olsson et al., 

1999). Biomass of hyphae of AM fungi may amount to 54-900 kilograms per hectare 

(Zhu and Miller, 2003), and some products formed by them may account for another 

3,000 kilograms (Lovelock et al., 2004). The external mycelium attains as much as 3 

percent of root weight (Jakobsen and Rosendahl, 1990). 

 

AM fungi have coexisted and coevolved with plants for about 400 million 

years (Malloch et al., 1980; Pirozynski and Dalpé, 1989).This means that most of the 

root systems of agricultural crops are colonized by AM fungi (Harley and Harley, 

1987; Sieverding, 1991). 
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The ability of AM fungi to enhance host plant uptake of relatively 

immobile nutrients, in particular P, and several micronutrients, has been the most 

recognized beneficial effect of mycorrhiza. Rhizospere interaction occurs between 

AM fungi and other soil microorganisms with effects on plant nutrient balances, such 

as nitrogen-fixing bacteria and plant growth promoting rhizobacteria (Paula et al., 

1993). 

 

AM colonization may furthermore protect plants against pathogens. AM 

fungi interact with heavy metals/micronutirents. They can restore the equilibrium of 

nutrient uptake that is misbalanced by heavy metals (Carneiro et al., 2001; Siqueira et 

al., 1999). 

 

AM fungi are ubiquitous in soils throughout the world. They form 

mycorrhizae with a majority of plant species and show little host specificity (Powell 

and Bagyaraj, 1984). It is well known that mycorrhizal fungi can improve P uptake 

and plant growth, and it results from a symbiosis between fungus and its host plants 

that exclude non-mycorrhizal species of Chenopodiaceae and Cruciferaceae (Nieves 

et al., 2005; Tawaraya et al., 1995; Suzuki et al.1999). 

 

A substantial number of crops are strongly depended on arbuscular 

mycorrhizae. Norman et al. (1995) showed only a few families and genera of plants 

that do not generally form arbuscular mycorrhizae; these include; Brassicaceae, 

Caryophyllaceae, Cyperaceae, Juncaceae, Chenopodiaceae, and Amaranthaceae.  

 

Under natural conditions there is a harmonious combination of fungal 

microflora with the roots they occupy. Mycorrhizae occur in about 83 percent of 

dicotyledonous and 79 percent of monocotyledonous plants thus far investigated 

(Trappe, 1987). Almost all tropical crops are mycorrhizal and many of them strongly 

respond to arbuscular mycorrhizae (Irene and Thomas, 2006). 
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2.2 Identification of Arbuscular Mycorrhizal Fungi 

 

The most widely used classification recognizes five board mycorrhizal 

groups. They are based solely on the position of fungal mycelium in relation to root 

structure; the categories are purely descriptive and imply no functional significance. 

Although these subdivisions may serve useful purposes in promoting mycorrhizal 

research, their significance is not completely understood. They are as follows (Ajit, 

1998); 

 

ECTO-ectrophic; ectcellular; sheathing; hartigian 

ENDO-endotrophic; phycomycetous; vesicular-arbuscular; arbuscular 

ENDO-endotrophic; ericaceous; ericoid 

ECTENDO-ect-endotrophic;ericaceous;arbutoid 

ENDO-endotrophic; orchidaceous 

 

The identification of AM fungi are based largely on the structure of their 

soil-borne resting spores. The spore features used to identify AM fungi are spore 

development, spore arrangement, spore shape, spore size, spore ornamentation, spore 

wall layers, spore staining reactions and spore germination (Morton, 1988; Brundrett 

et al.,1996). 

 

Taxonomy and identification of AM fungi are almost exclusively based on 

the distinct morphology of their spores and it is very difficult to distinguish between 

genera or species when fungi are within root tissues (Ajit, 1998). 

 

AM fungi produce glomalin, a specific soil-protein, that its biochemical 

nature is still unknown. Glomalin is quantified by measuring several glomalin-related 

soil-protein pools (Rillig, 2004). Glomalin has a longer resistance time in soil than 

hyphae, allowing for a long persistent contribution to soil aggregate stabilization. The 

residence time for hyphae is considered to vary from days to month (Langley and 

Hungate, 2003; Staddon et al., 2003) and for glomarin from 6 to 42 years (Rillig et al., 

2001). 
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Glomalin is considered to stably glue hyphae to soil (Wright and 

Upadhyaya, 1998). The mechanism is the formation of an appressorium near hyphae 

(Jastrow and Miller, 1997; Rillig et al., 2002), which leads to stability of aggregates. 

Glomalin is present in soil in large amounts (Lovelock et al., 2004; Rillig et al., 2001). 

Moreover, glomalin production increases carbon flow to soil, therefore soil 

aggregation rates are expected to increase. The concentration of glomalin was 

correlated with stabilization of soil aggregates after a 3 years transition of a maize 

cropping system (Wright et al., 1999).  

 

There are indications that some crop rotations favor glomalin production 

and aggregate stabilization more than others (Wright and Anderson, 2000). Thus, 

management of cropping systems to enhance soil stability and reduce erosion may 

often benefit from consideration of the factors which control crop production yield 

and maintain external hyphae and glomalin (Irene and Thomas 2006). 

 

3. Mycorrhizal Inoculation 

 

3.1 Impact of Soil P Levels on Mycorrhizal Association 

 

The role of AM fungi in mineral nutrition has been discussed several times 

recently (Smith, 1980; Bowen and Smith, 1981). It is now well established that 

mycorrhizae can improve the P nutrition of a host, particularly in low fertility soils, 

and it is likely that they can also assist in the uptake of other ions such as copper (Cu) 

and zinc (Zn) (Powell and Bagyaraj, 1984). 

 

The uptake of phosphate by plants from soil will usually be limited by the 

rate of movement of the phosphate to the plant root rather than by the rate of 

absorption at the root surface (Nye, 1977). In soils with high capacities to absorb 

phosphate, such as Andosols, phosphate concentrations in soil solutions will be 

extremely low (Fox, 1978) and diffusion to plant roots will be extremely slow (Nye 

and Tinker, 1977). Phosphorus sources which are available for plants placed in bands 

or near the seed-row can improve P use efficiency by allowing the crop roots to 
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access the P early in crop growth and by delaying the reaction of the P with calcium 

(Ca), magnesium (Mg) or with iron (Fe) or aluminum (Al) oxides (Sample et al., 

1980). 

 

Phosphorus fertilization may also influence mycorrhizal development, 

with the effects being primarily related to the solubility and availability of the P 

fertilizers. While readily soluble and phytoavailable forms of P will rapidly increase P 

supply to the plant and decrease the mycorrhizal association, less-soluble forms of P 

such as rock phosphate have less effect on P supply to the plant and mycorrhizal 

association. Hence, mycorrhizal association may be especially important when less-

soluble P forms are used for crop production (Grant et al., 2005). 

 

With higher available soil P, application of fertilizer P may depress 

mycorrhizal association. Lower association may benefit crop growth by reducing the 

carbon drain to the fungi (Kahiluoto et al., 2001). 

 

The specific absorption of P by functional groups can affect the charge 

balance and cause dispersion of particles (Lima et al., 2000). Mycorrhizal fungi 

contribute to soil structure by growth of external hyphae into the soil to create a 

structure that holds soil particles together and by creating the conditions of external 

hyphae that are conducive for the formation of micro-aggregates (Miller and Jastrow, 

2000). 

 

Though mycorrhizae can be used to mine soils for P uptake, it should not 

be claimed that mycorrhizal fungi are considered as biofertilizers. Contrary to 

rhizobia, which add external nitrogen (N) to the agroecosystem, AM fungi do not add 

phosphorus. But, their potential to liberate P that otherwise would have ended up in 

stable soil pools, implies that the role of AM fungi in enhancing uptake and efficiency 

of internal plants P pools and externally added P fertilizers, should not be neglected 

(Lehmann et al., 2001; Lekberg and Koide, 2005). 
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3.2 Effects of Arbuscular Mycorrhizal Fungi on Plant Growth 

 

The extent to which the plant benefits from mycorrhizal association 

depends on its P requirement and inherent ability to forage for phosphate, on soil 

reserves of available phosphorus, and on the fungal species (Mosse and Hayman, 

1980).  

 

Under some conditions fertilizers with lower P availability might have 

practical advantages over more available forms if they were less inhibitory to 

mycorrhizal infection and could be made more accessible to the plant by an efficient 

mycorrhizal system (Mosse and Hayman, 1980). This applies particularly in tropical 

soils, such as Ultisols, with high ‘phosphorus fixing’ capacity where it is difficult to 

add sufficient phosphorus fertilizer to correct the naturally low phosphate status 

(Mosse and Hayman, 1980; Generose et al., 2002). 

 

Mycorrhizae also have effects on disease resistance, soil aggregation, and 

transplanting. AM fungi are more capable than many other soil fungi to bind soil into 

semi-stable aggregates (Sutton and Sheppard, 1976). 

 

AM fungi can alleviate Al toxicity. AM fungi improve water retention, 

especially under nutrient limitation. The extra-radical hyphae of AM fungi contribute 

to soil aggregation and structural stability. Therefore, mycorrhizae are multifunctional 

in agro-ecosystems (Newsham et al., 1995), potentially improving physical soil 

quality (through the external hyphae), chemical soil quality (through enhanced 

nutrient uptake) and biological soil quality (through the soil food web). 

  

The association of AM fungi and plant is mutual benefit as the host plant 

supplies the fungi with photosynthetic products while the fungi assists the plant in its 

uptake of phosphate and other mineral nutrients from the soil (Harley and Smith, 

1983; Marschner, 1995). Mycorrhizae enhance not only plant growth by improving 

nutrition (Smith and Gianinazzi-Pearson, 1988) but they also can buffer the plant 

against environmental stress (Sylvia and Williams, 1992) such as increased tolerance 
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to certain pathogenic agents (Dehne, 1982), water stress (Subramanian et al., 1997), 

salinity (Bhoopander and Mukerji, 2004), low temperatures (Charest et al., 1993; 

Paradis et al., 1995) and pollution (Bagyaraj, 1995; Leyval et al., 1997). 

 

AM plants have been reported to improve nutrition not only phosphorus 

but also other macronutrients such as nitrogen and potassium (K). In acid soils, AM 

fungi may be important for the uptake of ammonium ion (NH4
+), which is less mobile 

than nitrate ion (NO3
-) and where diffusion may limit its uptake rate. Because of their 

small size, AM fungal hyphae are better able than plant roots to penetrate 

decomposing organic materials (Hodge, 2003), and concentration of K were higher in 

mycorrhizal than in non-mycorrhizal plants (Bressan et al., 2001; Liu et al., 2002). 

Increased K concentrations can be a consequence of increased P availability on plant 

growth. 

 

From experimental investigation with maize and wheat, Toth et al. (1990) 

and Hetrick et al. (1992) hypothesized that increasing resistance of crops to fungal 

pathogens by plant breeding decreases the benefit from AM fungi symbiosis. These 

results suggested that, in some cases, crop improvement reduces the response of crops 

to AM fungi (Pitakdantham et al., 2007).  

 

AM fungi have the potential to reduce damage caused by soil-borne 

pathogenic fungi, nematodes, and bacteria. Interaction between AM fungi and 

nematodes have been studied in banana (Musa spp.). Jaizme-Vega et al. (1997) stated 

that inoculation with the fungus Glomus mosseae increased banana (Musa spp.) yield 

and reduced the reproduction of the root-knot nematode (Meloidogyne spp.) (Pinochet 

et al., 1997). 

 

3.3 Effects of Arbuscular Mycorrhizal Inoculation 

 

Arbuscular Mycorrhizae usually increase the growth of plants solely by 

enhancing nutrient uptake. There are three possible explanations for the greater uptake 

of mineral nutrients by mycorrhizal plants compared to nonmycorrhizal plants 
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(Rhodes and Gerdemann, 1980). Firstly, mycorrhizae may increase nutrient uptake by 

reducing the distance that nutrients must diffuse to plant roots (Rhodes and Gerde-

mann, 1975). Secondly, mycorrhizal roots may differ from nonmycorrhizal roots in 

the relationship between rate of nutrient absorption and nutrient concentration at the 

absorbing surface (Cress et al., 1979). Finally mycorrhizal hyphae may chemically 

modify the availability of nutrients for uptake by plants (Abbott and Robson, 1982).  

 

From a consideration of the published evidence (Grant et al., 2001; Robin, 

2003) it is likely that arbuscular mycorrhiza increases nutrient uptake from soil 

primarily by shortening the distance that nutrients must diffuse through soil to the 

root. It is likely, therefore, that effects of mycorrhizae in increasing nutrient uptake 

will be most marked for nutrients which move to roots principally by diffusion (Nye 

and Tinker, 1977) and for plant species with coarse roots and sparse short root hairs 

(Baylis, 1975).  

 

Several recent reviews have dealt with the role of mycorrhizal associations 

in soil quality and sustainable agriculture (Dodd, 2000; Barea et al., 2002; Jeffries et 

al., 2002; Ryan and Graham, 2002; Harrier and Watson, 2003). These reviews 

generally focused on temperate soils. In reviewing the role of mycorrhizae in tropical 

soil fertility, the following two reasons are important (Sieverding, 1991). Firstly, soils, 

major crops and possibly the species composition of AM fungal communities are 

different between the major climatic zones, because mycorrhizal functioning depends 

on the interplay between fungi and plants, different perspectives may arise from 

temperature and tropical views. Secondly, agriculture in temperate regions is often 

characterized by excess amounts of nutrients and that in tropical regions is 

characterized by its difficulty of using nutrients due to their insufficient amounts (Van 

Noordwijk and Cadish, 2002).  

 

Not all the soils chosen for inoculation experiments were extremely P 

deficient and results indicated that inoculation responses can often be better in 

moderately fertile soils (Mosse and Hayman, 1980). Adding 90 kilograms of 

phosphorus per hectare (as basic slag) increased clover response to inoculation by 118 
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percent (Hayman and Mosse, 1979). Inoculation responses of onion and lucerne, but 

not of barley, were greater in a field soil with 14 milligrams per kilogram available 

phosphorus (Olsen et al., 1954) than with 10 milligrams per kilogram (Owusu-

Bennoah and Mosse, 1979). 

 

To benefit from mycorrhizal associations, emphasis has to be on 

agricultural practices that promote the occurrence and functioning of soil organisms, 

including AM fungi. It has been shown that in fragile tropical agro-ecosystems, 

relying on tillage and external inputs such as fertilizers and biocides for the increase 

of productivity, may result in large ecological disturbances, and may not be 

sustainable in the long term (Irene and Thomas 2006). A key point for the 

development of a more self-sufficient and sustaining agriculture is a better 

understanding of the nature of agro-ecosystems and the principles by which they 

function (Altieri, 2004).  

 

Whereas the role of mycorrhizal associations in enhancing nutrient uptake 

will mainly be relevant in lower input agro-ecosystems, the mycorrhizal role in 

maintaining soil structure is important in all ecosystems (Ryan and Graham, 2002). Its 

role on formation and maintenance of soil structure will be influenced by soil 

properties, root architecture and management practices (Irene and Thomas 2006). 

 

4. Land Resources in Thailand 

 

There are 4 main problems of land resources in Thailand (Land Development 

Department, 2006). The first is misuse of land. The others include residential and 

industrial construction on agricultural land, deforestration and encroachment into 

watershed conserved area, cultivation of plants that are not suitable to land. The total 

area of misused land is amounted to 4.8 million hectares. The second is the result of 

land mismanagement such as soil erosion and low organic matters. The former is 

accounted approximately 17.1 million hectares or 33 percent of the whole country and 

the latter is commonly found covering as high as 30.6 million hectares or 59.5 percent 

of the total area in the country. The third is topology and environment such as coastal 
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land area, peat area, and old mining soil. In coastal land area, a total of 1.6 million 

hectares is not fully productive. The problem is mainly contributed from the 

characteristics of soil itself as well as the natural environment of that area.  

   

Peat area is severely flooded all year round and contains too much organic 

matters. Old mining soil is mainly gravelly soil, which fertility is too low and 

structure is not suitable for cultivation. The last is problem soils such as acid soil, 

saline soil, and acid saline soil. In the central low land region, there are 7 provinces 

facing acid soil problem. The area of severely acid to moderately acid soil is 3,680 

km2 with the average yield of rice at 938 kilograms per hectare. In the northeastern 

part of Thailand, saline soils cover 2.85 million hectares. Of these, 0.24 million 

hectares are severely affected, characterized by salinity in surface soil and shallow 

saline groundwater (Arunin, 1984). In the south, there are as much as 0.4 million 

hectares of saline soil and 0.16 million hectares of acid soil. Thirty percent of the 

saline soil and almost one hundred of these acid soils are either used as paddy field or 

left unused. The average yield from this kind of soil is only 938-1,875 kilograms per 

hectare (Land Development Department, 2006).  

 

Sandy soils are generally regarded as very fragile with respect to agricultural 

production due to their very low nutrients and organic matter content (Buol et al., 

2003; Wambeke, 1992). Agricultural productivity on such soil is hence considerably 

low.  

 

In Northeast Thailand, for example, agricultural systems have been developed 

on such sandy soils and paddy rice has been cultivated in the lowlands and various 

field crops such as maize, cassava and sugarcane have been cultivated in the uplands 

(Yanai et al., 2005). After continuous cultivation of such crops, yield decline has been 

observed mainly in the uplands. Decline in soil fertility has also been related to the 

decline of soil nutrients and organic matter. Nevertheless, limited information is 

available on the fertility status of soils especially with reference to soil-plant 

relationship, even though analysis of nutrient balance or soil-plant nutrient budget is 
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important and inevitable to assess the sustainability of agricultural ecosystem 

(Vidhaya et al., 2004).  

 

Weathered tropical soils, such as Oxisols, present desirable physical 

characteristics. However, soil management can lead to degradation of soil aggregation 

due to dispersion of particles, decrease in size of the aggregates, increase in the 

density, movement of clay in the horizon and decrease in macro-porosity (Irene and 

Thomas 2006).  

 

5. Baby Corn (Zea mays L.) Growth 

 

There are two different methods for producing baby corn (Zea mays L.). In the 

first method, baby corn (Zea mays L.) is the primary crop, and a variety is selected 

and planted to produce only baby corn (Zea mays L.). In the second method, baby 

corn (Zea mays L.) is the secondary crop in a planting of sweet corn (Galinat, 1985). 

The decision whether to grow baby corn (Zea mays L.) either as primary crop or as a 

secondary crop will influence variety choice, planting density and fertilizer rates 

(Miles and Zenz, 2000). 

 

When selecting a corn variety for baby corn (Zea mays L.) production, ear 

appearance is very important. Ears should be 5 to 10 centimeters long and 0.7 to 1.7 

centimeters in circumference at the harvest (Chutkaew and Paroda, 1994). To meet 

these criteria, harvest ears 1 to 3 days after silks become visible (Bar-Zur and Saadi, 

1990). Prior to planting, plow and harrow soil as needed to form a smooth, level seed 

bed.  Well-drained soils warm faster and are less likely to have soil-borne diseases. 

Baby corn (Zea mays L.) seeds are planted at 2.5 to 5 centimeters depth (Miles and 

Zenz, 2000). 

 

The best soil for baby corn (Zea mays L.) is a well-drained with a texture of 

silt loam or loam type. It should be a type of a soil with a high moisture holding 

capacity, high amount of organic matter and be slightly acidic. The optimum pH 
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range is from 5.3 to 7.3, and 400 to 600 mm of rainfall is required during growing 

period. In case of moisture deficiency, irrigation is essential (Lolita, 2007).  

 

Land Development Department (2006) reported that baby corn can grow in 

almost every soil type but the most suitable soils should be well drained. A suitable 

pH of soils should be in a range between 5.5 and 7.0. However it can also grow well 

in a more acidic soil. 

 

As with any planting of baby corn (Zea mays L.), it is necessary to keep the 

weeds suppressed until the baby corn have reached a height of 60 centimeters. Early 

weed control will delay baby corn maturity and reduce yield (Miles and Zenz, 2000). 

Generally baby corn requires practically no application of pesticides because the crop 

has a short growth duration (Lolita, 2007). 
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Hypothesis 

 
1. The rate of phosphorus fertilizer must be low when mycorrhiza could work, 

and the rate of phosphorus fertilizer must be high when mycorrhiza could not work 

well. 

 

2. Effects of AM fungi will increase under low fertility soils. 

 

3. Under high fertility, soil and cultivation management would be more 

effective than arbuscular mycorrhizal inoculation. 
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MATERIALS AND METHODS 
 

Materials 

 

The materials need in the study include the followings; 

 

1. pH meter 

2. Spectrophotometer 

3. Atomic absorption spectrophotometer (AAS) 

4. Flame emission spectrophotometer 

5. Microscope 

6. Chemicals and glasswares for laboratory analyses 

7. Agricultural materials and products for field experiment 

 
Methods 

 

1.  Description of Field Site 

 

The experimental plot was located at the Royal Development Study Center in 

Khao Hin Son, Phanom Sarakham district, Chachoengsao province and the soil is 

Chan Thuek (Cu) series (Typic Ustipsamments) (Hemsrichart, 1988; Soil Survey 

Staff, 2003). Chan Thuek series occupies small extent in the southern part of central 

highlands and in northern Thailand. Parent material of Chan Thuek series is local 

wash derived from weathered granite. The soil occurs on erosion surface of residual 

hill. Relief is undulating with slopes 2 to 5 percent. Elevation is 280 to 320 m above 

mean sea level. The climate is tropical savanna. Average annual precipitation varies 

from 1,100 to 1,300 mm, and annual air temperature is from 26 to 28 oC. Chan Thuek 

series is characterized by a very dark grayish brown or very dark brown loamy sand A 

horizon overlying a pale brown, light brown or pinkish gray loamy sand over gravelly 

loamy sand C horizon. Reaction is medium acid to strongly acid throughout the 

profile (Hemsrichart, 1988). 
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2. Sampling and Chemical Analysis 

 

2.1 Soil Sampling 

          

 Soil samples for determining chemical properties were taken from a mixed 

soil which was collected from areas of 16 x 32 m and 30 cm depth in January 2007 

(before planting) and in November 2007 (after harvest). The soil samples were gently 

crushed and well mixed. Then they were air dried, sieve and stored in a plastic bag 

until determination of their chemical properties. 

  

2.2 Soil Analysis 

 

       Soil samples were analyzed for soil reaction (pH), organic matter content, 

exctractable bases (Ca2+, Mg2+, Na+ and K+), cation exchange capacity (CEC), 

electrical conductivity (EC), available P and total nitrogen. The soil reaction (pH) was 

measured with pH meter by 1:1 soil solution in H2O and 1M KCl (Peech, 1965). 

Organic matter content was determined by wet digestion and titration, Walkley-Black 

method (Nelson and Sommers, 1996). Extractable bases (Ca2+, Mg2+, Na+ and K+) 

were analyzed by 1M NH4OAc at pH 7.0 extraction and measured by AAS and flame 

emission spectrophotometer (Thomas, 1982). CEC was determined by saturating the 

exchange site and displacing by 1M NH4OAc at pH 7.0 and NaCl respectively 

(Rhoades, 1982). EC was measured by EC saturation (Thomas, 1982). Available P 

was measured colorimetrically with a spectrophotometer using Bray II method (Bray 

and Kurtz, 1945). And total nitrogen was determined by digestion of the sample to 

convert organic N to NH4
+-N and determination of NH4

+-N by Kjeldahl method 

(Bremmer, 1965).  
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3. Experimental Design 

 

Field experiment was conducted using 4×2 factorial treatment combinations 

with 4 replications in a randomized complete block design. The experimental 

treatments were factorial combinations of 2 factors as follows: 

 

Factor 1: Rate of fertilizer application 

1) T1:  No phosphorus fertilizer 

2) T2:  phosphorus fertilizer equivalent to 60 kg P2O5 ha-1 on a surface 

3) T3:  phosphorus fertilizer equivalent to 120 kg P2O5 ha-1 on a surface 

4) T4:  phosphorus fertilizer equivalent to 240 kg P2O5 ha-1 on a surface 

 

    Factor 2: AM fungal inoculation treatments 

1)   I1:  Not inoculated 

2)   I2:  Inoculated with Glomus  

 

4.  Fertilization and Inoculum Procedures 

 

Before planting, 5 kilograms of organic fertilizer composing of 1,030 g of 

total-N, 1,560 g of total-P and 840 g of total-K were applied for each plot. And two 

croppings, Crop 1 and Crop 2 were running parallelly at the same period. 

 

One plot is 4 x 2 m, and there were 48 holes per plot with four maize seeds. 

Twelve holes per plot of baby corn were cultivated. The rates of P fertilizer were T1, 

T2, T3 and T4 representing 0, 96, 192 and 384 g P2O5 per plot, respectively (equivalent 

to 0, 60, 120 and 240 kg P2O5 per hectare). And 192 g of urea (46 % (NH2)2CO) and 

144 g of potassium chloride (60 % KCl) were applied two times to each plot. The first 

half of fertilizer was applied at planting. The Glomus inoculum was obtained from the 

Department of Microbiology, Faculty of Science, Kasetsart University. A ten grams 

of soil inoculum of AM fungi was put in one hole. Then it was covered with soil. 

Irrigation was dependent on rain-fed. And when it did not rain for 3 days running, the 

field was irrigated every 5 days with about 10 L per plot. At 28 days after planting, 
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the second half of the N, P and K fertilizers were applied on the soil surface around 

the plant.  

 

5. Data Collection 

 

The plants were harvested at 66 days after planting. Shoot height, 

circumference and shoot fresh weight were measured at harvest. Dry matter of shoot 

was measured after drying in oven at 70 oC, then they were ground for wet ashing to 

analyze for P and K. And for N, samples were analyzed by Kjeldahl method.  

 

After harvest, percent root colonization was determined by the Trouvelot’s 

method (Trouvelot, 1986). The cleared and stained roots were cut into 1 cm length, 

and laid down on a microscope slide to determine colonization. The percent of root 

colonization was calculated as follows: 

 

    % colonization (M) = 95(n5)+70(n4)+30(n3)+5(n2)+n1 

                                                                          n      

 

            where  n  is the number of observed roots, n1 is the number of roots that 

showed less than 1 percent of infection, n2 is the number of roots that showed less 

than 10 percent of infection, n3 is the number of roots that showed from 11 to 50 

percent of infection, n4 is the number of roots that showed from 51 to 90 percent of 

infection, and n5 is the number of roots that showed more than 90 percent of infection. 

 

6. Statistical Analysis 

 

 Two factor analyses of variance (ANOVA) and Duncan multiple range test 

were used to partition the variance into the main effects and the interaction between 

mycorrhizal colonization and fertilizers. 
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7. Places and Duration 

 

Soil sampling and laboratory analysis before planting were conducted from 

January to February in 2007. Field experiment was conducted from September to 

November in 2007 at the Royal Development Study Center in Khao Hin Son, Phanom 

Sarakham district, Chachoengsao province. Chemical analysis of soil and baby corn 

(Zea mays L.) were done after harvest, from November 2007 to February 2008 at the 

Department of Soil Science, Faculty of Agriculture, Kasetsart University. And 

quantification of AM fungi colonization was conducted from April to May in 2008 at 

the Department of Microbiology, Faculty of Science, Kasetsart University. 
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RESULTS AND DISCUSSION 
 

1.  Soil Chemical Properties Prior to the Experiment 

 

Soil samples for determining chemical properties were taken from areas of 16 

x 32 m and 30 cm depth. Table1 shows the chemical properties of soil prior to 

experiment. According to this table, pH was slightly acid, organic matter (OM) 

contained very low. And topsoil contained more extractable bases except for 

potassium (K). 

 
Table 1  Chemical properties of soil prior to experiment. 

 

2. Soil Chemical Properties After Harvest 

 

 Table 2 shows chemical properties after harvest for A horizon (0-18cm) and 

AC horizon (18-30cm). For crop 1, treatment I2 (not inoculated Glomus) had higher 

pH than treatment I1 (inoculated Glomus), and available P was also higher in 

treatment I2 than in treatment I1. As to crop 2, Available P increased when Glomus 

was inoculated only in treatments T2 and T4. And treatment I2 had higher CEC than 

did I1.  

 

 Comparing Crop 1 and Crop 2, Crop 1 showed different result of each 

chemical property between treatments I1 and I2, while Crop 2 showed similar trend 

between treatments I1 and I2. This indicates that inoculation did not have effect on 

baby corn (Zea mays L.) growth for Crop 2. 

 

  Available Extractable   
Depth pH OM P Ca Mg K Na CEC BS 

(cm) 1:1   
soil:H2O g kg-1 mg kg-1 (--------------------------cmol kg-1------------------------) % 

0-15 5.4 9.3  17.57 0.18 0.02 0.008 0.12 0.24  144  
15-30 5.4 4.1  1.86 0.02 0.002 0.01 0.09  0.13  67 
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 Analytical data prior to experiment and after harvest (Table 1 and 2) showed 

that pH of topsoil increased in every treatments of Crop 1 and Crop 2. On the other 

hand, pH of subsoil decreased in some treatments. Those were T1I1, T4I1 and T3I2 of 

Crop 1, and T1I1, T2I1, T3I1, T4I1, T1I2, T2I2 and T3I2 of Crop 2. Available P of topsoil 

and subsoil increased in each treatment of Crop 1 and Crop2. Extractable K of topsoil 

increased in each treatment of Crop 1 and Crop 2, while extractable K of subsoil did 

not increase except for T3I2 of Crop 1. Extractable Ca of topsoil and subsoil increased 

in each treatment of Crop 1 and Crop 2. Extractable Mg of topsoil and subsoil 

increased in each treatment of Crop 1 and Crop 2 except for T3I2 of Crop 1. CEC of 

topsoil and subsoil increased in each treatment of Crop 1 and Crop 2. 

 

3.  Germination Rate 

 

Germination rate was calculated seven days after planting for both Crop 1 and 

Crop 2 (Table 3). For Crop 1, regardless of P fertilizer rate, replication 4 had the 

lowest germination rate. This could be due to the uneven moisture condition in the 

plot. And mean germination rate of Crop 2 was higher than that of Crop 1 in each 

treatment. 
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Table 2  Chemical properties after harvest for A horizon (0-18cm) and AC horizon 

(18-30cm). 

 
Fertilizer 

rate 
  Available Extractable  

kg P2O5 Horizon pH P K Ca Mg CEC 

ha-1  soil:H2O mg kg-1 (--------------------------------c mol kg-1-----------------------------) 

Not Inoculated (I1) 

Crop 1        

0 (T1) A 5.8 47.64 0.02 0.55 0.07 1.00 

 AC 5.2 8.59 0.01 0.15 0.02 0.60 

60 (T2) A 5.7 24.54 0.02 0.41 0.07 1.20 

 AC 5.5 8.95 0.01 0.15 0.03 0.60 

120 (T3) A 5.5 47.67 0.02 0.54 0.09 0.70 

 AC 5.4 6.83 0.01 0.12 0.02 0.50 

240 (T4) A 5.8 25.81 0.03 0.54 0.11 1.30 

 AC 5.0 5.06 0.01 0.07 0.02 0.90 

Crop 2        

0 (T1) A 5.9 21.71 0.03 0.30 0.10 0.90 

 AC 5.2 3.64 0.01 0.04 0.01 0.30 

60 (T2) A 5.6 19.58 0.02 0.27 0.07 1.00 

 AC 5.2 6.83 0.01 0.05 0.01 0.50 

120 (T3) A 5.6 29.34 0.02 0.22 0.05 0.90 

 AC 5.2 6.48 0.01 0.06 0.01 0.50 

240 (T4) A 5.6 18.87 0.02 0.31 0.05 1.00 

 AC 5.1 7.54 0.01 0.08 0.01 0.70 

Inoculated (I2) 

Crop 1        

0 (T1) A 6.0 68.32 0.04 0.57 0.11 0.85 

 AC 5.6 5.41 0.01 0.14 0.02 0.20 

60 (T2) A 5.9 41.98 0.04 0.54 0.08 0.85 

 AC 6.0 7.89 0.01 0.14 0.03 0.50 

120 (T3) A 5.0 42.00 0.01 0.44 0.02 0.45 

 AC 5.6 6.83 0.02 0.11 0.05 0.80 

240 (T4) A 5.9 43.42 0.03 0.62 0.10 1.55 

 AC 5.4 7.19 0.01 0.07 0.02 0.70 

Crop 2        

0 (T1) A 5.5 20.99 0.03 0.25 0.07 1.10 

 AC 4.7 2.93 0.01 0.03 0.01 1.05 

60 (T2) A 5.7 31.38 0.02 0.35 0.09 1.15 

 AC 5.0 5.77 0.01 0.06 0.01 0.70 

120 (T3) A 5.4 18.88 0.02 0.19 0.05 1.15 

 AC 5.2 6.83 0.01 0.06 0.02 0.50 

240 (T4) A 5.9 36.44 0.02 0.38 0.09 1.05 

 AC 5.4 8.95 0.01 0.07 0.02 0.90 
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Table 3  Germination rates of baby corn (Zea mays L.) for Crop 1 and Crop 2. 

 

P2O5 Germination rate (%) 
(kg ha-1) 

 
AMF1/ Replication Crop 1 Crop 2 

 1 88 65 
 2 81 100 

no AMF 3 98 94 
 4 33 88 
 Mean 75 86.75 
 1 77 65 
 2 96 88 

with AMF 3 94 98 
 4 54 90 

0 

 Mean 80.25 85.25 
 1 77 98 
 2 100 90 

no AMF 3 79 92 
 4 46 81 
 Mean 75.5 90.25 
 1 98 77 
 2 96 94 

with AMF 3 94 98 
 4 48 83 

60 

 Mean 84 88 
 1 94 96 
 2 77 94 

no AMF 3 90 98 
 4 52 83 
 Mean 78.25 92.75 
 1 79 85 
 2 73 96 

with AMF 3 96 100 
 4 50 79 

120 

 Mean 74.5 90 
 1 81 69 
 2 96 85 

no AMF 3 88 94 
 4 48 79 
 Mean 78.25 81.75 
 1 90 67 
 2 83 85 

with AMF 3 85 98 
 4 65 98 

240 

 Mean 80.75 87 
 

1/AMF=Arbuscular mycorrhizal fungi 

 
 

4. Effects of AM Fungi Inoculation and P on Baby Corn (Zea mays L.) Growth 
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Table 4 shows F-values from ANOVA of baby corn (Zea mays L.) height, 

shoot circumference, fresh weight and dry weight with AM fungi inoculation and four 

rates of P fertilizer of Crop 1 and Crop 2. According to this table, inoculation had a 

highly significant effect (p<0.01) on shoot height, fresh weight for Crop1. And it also 

had a significant effect (p<0.05) on dry weight. Fertilizer rate had a highly significant 

effect (p<0.01) on shoot height, fresh weight and dry weight. On the other hand, there 

was no significant interaction between inoculation and fertilizer rate. For Crop 2, 

fertilizer rate had a significant effect (p<0.01) on shoot height, and also it had a 

significant effect (p<0.05) on shoot fresh weight. But there was no significant 

interaction between fertilization and AM fungi inoculation. 

 

Table 4  F-values from ANOVA of baby corn (Zea mays L.) height, shoot 

circumference, fresh weight and dry weight with AM fungi inoculation 

and four rates of P fertilizer for Crop 1 and Crop 2. 

 

  F-values 
Source df  Shoot   

    Height  Circumference Fresh weight Dry weight 
Crop 1      

Block 3 10.15** 2.02ns 6.36** 2.26ns 
Inoculation (I) 1 10.98** 0.69ns 12.38** 5.02* 
Fertilizer (T) 3 4.91** 0.50ns 4.80** 4.73** 
I  ×  T 3 2.66ns 1.28ns 1.24ns 0.49ns 
CV (%)  24.9 20.0 34.4 38.4 

Crop 2      
Block 3 1.25ns 2.77ns 2.69ns 1.48ns 
Inoculation (I) 1 0.99ns 0.66ns 0.29ns 1.56ns 
Fertilizer (T) 3 3.30** 0.31ns 3.01* 1.22ns 
I  ×  T 3 0.78ns 3.11ns 0.91ns 0.81ns 
CV (%)  28.9 10.3 33.8 36.8 

 

**=significant at 99% level,*=significant at 95% level, ns=non significant 
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5. Effects of Phosphorus Fertilizer on height, circumference, fresh weight and 

dry weight of shoot 

 

According to Duncan’s multiple range test, the most efficient amount of P2O5 

was at 60 kilograms per hectare for both Crop 1 and Crop 2 (Table 5). Application 

of AM fungi together with P fertilizer was more effective in increasing dry matter 

weight of shoot of baby corn (Zea mays L.) than that of application P fertilizer alone 

for Crop 1. Crop 2 showed similar trend as Crop 1 except for 60 kilograms P2O5 per 

hectare (Figure 1 a). Application of AM fungi together with P fertilizer was also 

more effective in increasing shoot height and shoot P content of baby corn (Zea 

mays L.) than that of application P fertilizer alone for Crop 1. And Crop 2 showed 

similar trend as Crop 1 except for 120 kilograms P2O5 per hectare (Figure 1 b, c).  

 

Table 5  Effect of P fertilizer rate on baby corn (Zea mays L.) height, shoot 

circumference, fresh weight and dry weight from Duncan’s multiple range 

test for Crop 1 and Crop 2. 

 

Fertilizer rate Height Shoot circumference Fresh weight Dry weight 
(kg P2O5 ha-1) (cm) (cm) (kg ha-1) (kg ha-1) 
Crop 1     

0 31.7b 2.96 6,229b 1,446b 
60 47.6a 3.33 10,208a 3,083a 
120 50.1a 3.26 11,125a 2,677a 
240 40.2ab 3.22 10,611a 2,269ab 

Crop 2     
0 29.2b 2.78 5,286b 2,047ab 
60 39.7ab 2.75 8,083ab 1,963b 
120 36.3ab 2.71 8,694ab 2,194ab 
240 46.0a 2.84 9,819a 2,675a 

 

Values are means (n=4 × 2 × 24 plants). Means in a column followed by the same  

letter are not significantly different (p<0.05) based on Duncan’s multiple range test. 
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Figure 1  Mean comparison of dry matter weight of shoot (a), shoot height (b) 

and shoot P content (c) of baby corn (Zea mays L.) for Crop 1 and 

Crop 2. 

(a) 

(b) 

(c) 

Crop 2
           Not inoculated Glomus 

 
                  Inoculated Glomus 
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6. Effects of AM Fungi Inoculation at Different P Fertilization Treatments on 

Baby Corn (Zea mays L.) Growth 

 

There was a significant correlation between shoot P content and dry matter 

weight of shoot (R2= 0.94) with linear approximate equation for Crop 1(Figure 2 a). 

The correlation between shoot P content and dry matter weight of shoot was 

calculated for each rate of P as R2= 0.87 (Figure 3 a), R2= 0.94 (Figure 3 b), R2= 0.88 

(Figure 3 c), R2= 0.98 (Figure 3 d) for 0, 60, 120 and 240 kilograms P2O5 per hectare, 

respectively. 

 

There was a significant correlation between shoot P content and dry matter 

weight of shoot (R2= 0.82) with linear approximate equation for Crop 2 (Figure 2 a). 

The correlation between shoot P content and dry matter weight of shoot was 

calculated for each rate of P as R2= 0.93 (Figure 3 e), R2= 0.97 (Figure 3 f), R2= 0.85 

(Figure 3 g) R2= 0.76 (Figure 3 h) for 0, 60, 120 and 240 kilograms P2O5 per hectare, 

respectively. 

 

There was a significant correlation between root colonization and shoot P 

content (R2= 0.31) with linear approximate equation for Crop 1 (Figure 2 b). The 

correlation between root colonization and shoot P content was calculated for two rates 

of P as R2= 0.76 (Figure 4 a) and R2= 0.10 (Figure 4 b) for 0 and 60 kilograms P2O5 

per hectare, respectively. 

 

There was a significant correlation between root colonization and shoot P 

content (R2= 0.14) with linear approximate equation for Crop 2 (Figure 2 b). The 

correlation between root colonization and shoot P content was calculated for two rates 

of P as R2= 0.84 (Figure 4 a) and R2= 0.18 (Figure 4 b) for 0 and 60 kilograms P2O5 

per hectare, respectively. 

 

There was a significant correlation between root colonization and dry matter 

weight of shoot (R2=0.37) with linear approximate equation for Crop 1 (Figure 2 c). 

The correlation between root colonization and dry matter weight of shoot was 
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calculated for two rates of P as R2= 0.73 (Figure 4 c) and R2= 0.17 (Figure 4 d) for 0 

and 60 kilograms P2O5 per hectare, respectively. 

 

There was a significant correlation between root colonization and dry matter 

weight of shoot (R2= 0.12) with linear approximate equation for Crop 2 (Figure 2 c). 

The correlation between root colonization and dry matter weight of shoot was 

calculated for two rates of P as R2= 0.82 (Figure 4 c) and R2= 0.10 (Figure 4 d) for 0 

and 60 kilograms P2O5 per hectare, respectively. 

 

Figures 5 and 6 showed plant conditions at harvest (66 days after planting) for  

Crop 1and Crop 2, respectively. The lowest cultivation rate of Crop 1 was replication 

4, and it is in proportion to germination rate (Table 3).   
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Figure 2  Relationship between shoot P content and dry matter weight of shoot 

(a), root colonization and shoot P content (b) and root colonization and 

dry matter weight of shoot (c) across all fertlizer treatments. The line is 

a linear approximate equation. 

Shoot P content (mg plant-1) 

Root colonization (%) 
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Crop 1 
Crop 2 
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y=2.6694x +6.8491 
R2=0.94 

Crop 1 
y=2.898x +43.104 
R2=0.31 

Crop 2 
y=1.1965x +32.82 
R2=0.14 

Crop 1 
y=8.809x +123 
R2=0.37 

Crop 2 
y=3.381x +147.79 
R2=0.12 

(b) 

(c) 

Crop 2 
y=2.6538x +50.82 
R2=0.82 
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Shoot P content (mg plant-1) 
Shoot P content (mg plant-1) 

Figure 3  Relationship between shoot P content and dry matter weight of shoot at 0 (a, 

e), 60 (b, f), 120(c, g) and 240(d, h) kg P2O5 ha-1for Crop 1 and Crop 2. The 

line is a linear approximate equation. 
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Figure 4  Relationship between root colonization and shoot P content, root 

colonization and dry matter weight of shoot at T1I1 (0 kg P2O5 ha-1, not 

inoculated Glomus) (a, c) and T2I2 (60 kg P2O5 ha-1, inoculated Glomus) 

(b, d). The line is a linear approximate equation. 
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Figure 5  Plant conditions at harvest (66 days after planting) of replication 1(a), 2(b),  

3(c) and 4(d) area for Crop 1. 
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Figure 6  Plant conditions at harvest (66 days after planting) of replication 1(a), 2(b), 

3(c) and 4(d) area for Crop 2. 
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7.    Effects of AM Fungi Inoculation and Nutrient Concentration on Baby Corn 

(Zea mays L.) Growth 

  

For both Crop 1 and Crop 2, there was no significant (p>0.05) interaction 

between phosphorus fertilizer and AM fungi inoculation on nutrient (nitrogen, 

phosphorus and potassium) concentration as shown in Table 6. However, inoculation 

had a significant effect (p<0.05) on nitrogen concentration for Crop 1 (Table 6). 

 

Table 6  F-values from ANOVA of nutrient concentration of baby corn (Zea mays L.) 

with AM fungi inoculation and four rates of P fertilizer for Crop 1 and Crop 2. 

 

F-value 
Source df N P K 

Crop 1     
Block 3 1.14ns 1.36ns 1.56ns 
Inoculation (I) 1 7.43* 2.96ns 2.82ns 
Fertilizer (T) 3 2.03ns 1.97ns 2.77ns 
I  ×  T 3 0.32ns 0.54ns 0.80ns 

Crop 2     
Block 3 1.13ns 1.14ns 0.45ns 
Inoculation (I) 1 0.20ns 0.34ns 2.10ns 
Fertilizer (T) 3 1.67ns 1.52ns 2.06ns 
I  ×  T 3 0.77ns 0.80ns 2.58ns 

 

8.     Effects of Fertilization on AM Fungi Inoculation 

 

Table 7 showed the comparison of percent of root colonization both T1I1 (no 

phosphorus fertilizer and not inoculated Glomus) and T2I2 (60 kilograms P2O5 per 

hectare and inoculated Glomus) across all replications. In every treatment, inoculation 

Glomus was more effective than not inoculated. Though T1I1 was not inoculated 

Glomus, it showed the root colonization. This indicates that native AM fungi existed 

in that treatment. 

 

Figures 7 and 8 showed arbuscules on treatment T1I1 (no phosphorus fertilizer 

and not inoculated Glomus) and T2I2 (60 kilograms P2O5 per hectare and inoculated 

Glomus) of Crop 1 and Crop 2, respectively. 
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 In general, arbuscules were stained in blue color, but some pictures showed 

purple. This is due to light when taking photo. And even though Treatment I1 was not 

inoculated Glomus, some arbuscules were confirmed. They might be native AM fungi. 

 

Table 7  The percent of root colonization for T1I1 and T2I2 for Crop1 and Crop 2. 

 

% M Treatment Crop 1 Crop 2 
T1I1R1 7.08 3.46 
T1I1R2 9.74 8.57 
T1I1R3 1.00 5.47 
T1I1R4 1.34 1.82 
Mean 4.79 4.83 
T2I2R1 14.03 16.77 
T2I2R2 11.57 18.86 
T2I2R3 19.00 14.83 
T2I2R4 28.42 15.32 
Mean 18.26 16.45 

 

T=fertilizer rate (T1=0 kg P2O5 ha-1, T2=60 kg P2O5 ha-1, T3=120 kg P2O5 ha-1, T4=240 

kg P2O5 ha-1), I=inoculation (I1=not inoculated Glomus I2= inoculated Glomus). 

R= replications % M=percent of root colonization. 
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Figure 7  Feature of arbuscules of T1I1 (0 kg P2O5 ha-1, not inoculated Glomus)  

for Crop 1 (a) and Crop 2 (b). 

(a) 

100 µm 100 µm 100 µm 

100 µm 100 µm 100 µm 

100 µm 100 µm 100 µm 

100 µm 100 µm 100 µm 

(b) 
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Figure 8  Feature of arbuscules of T2I2 (60 kg P2O5 ha-1, inoculated Glomus)  

for Crop 1 (a) and Crop 2 (b). 

100 µm 100 µm 100 µm 
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CONCLUSION AND RECOMMENDATION 
 

Conclusion 

 

 From the experimental results, the conclusion can be drawn as follows: 

 

 1.  AM fungi inoculation and P fertilizer had a significant effect on shoot 

height, shoot circumference, fresh weight, dry weight and shoot nitrogen 

concentration of baby corn (Zea mays L.) respectively. However this experiment did 

not show interactions between P fertilizer rate and AM fungi inoculation.  

 

 2.  The most efficient amount of P2O5 of Crop 1 is at 60 kilogram per hectare, 

and inoculation had a highly significant effect (p<0.01) on shoot height, fresh weight, 

and it also had a significant effect (p<0.05) on dry weight (Table 6). So treatment T2I2 

(60 kilogram P2O5 per hectare, inoculated Glomus) had the most effect on baby corn 

growth (Table 5).  

 

Sustainable food production in the Tropics is often severely constrained by the 

fragility of soils, being prone to several forms of degradation (Irene and Thomas 

2006). Making better use of the biological resources in these soils can contribute to 

enhanced sustainability. Mycorrhizal fungi constitute an important role in this respect. 

 

3.  For Crop 2, the most efficient amount of P2O5 is at 60 kilogram per hectare, 

and inoculation did not have a significant effect on shoot height, shoot circumference, 

fresh weight, or dry weight. Treatment T2I1 (60 kilogram P2O5 per hectare, not 

inoculated Glomus) had the most effect on baby corn growth (Table 5). Even though 

the experiment field of Crop 1 and Crop 2 adjoined, some results were different. Not 

only P fertilizer and AM fungi inoculation, but also the other bias, such as variable 

soil moisture condition could affect the plant growth.  
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In case of Crop 2, not inoculated AM fungi was more effective than inoculated 

AM fungi. This result would show that such soil cultivation management would be 

more effective than AM fungi inoculation to optimize the economics of crop 

production. 

 

4.  There was no significant interaction between P fertilizer rate and AM fungi 

inoculation on nutrient (nitrogen, phosphorus and potassium) concentration of the 

shoot of baby corn (Zea mays L.) in this experiment for both Crop 1 and Crop 2. 

Treatment T2I2 had effect on root colonization on every replication (Table 7). In 

general, AM fungi promote plant growth and nutrient concentration of low fertility 

soils (Smith and Gianinazzi-Pearson, 1988; Marschner, 1995), and AM fungi can help 

increase the effectiveness of P fertilizer added to soils that are P-deficient or have 

high P-fixing capacity. For example, in an acidic soil, addition of AM fungi and rock 

phosphate fertilizer together were more effective in enhancing the growth of corn than 

when rock phosphate was added alone (Alloush and Clark, 2001). Though treatment 

I1 was not inoculated AM fungi, there were some arbuscules (Figure 7). It would be 

that native AM fungi also could work. When density of native AM fungi is low and 

the effectiveness of it is high, improvement density of native AM fungi is more 

effective than inoculation. And due to sufficient rate of P fertilizer in both Crop 1 and 

Crop 2, there was no significant interaction on nutrient concentration. In general, 

nutrient uptake is likely to be affected by P deficiency (Karen, 1984), nitrogen and 

pottasium uptake can be influenced by both soil P level and mycorrhizal inoculation.  

 

5.  AM fungi contribution to physical, chemical and biological soil quality has 

been acknowledged, and therefore more fundamental and strategic studies in the field 

are needed. With such studies, the policy to support improvement of soil fertility may 

be less based on increasing nutrients input through fertilizer programs (Scoones and 

Toulmin, 1998) and more on management of local biodiversity. And such studies 

might prove that mycorrhizal fungi could be the most important untapped understood 

resource (Sanginga et al., 1999) for nutrient uptake and plant growth in agriculture. 
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Recommendation 

 

For further study, comparing the effects of native AM fungi and inoculated 

AM fungi should be tested under field experiment. To examine the effect of P 

fertilizer under lower fertility, T2, T3 and T4 rate should be changed from 60, 120 and 

240 kilograms P2O5 per hectare to 30, 60 and 90 kilograms P2O5 per hectare, 

respectively. And to close the gap of fertilizer rate between T3 and T4, T4 rate should 

be 1.5 time of T3.  
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Appendix Table 1  Shoot height, circumference, fresh weight, dry weight and P 

content of baby corn (Zea mays L.) at four P rates for Crop 1. 

 

        Shoot       
P2O5 AMF Rep Height circum- Fresh Dry P 

    ference weight weight concentration 
(kg ha-1)   (cm) (cm) (g) (g) (mg plant-1) 

  1 40.68  3.03  1000 108.53 40.55  
  2 6.25  0.65  250 203.07 78.78  
 I1 3 16.63  1.62  410 78.47 21.72  
  4 16.21  1.74  400 100.91 36.35  
  Mean 19.94  1.76  515 122.75 44.35  

0        
(T1)  1 28.49  2.23  980 134.8 57.19  

  2 36.29  2.60  750 153.63 61.03  
 I2 3 20.56  2.23  605 165.25 48.81  
  4 4.19  0.81  90 99 37.49  
  Mean 22.38  1.97  606.25 138.17 51.13  
        
  1 26.01  2.11  750 331.2 116.31  
 I1 2 53.08  2.75  1039 230.29 83.28  
  3 31.88  3.08  1000 298.65 124.02  
  4 2.21  0.34  22.6 75.63 25.84  
  Mean 28.29  2.07  702.9 233.94 87.36  

60        
(T2)  1 69.03  3.26  1550 360.8 119.93  

 I2 2 72.90  3.57  1800 429.95 151.14  
  3 29.92  2.44  700 187.33 48.39  
  4 42.54  2.59  1305 326.98 115.10  
  Mean 53.60  2.97  338.8 326.27 108.64  
        
  1 64.48  3.38  1500 338.23 134.27  
 I1 2 27.42  2.16  950 222.2 92.38  
  3 20.41  2.33  550 110.47 35.70  
  4 16.53  1.83  360 90.4 29.21  
  Mean 32.21  2.43  840 190.33 72.89  

120       
(T3)  1 74.32  3.22  1550 408.14 127.75  

 I2 2 46.50  2.73  1390 194.82 89.13  
  3 45.75  3.27  1250 276.93 84.36  
  4 54.94  3.10  1350 313.14 112.84  
  Mean 55.38  3.08  1385 298.26 103.52  
        
  1 55.90  3.08  1380 246.55 89.16  
 I1 2 34.33  2.48  800 186.93 72.52  
  3 27.88  2.68  830 233.01 90.40  
  4 8.98  1.35  230 65.08 27.06  
  Mean 31.77  2.40  810 182.89 69.78  

240        
(T4)  1 55.59  3.50  1500 291.16 104.87  

 I2 2 29.92  2.23  800 120.94 43.56  
  3 26.03  2.79  790 181.53 68.75  
  4 49.06  3.15  1310 326.02 131.11  
    Mean 40.15  2.92  1100 229.91 87.07  
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Appendix Table 2  Shoot height, circumference, fresh weight, dry weight and P 

content of baby corn (Zea mays L.) at four P rates for Crop 2. 

 

        Shoot       
P2O5 AMF Rep Height Circum- Fresh Dry P 

    ference weight weight content 
(kg ha-1)   (cm) (cm) (g) (g) (mg plant-1) 

  1 14.92  1.80  445 157.20  40.61  
  2 23.46  1.82  500 219.03 54.55  
 I1 3 32.23  2.79  900 208.22 42.22  
  4 12.40  1.57  450 90.70  18.39  
  Mean 20.75  1.99  573.75 168.79  38.94  

0        
(T1)  1 32.67  2.38  810 362.66 83.61  

  2 10.15  1.07  200 150.90  37.59  
 I2 3 31.13  2.72  720 164.67 31.87  
  4 8.25  1.09  170 120.51 36.71  
  Mean 20.55  1.81  475 199.69  47.44  
        
  1 41.29  2.26  840 81.53 22.57  
 I1 2 15.96  1.34  220 108.93 24.11  
  3 52.59  2.95  1000 270.35 74.85  
  4 25.90  2.48  780 158.71 42.47  
  Mean 33.94  2.26  710 154.88 41.00  

60        
(T2)  1 21.29  1.68  680 179.03 49.56  

 I2 2 27.88  1.90  570 185.10  40.96  
  3 53.51  2.91  1150 304.30  90.08  
  4 17.06  1.63  580 126.49 27.99  
  Mean 29.93  2.03  745 198.73 52.15  
        
  1 44.63  2.57  1030 249.18 68.99  
 I1 2 30.17  2.89  760 236.31 87.30  
  3 31.08  2.85  800 179.17 41.31  
  4 13.88  1.55  600 183.01 43.89  
  Mean 29.94  2.47  797.5 211.92  60.37  

120        
(T3)  1 47.67  2.71  1060 283.63 91.65  

 I2 2 32.73  2.13  570 192.41 46.14  
  3 31.25  2.50  720 176.88 50.66  
  4 28.50  2.23  720 80.20  22.20  
  Mean 35.04  2.39  767.5 183.28 52.67  
        
  1 25.88  1.90  620 222.89 78.22  
 I1 2 27.63  2.10  710 188.34 52.14  
  3 48.57  2.96  1050 231.72 64.15  
  4 27.94  1.96  590 152.31 63.32  
  Mean 32.50  2.23  742.5 198.82  64.46  

240        
(T4)  1 45.10  2.27  1060 349.77 128.06  

 I2 2 43.75  2.26  930 243.80  78.78  
  3 25.95  2.73  640 176.14 66.70  
  4 63.85  3.05  1470 375.63 100.79  
    Mean 44.66  2.58  1025 286.34  93.58  
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Appendix Table 3  Shoot circumference of all baby corn (Zea mays L.) for Crop 1. 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
  1 4.5 1 3.8 1 2.5 1 2.0 
  2 2.8 2 4.0 2 3.2 2 2.5 
  3 3.1 3 0 3 3.0 3 0 
  4 3.2 4 0 4 2.7 4 2.0 
  5 3.1 5 0 5 2.5 5 1.5 
  6 3.6 6 0 6 3.0 6 0 
  7 2.9 7 0 7 3.2 7 2.5 
  8 3.5 8 0 8 0 8 2.5 
  9 2.7 9 0 9 0 9 3.0 
  10 3.2 10 0 10 0 10 2.2 
  11 4.8 11 0 11 0 11 2.2 
  12 4.1 12 0 12 0 12 3.5 
 I1 13 3.1 13 4.3 13 3.5 13 1.7 
  14 3.6 14 3.5 14 2.7 14 0 
  15 3.2 15 0 15 3.2 15 0 
  16 2.1 16 0 16 2.7 16 2 
  17 3.1 17 0 17 2.7 17 0 
  18 3.2 18 0 18 2.0 18 0 
  19 0 19 0 19 2.0 19 2.7 
  20 3.4 20 0 20 0 20 2.7 
  21 3.3 21 0 21 0 21 0 
  22 3.0 22 0 22 0 22 3.5 
  23 3.1 23 0 23 0 23 2.5 
  24 0 24 0 24 0 24 2.7 

0  Mean 3.0 Mean 0.7 Mean 1.6  Mean 1.7 
(T1)          

  1 2.7 1 2.0 1 4.0 1 2.0 
  2 0 2 0 2 3.3 2 2.6 
  3 0 3 0 3 3.0 3 2.3 
  4 3.5 4 2.5 4 3.5 4 3.0 
  5 0 5 0 5 3.0 5 2.7 
  6 3.0 6 2.8 6 3.1 6 2.2 
  7 3.2 7 0 7 3.7 7 0 
  8 3.3 8 3.7 8 7.8 8 0 
  9 4.4 9 2.5 9 0 9 0 
  10 3.2 10 3.8 10 0 10 0 
  11 2.6 11 2.4 11 0 11 0 
  12 4.4 12 3.4 12 0 12 0 
 I2 13 2.0 13 3.2 13 2.5 13 2.0 
  14 0 14 3.0 14 2.0 14 2.6 
  15 0 15 2.0 15 3.6 15 0 
  16 2.5 16 2.5 16 3.8 16 0 
  17 0 17 2.9 17 3.8 17 0 
  18 2.8 18 3.0 18 3.5 18 0 
  19 0 19 3.2 19 3 19 0 
  20 3.7 20 2.5 20 0 20 0 
  21 2.5 21 2.4 21 0 21 0 
  22 3.8 22 3.0 22 0 22 0 
  23 2.4 23 2.2 23 0 23 0 
  24 3.4 24 0 24 0 24 0 
  Mean 2.2 Mean 2.2 Mean 2.2  Mean 0.8 
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Appendix Table 3  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc  

(cm) 
Crop no. sc  

(cm) 
  1 3.8 1 4.5 1 3.9 1 0 
  2 0 2 3.9 2 3.5 2 0 
  3 3.3 3 3.5 3 3.9 3 3.0 
  4 0 4 3.8 4 2.4 4 1.8 
  5 4.5 5 3.4 5 2.0 5 1.2 
  6 2.4 6 3.5 6 3.0 6 0 
  7 2.6 7 2.5 7 2.5 7 2.2 
  8 2.8 8 2.5 8 3.3 8 0 
  9 2.5 9 3.0 9 4.0 9 0 
  10 3.2 10 3.0 10 2.9 10 0 
  11 4.0 11 3.0 11 3.0 11 0 
  12 3.6 12 2.8 12 2.5 12 0 
 I1 13 3.1 13 3.0 13 3.0 13 0 
  14 0 14 0 14 3.0 14 0 
  15 3.1 15 4.0 15 3.0 15 0 
  16 0 16 3.0 16 3.8 16 0 
  17 2.2 17 2.3 17 3.0 17 0 
  18 0 18 3.4 18 2.3 18 0 
  19 0 19 0 19 2.8 19 0 
  20 0 20 3.2 20 2.9 20 0 
  21 3.0 21 1.5 21 3.6 21 0 
  22 3.3 22 2.8 22 3.5 22 0 
  23 3.3 23 3.5 23 3.7 23 0 
  24 0 24 0 24 2.4 24 0 

60  Mean 2.1 Mean 2.8 Mean 3.1  Mean 0.3 
(T2)          

  1 3.3 1 5.0 1 3.5 1 3.7 
  2 3.4 2 5.0 2 3.0 2 0 
  3 3.3 3 2.5 3 3.0 3 3.4 
  4 3.4 4 4.1 4 2.2 4 3.5 
  5 2.8 5 3.1 5 2.3 5 3.7 
  6 4.2 6 3.0 6 3.5 6 3.5 
  7 4.4 7 3.5 7 2.0 7 0 
  8 2.9 8 3.0 8 2.0 8 3.0 
  9 3.8 9 4.0 9 1.8 9 4.2 
  10 3.4 10 5.5 10 3.0 10 4.2 
  11 3.3 11 4.5 11 3.0 11 3.5 
  12 3.8 12 5.2 12 0 12 2.5 
 I2 13 3.6 13 4.5 13 3.0 13 0 
  14 3.4 14 0 14 3.1 14 0 
  15 3.6 15 4.6 15 3.3 15 3.5 
  16 3.2 16 3.0 16 2.6 16 3.5 
  17 3.8 17 2.0 17 3.0 17 2.5 
  18 2.3 18 3.0 18 3.5 18 3.7 
  19 0 19 3.5 19 2.4 19 0 
  20 3.1 20 2.5 20 2.8 20 0 
  21 3.5 21 4.0 21 2.7 21 1.8 
  22 3.2 22 6.0 22 2.8 22 4.8 
  23 2.8 23 4.2 23 0 23 2.5 
  24 3.8 24 0 24 0 24 4.7 
  Mean 3.3 Mean 3.6 Mean 2.4  Mean 2.6 
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Appendix Table 3  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 
(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc  

(cm) 
Crop no. sc  

(cm) 
Crop no. sc  

(cm) 
  1 3.2 1 4.2 1 3.0 1 3.6 
  2 3.3 2 3.7 2 2.2 2 3.0 
  3 2.8 3 3.8 3 3.2 3 2.6 
  4 3.6 4 3.5 4 0 4 2.4 
  5 3.4 5 4.5 5 0 5 0 
  6 3.5 6 3.0 6 2 6 2.7 
  7 3.7 7 3.3 7 1.8 7 2.0 
  8 4.7 8 0 8 3.7 8 2.5 
  9 3.6 9 0 9 3.0 9 2.6 
  10 3.5 10 0 10 0 10 2.5 
  11 3.1 11 0 11 3.2 11 2.7 
  12 3.4 12 0 12 0 12 2.4 
 I1 13 4.3 13 3.6 13 2.7 13 0 
  14 3.3 14 3.7 14 4.3 14 0 
  15 3.1 15 3.9 15 3.6 15 0 
  16 3.7 16 3.3 16 4.8 16 3.2 
  17 3.0 17 4.7 17 0 17 0 
  18 0 18 2.9 18 4.0 18 2.1 
  19 3.8 19 3.8 19 2.0 19 2.1 
  20 2.8 20 0 20 2.5 20 2.8 
  21 3.6 21 0 21 2.5 21 2.2 
  22 3.6 22 0 22 4.0 22 2.5 
  23 3.4 23 0 23 3.5 23 0 
  24 4.8 24 0 24 0 24 0 

120  Mean 3.4 Mean 2.2 Mean 2.3  Mean 1.8 
(T3)          

  1 3.0 1 3.4 1 3.0 1 3.0 
  2 2.4 2 2.8 2 2.9 2 2.5 
  3 4.1 3 3.2 3 2.9 3 2.5 
  4 3.1 4 3.0 4 2.8 4 3.2 
  5 3.5 5 3.2 5 3.2 5 3.2 
  6 4.2 6 3.6 6 3.2 6 3.5 
  7 3.5 7 3.5 7 3.4 7 3.7 
  8 3.6 8 3 8 3.9 8 3.2 
  9 3.7 9 3.1 9 3.5 9 2.0 
  10 3.1 10 4.3 10 4.2 10 4.0 
  11 3.8 11 0 11 2.5 11 3.2 
  12 3.4 12 0 12 3.7 12 3.8 
 I2 13 3.0 13 3.0 13 4.5 13 4.8 
  14 2.4 14 2.5 14 3.1 14 3.8 
  15 4.1 15 4.0 15 3.3 15 3.0 
  16 3.1 16 2.8 16 3.2 16 3.8 
  17 3.5 17 3.3 17 3.2 17 3.7 
  18 4.2 18 3.5 18 3.2 18 0 
  19 3.5 19 2.6 19 3.1 19 3.5 
  20 3.6 20 3.5 20 4.3 20 3.2 
  21 3.7 21 3.3 21 2.6 21 2.8 
  22 3.1 22 4.0 22 4.4 22 2.8 
  23 3.8 23 0 23 2.4 23 3.0 
  24 3.4 24 0 24 2.0 24 2.3 
  Mean 3.5 Mean 2.7 Mean 3.3  Mean 3.1 
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Appendix Table 3  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 
(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
  1 2.2 1 3.9 1 3.2 1 2.5 
  2 3.0 2 2.5 2 2.2 2 2.2 
  3 3.6 3 2.5 3 3.3 3 2.3 
  4 3.4 4 3.0 4 2.5 4 3.4 
  5 2.0 5 3.3 5 2.8 5 3.4 
  6 4.3 6 2.3 6 3.8 6 0 
  7 2.2 7 1.7 7 2.1 7 3.3 
  8 2.9 8 3.6 8 3.0 8 3 
  9 2.0 9 2.0 9 2.5 9 0 
  10 3.4 10 3.8 10 2.2 10 0 
  11 2.6 11 2.2 11 3.2 11 0 
  12 4.2 12 2.6 12 0 12 2.4 
 I1 13 3.4 13 0 13 2.1 13 1.7 
  14 2.3 14 1.5 14 3.1 14 2.6 
  15 3.2 15 2.0 15 2.9 15 2.5 
  16 3.1 16 0 16 3.5 16 3.2 
  17 4.0 17 2.0 17 3.1 17 0 
  18 3.5 18 4.0 18 3.2 18 0 
  19 3.3 19 3.5 19 4.5 19 0 
  20 2.7 20 3.6 20 3.8 20 0 
  21 3.1 21 3.0 21 2.0 21 0 
  22 4.3 22 2.3 22 2.0 22 0 
  23 2.0 23 2.2 23 3.3 23 0 
  24 3.2 24 2.1 24 0 24 0 

240  Mean 3.1 Mean 2.5 Mean 2.7  Mean 1.4 
(T4)          

  1 4.3 1 2.9 1 2.3 1 3.0 
  2 3.5 2 3.5 2 3.2 2 3.2 
  3 3.2 3 1.9 3 3.7 3 5.0 
  4 4.1 4 3.6 4 4.5 4 3.5 
  5 3.0 5 1.8 5 3.5 5 4.0 
  6 3.7 6 2.1 6 4.2 6 4.0 
  7 3.9 7 2.9 7 3.5 7 1.7 
  8 3.5 8 2.7 8 3.8 8 2.5 
  9 2.9 9 2.4 9 3.2 9 3.2 
  10 1.9 10 3.4 10 1.4 10 3.0 
  11 3.1 11 0 11 0 11 4.0 
  12 4.6 12 0 12 0 12 3.2 
 I2 13 3.4 13 3.2 13 3.3 13 3.2 
  14 3.9 14 2.8 14 2.8 14 3.5 
  15 3.2 15 3.1 15 4.1 15 4.0 
  16 3.5 16 1.8 16 2.8 16 0 
  17 3.0 17 3.8 17 3.7 17 4.2 
  18 3.8 18 2.9 18 3.0 18 0 
  19 4.0 19 2.2 19 3.3 19 2.5 
  20 3.4 20 3.1 20 3.5 20 3.5 
  21 3.6 21 3.3 21 2.7 21 3.2 
  22 4.0 22 0 22 4.4 22 3.2 
  23 3.1 23 0 23 0 23 4.5 
  24 3.5 24 0 24 0 24 3.5 
  Mean 3.5 Mean 2.2 Mean 2.8  Mean 3.2 

 

1/sc = shoot circumference (cm)
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Appendix Table 4  Shoot circumference of all baby corn (Zea mays L.) for Crop 2. 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 
(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
  1 2.8 1 2.6 1 4.0 1 3.5 
  2 2.7 2 3.2 2 0 2 2.7 
  3 3.0 3 3.0 3 3.1 3 3.5 
  4 3.4 4 3.2 4 3.5 4 3.0 
  5 2.4 5 1.6 5 3.0 5 3.4 
  6 3.0 6 2.8 6 3.7 6 0 
  7 3.7 7 2.8 7 2.6 7 3.4 
  8 0 8 2.9 8 3.7 8 3.5 
  9 0 9 0 9 3.2 9 3.2 
  10 0 10 0 10 3.0 10 0 
  11 0 11 0 11 2.5 11 0 
  12 0 12 0 12 2.7 12 2.7 
 I1 13 3.5 13 2.4 13 3.4 13 2.4 
  14 3.3 14 1.7 14 0 14 0 
  15 3.5 15 2.8 15 4.0 15 0 
  16 2.7 16 2.5 16 3.1 16 0 
  17 2.2 17 3.5 17 3.2 17 0 
  18 3.7 18 2.8 18 3.5 18 0 
  19 3.2 19 3.0 19 3.0 19 4.2 
  20 0 20 2.8 20 4.2 20 0 
  21 0 21 0 21 0 21 0 
  22 0 22 0 22 0 22 0 
  23 0 23 0 23 3.5 23 0 
  24 0 24 0 24 4.0 24 2.2 

0  Mean 1.8 Mean 1.8 Mean 2.8  Mean 1.6 
(T1)          

  1 2.5 1 2.7 1 2.2 1 2.0 
  2 3.5 2 3.0 2 1.7 2 2.4 
  3 3.3 3 2.8 3 2.5 3 3.1 
  4 3.0 4 2.8 4 1.5 4 2.3 
  5 2.6 5 2.8 5 2.6 5 1.8 
  6 2.8 6 2.0 6 3 6 2.2 
  7 2.8 7 3.0 7 3.7 7 2.1 
  8 4.0 8 2.2 8 3.3 8 0 
  9 1.9 9 2.2 9 2.8 9 0 
  10 3.5 10 1.8 10 3.2 10 1.9 
  11 2.0 11 0 11 3.2 11 0 
  12 0 12 0 12 2.3 12 0 
 I2 13 2.7 13 2.3 13 0 13 0 
  14 3.0 14 2.8 14 2.5 14 0 
  15 2.8 15 2.5 15 2.9 15 0 
  16 2.8 16 2.9 16 2.9 16 2.8 
  17 2.8 17 2.4 17 3.2 17 2.9 
  18 2.0 18 0 18 4.2 18 2.7 
  19 3.0 19 0 19 3.1 19 0 
  20 2.2 20 0 20 2.8 20 0 
  21 2.2 21 0 21 3.4 21 0 
  22 1.8 22 0 22 3 22 0 
  23 0 23 0 23 2.7 23 0 
  24 0 24 0 24 2.5 24 0 
  Mean 2.4 Mean 1.6 Mean 2.7  Mean 1.1 
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Appendix Table 4  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 
(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
  1 1.7 1 1.8 1 2.5 1 2.7 
  2 3.1 2 2.3 2 2.2 2 3.2 
  3 1.9 3 1.9 3 3.0 3 2.9 
  4 3.2 4 2.3 4 2.5 4 3.6 
  5 2.6 5 3.1 5 2.9 5 2.4 
  6 2.7 6 1.8 6 3.5 6 3.6 
  7 2.2 7 1.7 7 2.2 7 3.2 
  8 3.0 8 1.7 8 2.4 8 2.7 
  9 1.7 9 0 9 3.2 9 2.7 
  10 2.4 10 0 10 3.6 10 4.0 
  11 2.5 11 0 11 3.2 11 3.2 
  12 0 12 0 12 3.8 12 2.8 
 I1 13 2.8 13 1.8 13 3.0 13 3.2 
  14 2.5 14 1.3 14 2.5 14 2.5 
  15 3.2 15 2.2 15 0 15 0 
  16 2.7 16 3.0 16 3.0 16 0 
  17 2.3 17 2.2 17 3.0 17 3.6 
  18 2.7 18 2.2 18 3.5 18 0 
  19 2.0 19 2.9 19 3.5 19 2.0 
  20 3.3 20 0 20 3.1 20 2.6 
  21 3.2 21 0 21 3.5 21 0 
  22 1.5 22 0 22 3.3 22 2.4 
  23 1.0 23 0 23 4.0 23 3.0 
  24 0 24 0 24 3.3 24 3.2 

60  Mean 2.3 Mean 1.3 Mean 2.9  Mean 2.5 
(T2)          

  1 3.0 1 2.1 1 3.0 1 3.0 
  2 3.7 2 2.9 2 2.5 2 0 
  3 2.4 3 2.4 3 3.4 3 4.5 
  4 3.2 4 2.0 4 3.1 4 3.2 
  5 2.8 5 3.5 5 2.3 5 2.8 
  6 3.3 6 3.0 6 2.8 6 0 
  7 3.0 7 3.0 7 3.2 7 0 
  8 0 8 2.5 8 2.5 8 3.5 
  9 0 9 3.0 9 2.5 9 2.7 
  10 0 10 0 10 4.2 10 2.1 
  11 0 11 0 11 3.2 11 0 
  12 0 12 0 12 3.3 12 2.1 
 I2 13 2.7 13 1.8 13 2.8 13 3.0 
  14 3.4 14 2.2 14 3.5 14 0 
  15 3.1 15 1.8 15 3.0 15 3.0 
  16 2.9 16 3.4 16 2.5 16 0 
  17 2.7 17 2.6 17 2.2 17 3.0 
  18 2.2 18 2.5 18 3.2 18 0 
  19 1.9 19 2.5 19 2.7 19 0 
  20 0 20 2.5 20 3.6 20 3.2 
  21 0 21 1.9 21 3.3 21 0 
  22 0 22 0 22 3.2 22 0 
  23 0 23 0 23 3.8 23 0 
  24 0 24 0 24 0 24 3.0 
  Mean 1.7 Mean 1.9 Mean 2.9  Mean 1.6 
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Appendix Table 4  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 
(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
  1 2.8 1 2.6 1 3.0 1 0 
  2 3.2 2 2.4 2 2.8 2 3.8 
  3 3.3 3 4.1 3 4.5 3 2.5 
  4 2.4 4 2.8 4 3.0 4 0 
  5 3.1 5 3.5 5 2.0 5 1.2 
  6 1.8 6 3.1 6 3.0 6 2.0 
  7 2.9 7 3.0 7 3.0 7 0 
  8 3.8 8 2.5 8 2.5 8 2.6 
  9 3.3 9 3.3 9 2.5 9 3.7 
  10 3.3 10 2.0 10 3.5 10 0 
  11 1.9 11 2.6 11 2.4 11 3.2 
  12 0 12 3.5 12 2.7 12 2.7 
 I1 13 3.5 13 2.8 13 0 13 0 
  14 3.3 14 3.0 14 3.0 14 2.0 
  15 2.2 15 3.5 15 0 15 0 
  16 2.5 16 3.5 16 3.5 16 0 
  17 3.0 17 4.4 17 4.0 17 2.3 
  18 1.6 18 3.0 18 4.5 18 2.7 
  19 2.7 19 2.8 19 3.1 19 0 
  20 2.5 20 3.2 20 4.0 20 3.5 
  21 4.1 21 2.6 21 2.5 21 2.4 
  22 3.2 22 2.7 22 3.0 22 0 
  23 1.3 23 2.5 23 3.0 23 2.5 
  24 0 24 0 24 3.0 24 0 

120  Mean 2.6 Mean 2.9 Mean 2.9  Mean 1.5 
(T3)          

  1 2.8 1 2.8 1 3.5 1 3.0 
  2 2.6 2 2.6 2 3.5 2 3.0 
  3 3.0 3 3.0 3 2.8 3 2.6 
  4 3.2 4 3.2 4 2.0 4 0 
  5 3.3 5 3.3 5 3.2 5 2.9 
  6 2.2 6 2.2 6 1.8 6 3.4 
  7 2.4 7 2.4 7 3.1 7 3.2 
  8 2.2 8 2.2 8 2.5 8 3.0 
  9 4.1 9 4.1 9 3.2 9 3.1 
  10 3.2 10 3.2 10 3.2 10 2.6 
  11 2.7 11 2.7 11 2.3 11 2.8 
  12 1.6 12 1.6 12 3.0 12 3.4 
 I2 13 3.5 13 3.5 13 3.0 13 0 
  14 2.5 14 2.5 14 0 14 3.1 
  15 2.7 15 2.7 15 0 15 2.6 
  16 3.1 16 3.1 16 4.0 16 0 
  17 3.2 17 3.2 17 0 17 3.9 
  18 3.0 18 3.0 18 2.1 18 0 
  19 2.2 19 2.2 19 4.2 19 0 
  20 3.3 20 3.3 20 2.0 20 2.7 
  21 2.5 21 2.5 21 3.3 21 2.5 
  22 2.2 22 2.2 22 2.6 22 3.0 
  23 3.5 23 3.5 23 2.5 23 0 
  24 0 24 0 24 2.3 24 2.8 
  Mean 2.7 Mean 2.7 Mean 2.5  Mean 2.2 
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Appendix Table 4  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 
(kg ha-1)  Crop no. Sc1/ 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
Crop no. sc 

(cm) 
  1 2.5 1 3.0 1 2.7 1 3.9 
  2 2.1 2 3.2 2 3.8 2 0 
  3 2.3 3 2.7 3 2.8 3 3.0 
  4 3.0 4 2.4 4 3.1 4 1.5 
  5 1.3 5 2.8 5 2.8 5 2.7 
  6 2.6 6 3.6 6 2.3 6 2.5 
  7 3.2 7 3.0 7 3.2 7 2.0 
  8 2.9 8 4.2 8 2.6 8 0 
  9 2.0 9 3.5 9 3.2 9 3.0 
  10 1.8 10 0 10 2.7 10 2.0 
  11 0 11 0 11 3.2 11 2.9 
  12 0 12 0 12 3.0 12 2.5 
 I1 13 2.4 13 3.1 13 3.2 13 0 
  14 2.6 14 2.6 14 3.2 14 0 
  15 2.2 15 2.7 15 3.4 15 2.2 
  16 1.6 16 3.5 16 4.2 16 2.6 
  17 2.5 17 1.9 17 2.5 17 2.9 
  18 2.0 18 2.0 18 3.0 18 2.3 
  19 2.4 19 2.7 19 3.5 19 0 
  20 2.4 20 3.5 20 3.4 20 0 
  21 3.7 21 0 21 3.6 21 3.1 
  22 0 22 0 22 3.0 22 2.0 
  23 0 23 0 23 2.6 23 2.4 
  24 0 24 0 24 0 24 3.5 

240  Mean 1.9 Mean 2.1 Mean 3.0  Mean 2.0 
(T4)          

  1 1.9 1 3.2 1 2.7 1 3.0 
  2 3.7 2 2.1 2 2.7 2 3.3 
  3 2.2 3 2.5 3 2.7 3 3.9 
  4 2.5 4 2.2 4 2.4 4 2.3 
  5 3.0 5 1.8 5 2.4 5 2.7 
  6 3.7 6 2.5 6 2.6 6 3.7 
  7 3.2 7 3.7 7 3.7 7 2.7 
  8 3.5 8 1.8 8 2.8 8 3.6 
  9 5.2 9 2.7 9 3.0 9 2.7 
  10 0 10 3.0 10 2.7 10 4.0 
  11 0 11 0 11 3.5 11 4.0 
  12 0 12 0 12 2.5 12 3.5 
 I2 13 2.8 13 2.8 13 2.5 13 2.6 
  14 2.4 14 3.3 14 2.9 14 2.5 
  15 3.6 15 2.3 15 2.5 15 0 
  16 3.6 16 4.0 16 2.8 16 3.1 
  17 3.5 17 2.5 17 2.7 17 4.1 
  18 1.5 18 2.6 18 2.9 18 2.6 
  19 3.7 19 3.5 19 3.0 19 2.4 
  20 4.4 20 1.9 20 2.9 20 3.7 
  21 0 21 3.1 21 2.0 21 4.0 
  22 0 22 2.8 22 2.4 22 2.7 
  23 0 23 0 23 3.2 23 3.7 
  24 0 24 0 24 1.9 24 2.5 
  Mean 2.3 Mean 2.3 Mean 2.7  Mean 3.1 

 

1/sc = shoot circumference (cm)
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Appendix Table 5  Shoot height of all baby corn (Zea mays L.) for Crop 1. 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 54.2 1 28.0 1 23.0 1 12.0 
  2 14.0 2 23.0 2 37.0 2 20.0 
  3 43.0 3 0 3 37.0 3 0 
  4 46.0 4 0 4 19.0 4 20.0 
  5 54.4 5 0 5 38.0 5 15.0 
  6 80.4 6 0 6 38.0 6 0 
  7 23.0 7 0 7 34.0 7 23.0 
  8 56.0 8 0 8 0 8 20.0 
  9 25.0 9 0 9 0 9 33.0 
  10 41.8 10 0 10 0 10 20.0 
  11 76.5 11 0 11 0 11 22.5 
  12 28.3 12 0 12 0 12 60.0 
 I1 13 40.0 13 69.0 13 38.0 13 4.0 
  14 55.1 14 30.0 14 21.0 14 0 
  15 42.0 15 0 15 30.0 15 0 
  16 24.5 16 0 16 21.0 16 15.0 
  17 38.2 17 0 17 36.0 17 0 
  18 67.0 18 0 18 14.0 18 0 
  19 0.0 19 0 19 13.0 19 22.0 
  20 52.0 20 0 20 0 20 25.0 
  21 30.5 21 0 21 0 21 0 
  22 42.0 22 0 22 0 22 26.5 
  23 42.3 23 0 23 0 23 25.5 
  24 0.0 24 0 24 0 24 25.5 

0  Mean 40.7 Mean 6.3 Mean 16.6  Mean 16.2 
(T1)          

  1 30.8 1 41.0 1 59.0 1 11.0 
  2 0 2 74.0 2 23.0 2 16.5 
  3 0 3 25.0 3 27.5 3 12.4 
  4 46.2 4 41.0 4 39.0 4 14.3 
  5 0 5 71.0 5 71.0 5 15.0 
  6 49.8 6 54.0 6 28.0 6 12.4 
  7 37.5 7 28.0 7 24.0 7 0 
  8 43.3 8 27.0 8 13.5 8 0 
  9 98.4 9 24.0 9 0 9 0 
  10 44.3 10 34.0 10 0 10 0 
  11 18.4 11 18.0 11 0 11 0 
  12 64.4 12 0 12 0 12 0 
 I2 13 15.0 13 32.0 13 24.0 13 10.0 
  14 0 14 39.0 14 9.5 14 9 
  15 0 15 29.0 15 28.0 15 0 
  16 14.0 16 48.0 16 28.0 16 0 
  17 0 17 36.5 17 62.0 17 0 
  18 30.7 18 57.0 18 25.0 18 0 
  19 0 19 33.0 19 32.0 19 0 
  20 38.8 20 16.5 20 0 20 0 
  21 28.8 21 48.0 21 0 21 0 
  22 59.2 22 57.0 22 0 22 0 
  23 19.3 23 38.0 23 0 23 0 
  24 44.9 24 0 24 0 24 0 
  Mean 28.5 Mean 36.3 Mean 20.6  Mean 4.2 
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Appendix Table 5  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 62.0 1 86.0 1 54.5 1 0 
  2 0 2 65.0 2 54.0 2 0 
  3 40.5 3 70.0 3 29.0 3 18.0 
  4 0 4 78.5 4 15.0 4 12.0 
  5 86.5 5 73.0 5 9.0 5 8.0 
  6 29.4 6 62.0 6 31.0 6 0 
  7 29.8 7 33.5 7 14.0 7 15.0 
  8 15.0 8 30.0 8 30.0 8 0 
  9 13.0 9 60.0 9 65.0 9 0 
  10 30.3 10 70.0 10 25.0 10 0 
  11 61.7 11 85.0 11 19.0 11 0 
  12 38.5 12 58.5 12 15.0 12 0 
 I1 13 28.4 13 70.0 13 22.0 13 0 
  14 0 14 0 14 52.5 14 0 
  15 35.0 15 76.0 15 36.0 15 0 
  16 0 16 49.0 16 21.0 16 0 
  17 30.0 17 47.5 17 18.0 17 0 
  18 0 18 61.5 18 19.0 18 0 
  19 0 19 0 19 25.0 19 0 
  20 0 20 34.5 20 30.0 20 0 
  21 22.5 21 26.0 21 53.0 21 0 
  22 41.2 22 48.0 22 53.0 22 0 
  23 60.4 23 90.0 23 32.0 23 0 
  24 0 24 0 24 43.0 24 0 

60  Mean 26.0 Mean 53.1 Mean 31.9  Mean 2.2 
(T2)          

  1 51.8 1 94.5 1 63.0 1 76.5 
  2 74.9 2 110.0 2 48.0 2 0 
  3 78.8 3 81.5 3 48.0 3 75.0 
  4 82.0 4 92.5 4 14.0 4 44.0 
  5 64.0 5 61.0 5 16.0 5 43.0 
  6 98.3 6 78.0 6 72.0 6 30.0 
  7 84.6 7 34.0 7 21.0 7 0 
  8 58.5 8 62.0 8 18.0 8 45.0 
  9 92.0 9 80.0 9 15.0 9 84.2 
  10 74.4 10 77.0 10 19.0 10 96.5 
  11 40.7 11 94.5 11 22.0 11 38.5 
  12 86.8 12 102.5 12 0 12 40.0 
 I2 13 72.5 13 102.5 13 70.0 13 0 
  14 73.4 14 0 14 41.0 14 0 
  15 89.1 15 98.0 15 45.0 15 72.5 
  16 84.5 16 92.0 16 26.0 16 53.5 
  17 95.2 17 30.0 17 36.0 17 23.0 
  18 27.0 18 77.0 18 64.0 18 77.7 
  19 0 19 76.0 19 16.0 19 0 
  20 58.5 20 54.0 20 19.0 20 0 
  21 78.2 21 81.5 21 18.5 21 9.0 
  22 59.8 22 80.0 22 26.5 22 92.0 
  23 51.8 23 91.0 23 0 23 28.0 
  24 80.0 24 0 24 0 24 92.5 
  Mean 69.0 Mean 72.9 Mean 29.9  Mean 42.5 
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Appendix Table 5  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 62.5 1 64.0 1 13.0 1 27.6 
  2 55.4 2 43.0 2 14.0 2 21.8 
  3 40.7 3 54.0 3 16.0 3 21.5 
  4 66.8 4 34.0 4 0 4 15.0 
  5 60.2 5 49.0 5 0 5 0 
  6 77.8 6 16.0 6 10.0 6 21.9 
  7 72.4 7 60.0 7 21.0 7 13.0 
  8 83.0 8 0 8 22.0 8 30.0 
  9 80.75 9 0 9 14.0 9 27.4 
  10 83.3 10 0 10 0 10 31.9 
  11 50.5 11 0 11 15.0 11 24.5 
  12 72.3 12 0 12 0 12 20.0 
 I1 13 90.3 13 32.0 13 17.3 13 0 
  14 79.9 14 62.0 14 66.5 14 0 
  15 40.2 15 51.0 15 38.5 15 0 
  16 72.3 16 54.0 16 57.5 16 33.5 
  17 53.0 17 48.0 17 0 17 0 
  18 0 18 33.0 18 30.0 18 15.0 
  19 63.5 19 58.0 19 57.0 19 15.0 
  20 39.5 20 0 20 20.0 20 30.0 
  21 80.13 21 0 21 18.0 21 28.5 
  22 51.8 22 0 22 35.0 22 20.0 
  23 63.9 23 0 23 25.0 23 0 
  24 107.4 24 0 24 0 24 0 

120  Mean 64.5 Mean 27.4 Mean 20.4  Mean 16.5 
(T3)          

  1 66.3 1 32.0 1 46.0 1 55.5 
  2 47.0 2 41.0 2 19.0 2 80.0 
  3 118.5 3 34.0 3 49.0 3 43.5 
  4 63.9 4 71.0 4 37.0 4 68.0 
  5 95.0 5 34.0 5 62.0 5 67.1 
  6 106.2 6 75.0 6 49.0 6 31.9 
  7 52.4 7 46.0 7 35.0 7 82.0 
  8 90.9 8 38.0 8 64.0 8 76.2 
  9 83.4 9 57.0 9 53.0 9 17.7 
  10 82.0 10 88.0 10 67.0 10 87.3 
  11 76.9 11 0 11 15.0 11 42.0 
  12 64.0 12 0 12 46.0 12 45.5 
 I2 13 69.2 13 35.0 13 66.0 13 87.7 
  14 102.5 14 36.0 14 29.0 14 82.0 
  15 115.2 15 76.0 15 42.0 15 41.8 
  16 0 16 34.0 16 49.0 16 65.2 
  17 102.4 17 73.0 17 60.0 17 33.5 
  18 62.3 18 48.0 18 40.0 18 0 
  19 92.3 19 36.0 19 38.0 19 53.2 
  20 54.0 20 77.0 20 69.0 20 85.2 
  21 55.6 21 82.0 21 58.0 21 47.5 
  22 79.4 22 103.0 22 60.0 22 49.4 
  23 0 23 0 23 23.0 23 38.0 
  24 104.2 24 0 24 22.0 24 38.3 
  Mean 74.3 Mean 46.5 Mean 45.8  Mean 54.9 
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Appendix Table 5  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 21.8 1 53.0 1 15.0 1 21.5 
  2 63.5 2 26.0 2 16.5 2 15.0 
  3 48.4 3 34.0 3 28.0 3 15.0 
  4 55.0 4 30.0 4 20.0 4 27.8 
  5 29.0 5 44.0 5 22.0 5 24.2 
  6 94.0 6 39.0 6 42.0 6 0 
  7 22.4 7 20.0 7 15.0 7 18.4 
  8 63.0 8 67.0 8 41.0 8 13.8 
  9 40.7 9 20.0 9 51.5 9 0 
  10 74.7 10 72.5 10 22.0 10 0 
  11 47.0 11 22.0 11 28.0 11 0 
  12 84.5 12 38.0 12 0 12 10.9 
 I1 13 72.0 13 0 13 7.0 13 16.5 
  14 28.7 14 9.0 14 25.0 14 17.0 
  15 33.7 15 31.0 15 38.0 15 18.8 
  16 52.0 16 0 16 30.0 16 16.5 
  17 83.0 17 27.0 17 45.0 17 0 
  18 49.0 18 50.0 18 43.0 18 0 
  19 70.9 19 42.0 19 35.0 19 0 
  20 27.5 20 70.0 20 52.0 20 0 
  21 82.5 21 47.5 21 42.0 21 0 
  22 87.5 22 28.0 22 21.0 22 0 
  23 35.2 23 24.0 23 30.0 23 0 
  24 75.7 24 30.0 24 0 24 0 

240  Mean 55.9 Mean 34.3 Mean 27.9  Mean 9.0 
(T4)          

  1 73.7 1 39.0 1 19.0 1 29.0 
  2 63.0 2 54.0 2 58.0 2 66.0 
  3 47.0 3 35.0 3 23.0 3 99.0 
  4 75.7 4 88.0 4 18.0 4 82.0 
  5 49.0 5 16.0 5 33.0 5 89.0 
  6 63.7 6 21.0 6 39.0 6 59.0 
  7 54.7 7 18.0 7 40.0 7 15.0 
  8 49.0 8 38.0 8 41.0 8 23.0 
  9 27.5 9 16.0 9 30.0 9 35.5 
  10 13.0 10 44.0 10 9.0 10 37.0 
  11 30.0 11 0 11 0 11 83.0 
  12 95.5 12 0 12 0 12 33.5 
 I2 13 56.7 13 59.0 13 37.0 13 44.0 
  14 78.0 14 49.0 14 39.0 14 72.5 
  15 46.0 15 45.0 15 37.0 15 67.5 
  16 68.5 16 38.0 16 17.0 16 0 
  17 46.0 17 40.0 17 37.0 17 84.0 
  18 72.6 18 33.0 18 32.5 18 0 
  19 62.4 19 16.0 19 39.0 19 33.5 
  20 39.0 20 31.0 20 46.0 20 20.0 
  21 54.7 21 38.0 21 20.0 21 30.0 
  22 49.5 22 0 22 10.3 22 35.0 
  23 29.0 23 0 23 0 23 87.0 
  24 90.0 24 0 24 0 24 53.0 
  Mean 55.6 Mean 29.9 Mean 26.0  Mean 49.1 

 

2/sh = shoot height (cm)
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Appendix Table 6  Shoot height of all baby corn (Zea mays L.) for Crop 2. 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 15.0 1 27.0 1 39.0 1 24.4 
  2 16.0 2 35.0 2 0 2 16.5 
  3 25.0 3 62.0 3 34.5 3 22.2 
  4 26.0 4 29.0 4 40.0 4 16.0 
  5 13.0 5 24.0 5 20.0 5 18.0 
  6 19.0 6 54.0 6 63.8 6 0 
  7 41.0 7 26.0 7 30.4 7 19.0 
  8 0 8 48.0 8 41.0 8 59.0 
  9 0 9 0 9 28.0 9 15.0 
  10 0 10 0 10 28.0 10 0 
  11 0 11 0 11 12.0 11 0 
  12 0 12 0 12 21.0 12 15.0 
 I1 13 58.0 13 15.0 13 51.0 13 15.0 
  14 20.0 14 11.0 14 0 14 0 
  15 32.0 15 56.0 15 62.0 15 0 
  16 19.0 16 28.0 16 33.0 16 0 
  17 17.0 17 18.0 17 45.0 17 0 
  18 26.0 18 39.0 18 46.9 18 0 
  19 31.0 19 49.0 19 37.0 19 67.4 
  20 0 20 42.0 20 44.0 20 0 
  21 0 21 0 21 0 21 0 
  22 0 22 0 22 0 22 0 
  23 0 23 0 23 49.0 23 0 
  24 0 24 0 24 48.0 24 10.0 

0  Mean 14.9 Mean 23.5 Mean 32.2  Mean 12.4 
(T1)          

  1 13.0 1 15.5 1 15.5 1 27.0 
  2 43.0 2 26.0 2 13.0 2 16.0 
  3 39.0 3 23.0 3 20.9 3 20.0 
  4 56.0 4 24.0 4 10.9 4 12.5 
  5 41.0 5 29.0 5 29.3 5 10.0 
  6 18.0 6 32.0 6 34.0 6 16.0 
  7 20.0 7 0 7 44.0 7 12.0 
  8 78.0 8 0 8 42.0 8 0 
  9 15.0 9 0 9 26.0 9 0 
  10 69.0 10 0 10 48.0 10 14.0 
  11 19.0 11 0 11 39.8 11 0 
  12 0 12 0 12 18.0 12 0 
 I2 13 26.0 13 13.0 13 0 13 0 
  14 50.0 14 29.0 14 37.8 14 0 
  15 32.0 15 12.0 15 34.3 15 0 
  16 76.0 16 16.0 16 33.0 16 23.7 
  17 62.0 17 24.0 17 40.0 17 25.0 
  18 15.0 18 0 18 58.7 18 21.7 
  19 32.0 19 0 19 36.0 19 0 
  20 24.0 20 0 20 40.5 20 0 
  21 33.0 21 0 21 40.0 21 0 
  22 23.0 22 0 22 38.0 22 0 
  23 0 23 0 23 24.0 23 0 
  24 0 24 0 24 23.3 24 0 
  Mean 32.7 Mean 10.1 Mean 31.1  Mean 8.2 
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Appendix Table 6  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 25.0 1 10.0 1 41.6 1 38.0 
  2 58.0 2 30.0 2 18.5 2 46.0 
  3 19.0 3 35.0 3 59.4 3 24.8 
  4 56.0 4 20.0 4 51.0 4 28.3 
  5 49.0 5 22.0 5 50.4 5 24.0 
  6 73.0 6 26.0 6 74.0 6 29.7 
  7 22.0 7 12.0 7 24.8 7 38.8 
  8 56.0 8 16.0 8 31.0 8 28.5 
  9 28.0 9 0 9 58.0 9 34.7 
  10 49.0 10 0 10 51.3 10 30.0 
  11 20.0 11 0 11 52.4 11 23.0 
  12 0 12 0 12 72.0 12 27.0 
 I1 13 47.0 13 20.0 13 62.0 13 57.5 
  14 41.0 14 12.0 14 39.8 14 14.0 
  15 59.0 15 26.0 15 0 15 0 
  16 52.0 16 49.0 16 58.0 16 0 
  17 50.0 17 37.0 17 66.0 17 49.7 
  18 89.0 18 24.0 18 56.9 18 0 
  19 30.0 19 44.0 19 68.8 19 15.4 
  20 69.0 20 0 20 48.0 20 30.3 
  21 60.0 21 0 21 74.3 21 0 
  22 29.0 22 0 22 52.4 22 12.0 
  23 10.0 23 0 23 80.6 23 21.0 
  24 0 24 0 24 71.0 24 49.0 

60  Mean 41.3 Mean 16.0 Mean 52.6  Mean 25.9 
(T2)          

  1 38.0 1 38.0 1 33.0 1 54.0 
  2 46.0 2 46.0 2 46.0 2 0 
  3 24.8 3 24.8 3 63.0 3 23.0 
  4 28.3 4 28.3 4 41.0 4 18.0 
  5 24.0 5 24.0 5 14.5 5 21.5 
  6 29.7 6 29.7 6 33.2 6 0 
  7 38.8 7 38.8 7 85.0 7 0 
  8 28.5 8 28.5 8 33.7 8 36.2 
  9 34.7 9 34.7 9 62.5 9 36.0 
  10 30.0 10 30.0 10 79.3 10 13.0 
  11 23.0 11 23.0 11 53.3 11 0 
  12 27.0 12 27.0 12 69.4 12 15.0 
 I2 13 57.5 13 57.5 13 48.0 13 37.0 
  14 14.0 14 14.0 14 71.3 14 0 
  15 0 15 0 15 69.3 15 45.2 
  16 0 16 0 16 58.8 16 0 
  17 49.7 17 49.7 17 21.8 17 28.0 
  18 0 18 0 18 34.2 18 0 
  19 15.4 19 15.4 19 70.5 19 0 
  20 30.3 20 30.3 20 80.3 20 36.5 
  21 0 21 0 21 72.0 21 0 
  22 12.0 22 12.0 22 67.4 22 0 
  23 21.0 23 21.0 23 76.7 23 0 
  24 49.0 24 49.0 24 0 24 46.0 
  Mean 25.9 Mean 25.9 Mean 53.5  Mean 17.1 
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Appendix Table 6  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 32.0 1 24.0 1 23.4 1 0 
  2 66.0 2 27.0 2 23.7 2 23.0 
  3 40.0 3 30.0 3 59.0 3 32.3 
  4 25.0 4 36.0 4 49.0 4 0 
  5 59.0 5 40.0 5 19.5 5 10.0 
  6 24.0 6 31.0 6 31.0 6 16.7 
  7 43.0 7 37.0 7 22.4 7 0 
  8 77.0 8 45.0 8 23.0 8 26.4 
  9 70.0 9 24.0 9 12.0 9 19.0 
  10 61.0 10 30.0 10 43.0 10 0 
  11 47.0 11 12.0 11 19.0 11 41.5 
  12 0 12 38.0 12 26.0 12 17.9 
 I1 13 68.0 13 17.0 13 0 13 0 
  14 67.0 14 57.0 14 25.5 14 15.0 
  15 23.0 15 23.0 15 0 15 0 
  16 33.0 16 29.0 16 59.0 16 0 
  17 63.0 17 41.0 17 61.0 17 15.0 
  18 16.0 18 30.0 18 50.4 18 20.0 
  19 44.0 19 36.0 19 27.0 19 0 
  20 50.0 20 25.0 20 67.0 20 49.0 
  21 80.0 21 52.0 21 16.0 21 16.0 
  22 72.0 22 18.0 22 30.0 22 0 
  23 11.0 23 22.0 23 30.0 23 31.2 
  24 0 24 0 24 29.0 24 0 

120  Mean 44.6 Mean 30.2 Mean 31.1  Mean 13.9 
(T3)          

  1 25.5 1 9.5 1 70.0 1 14.0 
  2 34.0 2 44.0 2 60.0 2 61.0 
  3 72.0 3 55.0 3 13.0 3 28.0 
  4 65.0 4 47.0 4 25.0 4 0 
  5 69.0 5 26.0 5 25.0 5 26.0 
  6 44.0 6 36.0 6 12.0 6 40.8 
  7 33.0 7 33.0 7 49.0 7 38.0 
  8 18.0 8 13.0 8 30.0 8 41.2 
  9 74.0 9 35.0 9 25.0 9 38.2 
  10 87.0 10 50.0 10 26.0 10 32.0 
  11 47.0 11 38.0 11 18.0 11 47.7 
  12 26.0 12 10.0 12 33.0 12 39.0 
 I2 13 46.0 13 16.0 13 52.0 13 0 
  14 46.5 14 42.0 14 0 14 54.0 
  15 42.0 15 63.0 15 0 15 25.4 
  16 48.0 16 24.0 16 79.0 16 0 
  17 71.0 17 50.0 17 0 17 82.5 
  18 47.0 18 33.0 18 13.5 18 0 
  19 25.0 19 36.0 19 90.0 19 0 
  20 49.0 20 37.0 20 41.0 20 19.0 
  21 53.0 21 20.0 21 30.0 21 29.0 
  22 51.0 22 22.0 22 25.0 22 46.2 
  23 71.0 23 46.0 23 15.0 23 0 
  24 0 24 0 24 18.5 24 22.0 
  Mean 47.7 Mean 32.7 Mean 31.3  Mean 28.5 
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Appendix Table 6  (Continued) 

 
P2O5 AMF Rep 1 Rep 2 Rep 3 Rep 4 

(kg ha-1)  Crop no. sh 2/ 

(cm) 
Crop no. sh  

(cm) 
Crop no. sh 

(cm) 
Crop no. sh 

(cm) 
  1 19.0 1 25.0 1 46.7 1 45.2 
  2 22.0 2 51.0 2 76.3 2 0 
  3 24.0 3 28.0 3 58.9 3 35.1 
  4 80.0 4 26.0 4 58.4 4 11.1 
  5 31.0 5 45.0 5 30.0 5 41.0 
  6 24.0 6 81.0 6 16.4 6 33.2 
  7 90.0 7 31.0 7 61.5 7 16.0 
  8 38.0 8 32.0 8 17.2 8 0 
  9 15.0 9 19.0 9 32.0 9 61.5 
  10 15.0 10 0 10 60.0 10 21.0 
  11 0 11 0 11 63.4 11 64.0 
  12 0 12 0 12 28.5 12 24.0 
 I1 13 23.0 13 51.0 13 64.3 13 0 
  14 25.0 14 50.0 14 56.0 14 0 
  15 27.0 15 45.0 15 68.8 15 23.2 
  16 16.0 16 56.0 16 84.3 16 31.2 
  17 51.0 17 26.0 17 30.4 17 53.4 
  18 13.0 18 19.0 18 54.8 18 25.5 
  19 56.0 19 41.0 19 76.0 19 0 
  20 29.0 20 37.0 20 50.7 20 0 
  21 23.0 21 0 21 48.8 21 66.0 
  22 0 22 0 22 34.3 22 20.8 
  23 0 23 0 23 48.0 23 44.0 
  24 0 24 0 24 0 24 54.4 

240  Mean 25.9 Mean 27.6 Mean 48.6  Mean 27.9 
(T4)          

  1 24.5 1 37.0 1 28.3 1 72.0 
  2 33.0 2 61.0 2 30.0 2 81.0 
  3 77.0 3 35.0 3 18.0 3 101.2 
  4 50.0 4 28.0 4 14.0 4 45.8 
  5 64.0 5 21.0 5 24.0 5 59.2 
  6 58.0 6 55.0 6 20.7 6 81.3 
  7 52.0 7 88.0 7 44.0 7 59.2 
  8 68.0 8 40.0 8 26.8 8 97.0 
  9 109.0 9 55.0 9 39.0 9 66.4 
  10 0 10 86.0 10 32.3 10 96.7 
  11 0 11 0 11 29.0 11 89.0 
  12 0 12 0 12 14.5 12 51.5 
 I2 13 81.0 13 64.0 13 17.0 13 48.1 
  14 51.0 14 71.0 14 29.5 14 30.5 
  15 87.0 15 58.0 15 18.5 15 0 
  16 73.0 16 87.0 16 20.2 16 66.2 
  17 68.0 17 22.0 17 31.6 17 92.0 
  18 20.0 18 61.0 18 29.1 18 53.2 
  19 62.0 19 79.0 19 24.3 19 35.0 
  20 105.0 20 19.0 20 28.0 20 85.0 
  21 0 21 56.0 21 19.0 21 88.6 
  22 0 22 27.0 22 27.8 22 25.0 
  23 0 23 0 23 47.2 23 78.2 
  24 0 24 0 24 10.0 24 30.4 
  Mean 45.1 Mean 43.8 Mean 26.0  Mean 63.9 

 

2/sh = shoot height (cm)
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Appendix Table 7  Percentage of nitrogen, phosphorus and potassium concentration 

                of shoot of baby corn  (Zea mays L.) for Crop 1. 

 
        Nutrient concentration   

P2O5 AMF Rep N P K 
(kg ha-1)     (%) (%) (%) 

   1 0.919  0.074  0.656  

   2 0.831  0.176  0.954  

 I1  3 1.076  0.120  0.898  

   4 1.111  0.130  1.240  
  Mean 0.984  0.125  0.937  

0   1 0.744  0.120  0.649  

(T1)   2 0.691  0.157  0.431  

 I2  3 0.691  0.185  0.730  

   4 1.496  0.130  0.962  
  Mean 0.906  0.148  0.693  

   1 0.849  0.083  0.505  

   2 1.024  0.176  0.870  

 I1  3 1.278  0.130  0.930  

   4 0.936  0.167  0.464  
  Mean 1.022  0.139  0.692  

60   1 0.271  0.111  0.484  

(T2)   2 0.796  0.056  0.637  

 I2  3 0.761  0.065  0.656  

   4 0.788  0.065  0.496  
   Mean 0.654  0.074  0.568  

   1 0.989  0.130  0.491  

   2 0.726  0.148  0.444  

 I1  3 1.269  0.139  0.595  

   4 0.796  0.056  0.536  
  Mean 0.945  0.118  0.516  

120   1 0.236  0.069  0.615  

(T3)   2 0.866  0.139  0.841  

 I2  3 0.219  0.102  0.635  

   4 0.656  0.060  0.869  

   Mean 0.494  0.093  0.740  

   1 0.569  0.065  0.324  

   2 0.971  0.079  0.944  

 I1  3 0.919  0.153  0.634  

   4 1.059  0.194  0.700  
  Mean 0.879  0.123  0.650  

240   1 0.919  0.056  0.331  

(T4)   2 0.534  0.019  0.475  

 I2  3 0.814  0.157  0.983  

   4 0.656  0.130  0.679  
   Mean 0.731  0.090  0.617  
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Appendix Table 8  Percentage of nitrogen, phosphorus and potassium concentration 

of shoot of baby corn (Zea mays L.) for Crop 2. 

 
        Nutrient concentration   

P2O5 AMF Rep N P K 
(kg ha-1)     (%) (%) (%) 

  1 0.438  0.102  0.491  

  2 0.268  0.069  0.721  

 I1 3 0.050  0.028  0.514  

  4 0.366  0.088  0.407  
  Mean 0.280  0.072  0.533  

0  1 0.195  0.056  0.502  

(T1)  2 0.584  0.130  0.486  

 I2 3 0.536  0.120  0.466  

  4 0.244  0.065  0.455  
  Mean 0.390  0.093  0.477  

  1 0.414  0.097  0.737  

  2 0.682  0.148  0.484  

 I1 3 0.390  0.093  0.482  

  4 0.487  0.111  0.758  
  Mean 0.493  0.112  0.615  

60  1 0.366  0.088  0.565  

(T2)  2 0.487  0.111  0.382  

 I2 3 0.827  0.176  0.315  

  4 0.244  0.065  0.476  
   Mean 0.481  0.110  0.434  

  1 0.584  0.130  0.416  

  2 0.584  0.130  0.277  

 I1 3 0.633  0.139  0.218  

  4 0.584  0.130  0.505  
  Mean 0.596  0.132  0.354  

120  1 0.366  0.088  0.356  

(T3)  2 0.293  0.074  0.386  

 I2 3 0.584  0.130  0.266  

  4 1.119  0.231  0.238  

   Mean 0.590  0.131  0.311  

  1 0.293  0.074  0.334  

  2 0.414  0.097  0.367  

 I1 3 1.265  0.259  0.364  

  4 0.925  0.194  0.594  
  Mean 0.724  0.156  0.415  

240  1 0.730  0.157  0.674  

(T4)  2 1.070  0.222  0.635  

 I2 3 1.265  0.389  0.481  

  4 1.119  0.231  0.475  
   Mean 1.046  0.250  0.566  
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