## **TABLE OF CONTENTS**

| TABLE OF CONTENT                    | i   |
|-------------------------------------|-----|
| LIST OF TABLES                      | ii  |
| LIST OF FIGURES                     | V   |
| LIST OF ABBREVIATIONS               | vii |
| INTRODUCTION                        | 1   |
| OBJECTIVES                          | 3   |
| LITERATURE REVIEW                   | 4   |
| MATERIALS AND METHODS               | 33  |
| Materials                           | 18  |
| Methods                             | 23  |
| RESULTS AND DISCUSSION              | 29  |
| CONCLUSION                          | 71  |
| RECOMMENDATION                      | 73  |
| LITERATURE CITED                    | 74  |
| APPENDICES                          | 79  |
| Appendix A Photographs              | 80  |
| Appendix B Figures and calculations | 83  |
| Appendix C Tables                   | 86  |
| CURRICULUM VITAE                    | 120 |

## LIST OF TABLES

| Table |                                                                                           | Page |
|-------|-------------------------------------------------------------------------------------------|------|
|       |                                                                                           | _    |
| 1     | Average values of leachate contents                                                       | 6    |
| 2     | The characteristics of Leachate from Landfills in Thailand                                | 8    |
| 3     | Relative biodegradability of leachate                                                     | 10   |
| 4     | Landfill constituent concentration ranges as a function                                   |      |
|       | of the degree of landfill stabilization                                                   | 14   |
| 5     | Leachate constituents of conventionally operated landfills                                |      |
|       | and landfills with leachate re-circulation                                                | 15   |
| 6     | Few examples of laboratory and pilot scale bioreactor studies in Asia                     | 16   |
| 7     | Physical composition of solid waste                                                       | 21   |
| 8     | Physical and Chemical characteristics of solid waste                                      | 22   |
| 9     | Abbreviations used in different conditions and                                            |      |
|       | different solid waste types                                                               | 24   |
| 10    | Physical parameters analyzed in fresh waste and digestate waste                           | 27   |
| 11    | General information on nutrients analysis                                                 | 28   |
| 12    | General information on leachate analysis parameters                                       | 29   |
| 13    | TBOD and SCOD concentration variation in $St_{S1}$ , $St_{S2}$ and $St_{S3}$              | 38   |
| 14    | TBOD <sub>5</sub> and SCOD load variation in $St_{S1}$ , $St_{S2}$ and $St_{S3}$          | 39   |
| 15    | Cumulative sp. TBOD <sub>5</sub> and SCOD load variation in                               |      |
|       | St <sub>S1</sub> , St <sub>S2</sub> and St <sub>S3</sub>                                  | 40   |
| 16    | $BOD_5$ to COD ratio in $St_{S1}$ , $St_{S2}$ and $St_{S3}$                               | 41   |
| 17    | TKN and NH <sub>4</sub> -N concentration variation in $St_{S1}$ , $St_{S2}$ and $St_{S3}$ | 42   |
| 18    | Cumulative sp. TKN and NH <sub>4</sub> -N load variation in                               |      |
|       | St <sub>S1</sub> , St <sub>S2</sub> and St <sub>S3</sub>                                  | 42   |
| 19    | Cumulative sp. Organic load variation in $LR_{S1}$ -100 and $LR_{S2}$ -100                | 56   |
| 20    | Sp. pollutant load leach in LC and HC at leachate                                         |      |
|       | recirculation and internal storage condition                                              | 63   |
| 21    | Percentage leach from lysimeters                                                          | 66   |

# LIST OF TABLES (Continued)

# TablePage

| 22 | Percent Carbon leach from each lysimeter               | 68 |
|----|--------------------------------------------------------|----|
| 23 | Percent Nitrogen leach from each lysimeter             | 70 |
| 24 | The changes to the physical, chemical characteristics  |    |
|    | of solid waste after 61 days in Run 1(storm condition) | 72 |
| 25 | The changes to the physical, chemical characteristics  |    |
|    | of solid waste after 60 days in Run 2                  | 73 |
| 26 | The changes to the physical, chemical characteristics  |    |
|    | of solid waste after 60 days in Run 3                  | 74 |

# Appendix Table

| C1  | pH Variation in Lysimeters -Run 2(LR and IS)                        | 92  |  |  |  |  |
|-----|---------------------------------------------------------------------|-----|--|--|--|--|
| C2  | pH Variation in Lysimeters -Run 3 (LR and IS)                       |     |  |  |  |  |
| C3  | pH Variation in Lysimeters -Run 1(storm)                            | 93  |  |  |  |  |
| C4  | Weight of each type of waste fill into lysimeters at                |     |  |  |  |  |
|     | initially and their TS amount                                       | 93  |  |  |  |  |
| C5  | Leachate output from Lysimeters-ml                                  | 94  |  |  |  |  |
| C6  | Total BOD <sub>5</sub> variation in lysimeter- Run 2 (LR and IS)    | 95  |  |  |  |  |
| C7  | Soluble BOD <sub>5</sub> variation in lysimeters- Run 2 (LR and IS) | 96  |  |  |  |  |
| C8  | Total COD variation in lysimeters- Run 2 (LR and IS)                | 97  |  |  |  |  |
| C9  | Soluble COD variation in lysimeters- Run 2 (LR and IS)              | 98  |  |  |  |  |
| C10 | TKN variation in lysimeters- Run 2 (LR and IS)                      | 99  |  |  |  |  |
| C11 | NH <sub>4</sub> -N variation in lysimeters- Run 2 (LR and IS)       | 100 |  |  |  |  |
| C12 | TS variation in lysimeters – Run 2 (LR and IS)                      | 101 |  |  |  |  |
| C13 | TDS variation in lysimeters – Run 2 (LR and IS                      | 102 |  |  |  |  |
| C14 | SS variation in lysimeters – Run 2 (LR and IS)                      | 103 |  |  |  |  |
| C15 | Total BOD <sub>5</sub> variation in lysimeters – Run 3 (LR and IS)  | 104 |  |  |  |  |

# LIST OF TABLES (Continued)

# Appendix Table

# Page

| Soluble BOD <sub>5</sub> variation in lysimeters– Run 3 (LR and IS) | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total COD variation in lysimeters- Run 3 (LR and IS)                | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soluble COD variation in lysimeters- Run 3 (LR and IS)              | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TKN variation in lysimeters- Run 3 (LR and IS)                      | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NH <sub>4</sub> -N variation in lysimeters– Run 3 (LR and IS)       | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TS variation in lysimeters- Run 3 (LR and IS)                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TDS variation in lysimeters- Run 3 (LR and IS)                      | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SS variation in lysimeters- Run 3 (LR and IS)                       | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total BOD <sub>5</sub> variation in lysimeters- Run 1 (St)          | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soluble BOD <sub>5</sub> variation in lysimeters- Run 1 (St)        | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total COD variation in lysimeters- Run 1 (St)                       | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soluble COD variation in lysimeters- Run 1 (St)                     | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TKN variation in lysimeters- Run 1 (St)106                          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NH <sub>4</sub> -N variation in lysimeters- Run 1 (St)              | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TS variation in lysimeters- Run 1 (St)                              | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TDS variation in lysimeters- Run 1 (St)                             | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SS variation in lysimeters- Run 1 (St)                              | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Carbon balance                                                      | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nitrogen balance                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                     | Total COD variation in lysimeters– Run 3 (LR and IS)<br>Soluble COD variation in lysimeters– Run 3 (LR and IS)<br>TKN variation in lysimeters– Run 3 (LR and IS)<br>NH <sub>4</sub> -N variation in lysimeters– Run 3 (LR and IS)<br>TS variation in lysimeters– Run 3 (LR and IS)<br>TDS variation in lysimeters– Run 3 (LR and IS)<br>SS variation in lysimeters– Run 3 (LR and IS)<br>Total BOD <sub>5</sub> variation in lysimeters– Run 1 (St)<br>Soluble BOD <sub>5</sub> variation in lysimeters– Run 1 (St)<br>Total COD variation in lysimeters– Run 1 (St)<br>Soluble COD variation in lysimeters– Run 1 (St)<br>TKN variation in lysimeters– Run 1 (St)<br>TKN variation in lysimeters– Run 1 (St)<br>TS variation in lysimeters– Run 1 (St)<br>Soluble COD variation in lysimeters– Run 1 (St)<br>Carbon balance |

## LIST OF FIGURES

# Figure

# Page

| 1  | Monthly mean values of water balance elements (basis 20 years)                     | 9  |
|----|------------------------------------------------------------------------------------|----|
| 2  | Lab scale vertical batch reactor design                                            | 18 |
| 3  | Flow diagram of reactor operation                                                  | 25 |
| 4  | Reactor operation under leachate recirculation condition                           | 26 |
| 5  | Variation of Total BOD <sub>5</sub> , Total COD, TKN and TDS in                    |    |
|    | Open dump fresh waste in terms of specific pollutant loads                         | 31 |
| 6  | Organic concentration variation in $St_{C1}$ and $St_{C2}$                         | 33 |
| 7  | Specific organic load variation in $St_{C1}$ and $St_{C2}$                         | 34 |
| 8  | Cumulative specific organic load variation in $St_{C1}$ and $St_{C2}$              | 34 |
| 9  | Nitrogen concentration variation in $St_{C1}$ and $St_{C2}$                        | 35 |
| 10 | Cumulative Sp. Nitrogen load variation in $St_{C1}$ and $St_{C2}$                  | 36 |
| 11 | TDS and SS concentration variation in $St_{C1}$ and $St_{C2}$                      | 37 |
| 12 | TDS and SS load (mg)variation in $St_{C1}$ and $St_{C2}$                           | 37 |
| 13 | Cumulative sp. TS, TDS and SS load variation in $St_{C1}$ and $St_{C2}$            | 37 |
| 14 | TDS and SS concentration variation in $St_{S1}$ , $St_{S2}$ and $St_{S3}$          | 43 |
| 15 | TDS and SS load variation in $St_{S1}$ , $St_{S2}$ and $St_{S3}$                   | 44 |
| 16 | Cumulative sp. TDS and SS load variation in $St_{S1}$ , $St_{S2}$ and $St_{S3}$    | 44 |
| 17 | Organic concentration variation in $St_{P1}$ and $St_{P2}$                         | 45 |
| 18 | Cumulative sp. Organic load variation in $St_{P1}$ and $St_{P2}$                   | 46 |
| 19 | Nitrogen concentration variation in $St_{P1}$ and $St_{P2}$                        | 47 |
| 20 | Cumulative sp. Nitrogen load variation in $St_{P1}$ and $St_{P2}$                  | 47 |
| 21 | Cumulative sp. TDS and SS load in $St_{P1}$ and $St_{P2}$                          | 48 |
| 22 | TBOD <sub>5</sub> variation in low compacted waste (LR <sub>C1</sub> )             | 49 |
| 23 | TBOD <sub>5</sub> variation in high compacted waste (LR <sub>C2</sub> )            | 50 |
| 24 | TBOD <sub>5</sub> concentration and cumulative sp. load variation                  |    |
|    | in pre-treated waste (LR <sub>S2</sub> )                                           | 51 |
| 25 | Organic concentration variation in LR <sub>C1</sub> -100 and LR <sub>C2</sub> -100 | 51 |

v

# LIST OF FIGURES (Continued)

# Figure

# Page

| 26 | Cumulative sp. organic load in $LR_{C1}$ -100 and $LR_{C2}$ -100     | 52 |
|----|----------------------------------------------------------------------|----|
| 27 | Cumulative Organic load-mg in LC and HC under leachate               |    |
|    | recirculation (LR) and storm conditions (IS)                         | 53 |
| 28 | TKN concentration and cumulative sp. load in                         |    |
|    | LR <sub>C1</sub> -100 and LR <sub>C2</sub> -100                      | 54 |
| 29 | Cumulative sp. TCOD load in LC and HC at LR and St.                  | 55 |
| 30 | Cumulative sp. TCOD in HC,PT and OW                                  |    |
|    | in St and LR condition                                               | 57 |
| 31 | Organic concentration variation in $LR_{P1}$ -100 and $LR_{P2}$ -100 | 59 |
| 32 | Pollutant concentration variation in $IS_{C1}$ and $IS_{C2}$         | 61 |
| 33 | Sp. Pollutant load leach in $IS_{C1}$ and $IS_{C2}$                  | 61 |
| 34 | TCOD concentration variation in leachate recirculation               |    |
|    | and submerged condition                                              | 62 |
| 35 | Variation of pH in lysimeters at storm condition                     | 64 |
| 36 | pH variation in lysimeters at leachate recirculation and             |    |
|    | internal storage condition                                           | 64 |
| 37 | Water balance in lysimeters                                          | 65 |
| 38 | Carbon Balance in lysimeters                                         | 67 |
| 39 | Nitrogen Balance in lysimeters                                       | 69 |

# Appendix Figure

| B1 | Average rainfall pattern (year 2001 to 2006); |    |  |  |  |
|----|-----------------------------------------------|----|--|--|--|
|    | storm period from September to October        | 88 |  |  |  |

## LIST OF ABBREVIATIONS

| BOD                | = | Biochemical Oxygen Demand               |  |  |
|--------------------|---|-----------------------------------------|--|--|
| BOD/COD            | = | Biochemical Oxygen Demand               |  |  |
|                    |   | to Chemical Oxygen Demand ratio         |  |  |
| COD                | = | Chemical Oxygen Demand                  |  |  |
| DT                 | = | Digested Solids                         |  |  |
| FC                 | = | Field Capacity                          |  |  |
| MC                 | = | Moisture Content                        |  |  |
| MSW                | = | Municipal Solid Waste                   |  |  |
| NH <sub>4</sub> -N | = | Ammonia Nitrogen                        |  |  |
| PCD                | = | Pollution Control Department            |  |  |
| $SO_4^{-2}$        | = | Sulfate                                 |  |  |
| TDS                | = | Total Dissolved Solids                  |  |  |
| SS                 | = | Suspended Solids                        |  |  |
| TS                 | = | Total Solids                            |  |  |
| TKN                | = | Total Kjeldahl Nitrogen                 |  |  |
| TS                 | = | Total Solids                            |  |  |
| VFA                | = | Volatile Fatty Acids                    |  |  |
| VS                 | = | Volatile Solid                          |  |  |
| WP                 | = | Wilting Point                           |  |  |
| RF                 | = | Rain Fall                               |  |  |
| St                 | = | Storm condition                         |  |  |
| LR                 | = | Leachate Recirculation condition        |  |  |
| IS                 | = | Internal Storage condition              |  |  |
| LC                 | = | Low compacted waste                     |  |  |
| НС                 | = | High Compacted waste                    |  |  |
| HC-w/p             | = | High Compacted waste Without Plastic    |  |  |
| РТ                 | = | Pre-Treated waste                       |  |  |
| OW                 | = | Old Waste                               |  |  |
| $St_{C1}$          | = | low compacted waste at storm condition  |  |  |
| $St_{C2}$          | = | High compacted waste at storm condition |  |  |

# LIST OF ABBREVIATIONS (Continued)

| $St_{P1}$                   | = | High compacted waste at storm condition (waste with        |  |
|-----------------------------|---|------------------------------------------------------------|--|
|                             |   | plastic)                                                   |  |
| St <sub>P2</sub>            | = | High compacted waste without plastic at storm condition    |  |
| $\mathbf{St}_{\mathrm{S1}}$ | = | High compacted waste at storm condition                    |  |
| St <sub>S2</sub>            | = | Pre-treated waste at storm condition                       |  |
| St <sub>S3</sub>            | = | Old waste at storm condition                               |  |
| LR <sub>C1</sub> -100       | = | Low compacted with 100% leachate recirculation.            |  |
| LR <sub>C1</sub> -75        | = | Low compacted waste with 75% leachate recirculation.       |  |
| LR <sub>C1</sub> -50        | = | Low compacted waste with 50% leachate recirculation.       |  |
| LR <sub>C1</sub> -35        | = | Low compacted waste with 35% leachate recirculation.       |  |
| LR <sub>C2</sub> -100       | = | High compacted waste with 100% leachate recirculation.     |  |
| LR <sub>C2</sub> -35        | = | High compacted waste with 35% leachate recirculation.      |  |
| $LR_{P1}$ -100              | = | High compacted waste with 100% leachate recirculation      |  |
|                             |   | (waste with plastic)                                       |  |
| LR <sub>P2</sub> -100       | = | Sanitary landfill waste without plastic with 100% leachate |  |
|                             |   | recirculation.                                             |  |
| LR <sub>S1</sub> -100       | = | High compacted waste with 100% leachate recirculation      |  |
| LR <sub>S2</sub> -100       | = | Pre-treated waste with 100% leachate recirculation.        |  |
| LR <sub>S2</sub> -35        | = | Pre-treated waste with 35% leachate recirculation.         |  |
| IS <sub>C1</sub>            | = | Low compacted waste at internal storage condition          |  |
| IS <sub>C2</sub>            | = | High compacted waste at internal storage condition         |  |

i

# EFFECT OF SOLID WASTE DISPOSAL CONDITIONS ON LEACHATE CHARACTERISTICS IN TROPICAL LANDFILL

### **INTRODUCTION**

Leachate can be defined as liquid that percolated through solid waste or another medium. (Tchobanoglous *et al.*,1993).Leachate arising from domestic waste landfills can contain high concentration of organic and inorganic substances, such as nitrogen compounds and heavy metals and it has the potential to pollute ground and surface waters. (Tränkler *et al.*,2001a ).

Leachate characteristics and leachate generation depend on the type and depth of solid waste, age of landfill, the rate of water application, landfill design and operations and the interaction of leachate with its environment.(Qasim, 1994). The quality variations can also be attribute to sampling procedures, sample preservation, handling and storage, and analytical methods used to characterize the leachate (Chian and DeWalle,1976).

A most significant limitation for the successful treatment of landfill leachate is the complexity in identifying and quantifying their typical composition and characteristics. If leachate plants were designed to handle the average leachate quality only, they would occasionally be overloaded in practice, due to high discharge of leachate during certain time periods. Hence, climatic differences need to be considered.

As mentioned above, leachate generation and its characteristic in a landfill, the influence of the climate on leachate production is complex: In relatively warm climates, like the region, the leachate production after precipitation is generally increasing quite rapid and leachate production is generally greater (Lema *et al.*,1988)

Thailand has a warm climate and is located in the tropical region where a distinct dry season up to 150 days a year, a wet season with intensive rainfalls within a few hours, elevated temperature around 25 -40 °C and high solar radiation influence the water management of landfills and the characteristics of leachate produced in that region. (Tränkler *et al.*,2001b )

Because of this complexity in leachate under tropical climatic conditions, this study was focused on finding leachate characteristics in tropical climatic condition at different solid waste disposal conditions and operation factors.

### **OBJECTIVES**

This study is conducted to investigate the characteristics of leachate mainly the extraction, affected by various influencing factors. The objectives can be summarized as follows,

1. To determine the characteristics of leachate in solid waste leaching during storm events in tropical climatic conditions in landfills.

2. To determine the characteristics of leachate in solid waste leaching in the landfill at leachate recirculation condition and internal storage condition.

### Scope of the study

1. The Study was conducted in a lab scale. Landfill simulation reactors were simulated with 6 columns to carry out the experiment.

2. Various types of solid wastes (sanitary landfill waste, pre-treated waste, open dump fresh waste, open dump old waste) were considered for starting landfill body with different rainfall rates of storm condition.

3. Various types of solid wastes (sanitary landfill waste, pre-treated waste and open dump fresh waste) were considered for starting landfill body with different leachate re-circulation rates.

4. Various types of solid wastes (sanitary landfill waste, pre-treated waste and open dump fresh waste) were considered for starting landfill body with different leachate re-circulation rates.

5. All types of waste were obtained from Nonthaburi dumpsite, Thailand and simulated tropical climatic conditions for all lysimeters

6. The leachate quality will be considered in terms of BOD, COD, TKN, NH<sub>3</sub>-N, Total solids, Total dissolved solids, Total suspended solids and pH

### LITERATURE REVIEW

#### 1. Landfill Leachate

#### 1.1 Leachate Generation

Leachate can be defined as liquid that has percolated through solid waste or another medium. Leachate from landfills usually contain extracted, dissolved and suspended materials, some of which may be harmful (Tchobanoglous *et al.*, 1993)

Leachate is generated when water penetrates into a landfill and leaches out water soluble compounds and decomposition products. Sources of water entering the landfill include liquid present in the refuse at placement (inherent moisture in the solid waste), precipitation falling on refuse at placement and infiltration after cover application and intrusion of groundwater from outside into the landfill. In addition, a small amount of water is formed as a by-product of decomposition of the wastes.

There are three ways of minimizing the amount of compounds, which are removed from landfills with the leachate:

- Reducing the leachate volume
- Collection and treatment

• Improvement in deposition methods or pre-treatment of certain types of waste.

Water passing trough a sanitary landfill carries with it various dissolved and suspended materials. The more water flows through the solid wastes, the more pollutants are leached. It is important to review the methods that can be estimate the amount of leachate generation at a sanitary landfill site.

The rate of production of leachate can be calculated by performing a water balance. A water balance involves an accounting of all of the serious of water entering

and leaving the landfill, including the water used in bio-chemical reactions and water leaving the landfill in the form of water vapor in the landfill gas. The quantity of leachate that could potentially be generated is that which exceeds the moistureholding capacity of the material in the landfill.

The total amount of moisture that can be stored in a unit volume of soil is a function of two variables: the field capacity (FC) and the wilting point (WP) of the soil. The field capacity of a soil is defined as the quantity of liquid, which remains in the pore space following a prolonged period of gravitational drainage. The wilting point of a soil is defined as the quantity of water that remains in a soil after plants are no longer capable of extracting any more water. The different between the field capacity and the wilting point is equivalent to the quantity of moisture that can be stored in a particular type of soil. The quantity of leachate generated is shown in equation 1

$$L = P - R - E_T - \Delta S - (1)$$

- L = Quantity of percolate through the cover per unit area of soil cover (mm)
- P = Quantity of net precipitation per unit area (mm)

R = Quantity of runoff pee unit area (mm)

 $E_T$  = Quantity of moisture lost trough evapotranspiration per unit area (mm)

 $\Delta S$  = Change in the amount of moisture stored in a unit volume of landfill (mm). (Tchobanoglous *et al.*, 1993)

### 1.2 Composition of Leachate

When water percolates through solid wastes that are undergoing decomposition, both biological materials and chemical constituents are leached into solution.

The composition of the leachate and the content varies with respect to the type of pollutants, with the age of the landfill, the characteristics of the disposed waste

and the degree of dilution with surface water and groundwater. The components, which are normally considered pollutants regarding treatment, are:

- Organic substances
- Nitrogen (primarily in ammonium ions)
- Heavy metals

The composition of leachate changes as the biological decomposition of the waste which undergoes different phases. After a short aerobic phase (several weeks) it is possible to identify two decomposition phases; an acid generating anaerobic phase, and a methanogenic anaerobic phase. A list of typical leachate components during the acid-and methane generating phases are presented in Table1

| Parameter          | Unite | Acid phase | Methanogenic phase | Independent from lifetime |
|--------------------|-------|------------|--------------------|---------------------------|
| pН                 |       | 6.1        | 8                  |                           |
| SCOD               | mg/L  | 22,000     | 3000               |                           |
| SBOD <sub>5</sub>  | mg/L  | 13,000     | 180                |                           |
| Fe                 | mg/L  | 925        | 15                 |                           |
| Ca                 | mg/L  | 1300       | 80                 |                           |
| Mg                 | mg/L  | 600        | 250                |                           |
| Mn                 | mg/L  | 24         | 0.65               |                           |
| Zn                 | mg/L  | 5.6        | 0.64               |                           |
| Sr                 | mg/L  | 7.2        | 0.94               |                           |
| $\mathrm{SO}_4$    | mg/L  | <1745      | <884               |                           |
| NH <sub>4</sub> -N | mg/L  |            |                    | 741                       |
| NO <sub>3</sub> -N | mg/L  |            |                    | 3.3                       |
| Org.N              | mg/L  |            |                    | 592                       |
| Cl                 | mg/L  |            |                    | 2119                      |
| Κ                  | mg/L  |            |                    | 1085                      |
| Na                 | mg/L  |            |                    | 1343                      |
| Total P            | mg/L  |            |                    | 5.7                       |
| As                 | mg/L  |            |                    | 0.126                     |
| Pb                 | mg/L  |            |                    | 0.087                     |
| Cd                 | mg/L  |            |                    | 0.0052                    |

 Table 1
 Average values of leachate contents

| Parameter | Unite | Acid<br>phase | Methanogenic phase | Independent from<br>lifetime |
|-----------|-------|---------------|--------------------|------------------------------|
|           |       |               |                    |                              |
| Cr        | mg/L  |               |                    | 0.275                        |
| Co        | mg/L  |               |                    | 0.05                         |
| Cu        | mg/L  |               |                    | 0.065                        |
| Ni        | mg/L  |               |                    | 0.166                        |

 Table 1
 Average values of leachate contents (Continued)

Source: Ehrig (1983)

In the acidic phase, simple compounds are formed, such as fatty acids, amino acids and carboxylic acids. Due to the heterogeneous nature of the waste, such acid decomposition phases can continue for several years after disposal. The leachate during this phase characterized by

- High concentrations of volatile fatty acids
- Acid pH
- High BOD
- High BOD/COD ratio
- High content of NH<sub>4</sub> and organic N

In the methane-generating phase, methane producing bacteria dominate the organic flora. The methane bacteria replace the acid compounds, the main final products being methane and carbon dioxide. The methane phase can continue for up to 100 years and perhaps even longer. The composition of the leachate during this phase is characterized by:

- Very low concentrations of volatile fatty acids
- Neutral/basic pH
- Low BOD

- Low BOD/COD ratio
- High content of NH<sub>4</sub>

The BOD/COD ratio is an indication of the proportion of organic material in the leachate, which is easily decomposed. This is decisive regarding treatment of the leachate biologically.

In 1988 Pollution Control Department (PCD) collected the leachate from landfills in Thailand and characterized the characteristics as shown in Table 2

**Table 2** The characteristics of Leachate from Landfills in Thailand

| Parameters             | Unit | PCD 1988     | Phitsanulok  |
|------------------------|------|--------------|--------------|
| pН                     | -    | 6.3-8.2      | 5.8-8.9      |
| Total solids           | mg/L | 2,700-20,800 | 3,800-20,900 |
| Total dissolved solids | mg/L | 2,120-19,400 | 2,160-13-380 |
| COD                    | mg/L | 250-17,900   | 1,280-25,440 |
| BOD <sub>5</sub>       | mg/L | 47-10,900    | 100-18,600   |
| BOD/COD                | mg/L | 0.06-0.88    | 0.07-1.00    |
| TKN                    | mg/L | nd           | 195-1,405    |
| NH <sub>4</sub> -N     | mg/L | 23-806       | 85-1,250     |
| Sulfide                | mg/L | 0.3-5.76     | nd           |
| Hg                     | mg/L | 0.400-9.500  | 0.370-2.600  |
| Pb                     | mg/L | 0.100-0.258  | 0.022-0.480  |
| Cd                     | mg/L | 0-0.021      | 0.037-1.020  |
| Ni                     | mg/L | 0-0.649      | 0.007-1.563  |

nd = not detected

Source: Tränkler et al. (2001)b.

#### 1.3 Influence of Tropical Seasonal Variation on Landfill Leachate

Most landfill sites in Asia are located in a monsoon climate. Climatic condition in tropical countries such as Thailand, Malaysia, etc can be characterized by rainy season and dry season. There is high intensity rainfall (upto 80mm/ day and above) in rainy season while dry season does not have rainfall. It has been observed that 220-250 days per year shows no rain at all and there exists distinct arid period of about four months. With a medium temperature of 28°C and an average sunshine duration of 6.8 hours the solar radiation is computed to be 18.8 MJ/m<sup>2</sup>/day. This results in high evaporation rates around 50%

Figure1 shows that one of the water balance components that are mostly influencing the outcome is evapotranspiration. Tropical climate like Thailand has raised some issues like the effect on water balance by variations of short-term intensive rainfall, which might have greater input into evaporation and run-off than infiltration.(Tränkler *et al.*, 2001b)



Figure 1 Monthly mean values of water balance elements (basis 20 years)

Source: Tränkler et al. (2001)b.

Climatic variation can significantly affect the leachate quality and quantity (Visvanathan *et al.*, 2003) During dry season leachate and gas production nearly stop and restarts immediately with the merge of the rainy season (Tränkler and Ranaweera, 2001b)

Normally, Thailand has three seasons, which are rainy season (from May until mid- November), winter season (from mid-November until mid-February) and summer season (from mid-February until mid-May). However, reality conditions of seasonal variation will be observed in this study for determining relationship of weather condition verses leachate quality.

Rainfall pattern effects leachate generation. During dry season means less or no precipitation due to small amount of leachate generation, less cumulative of leachate or stagnant discharge. During rainy season which normally have intensive rainfall, more leachate generation and highly cumulative than dry season. Furthermore, in terms of leachate characteristics were found that fluctuation with phase of decomposition and rainfall pattern.

#### 1.4 Biodegradability of Leachate

Different levels of biodegradability of leachate and their ranges are presented in table 3

BiodegradabilityBOD/CODCOD/TOCLow<0.5</td><2</td>Medium0.5-0.752-3High>0.75>3

#### Table 3 Relative biodegradability of leachate

Biodegradable leachate can contain low molecular organic acids and alcohols, humic substances with high molecular weight, fulvic acid like materials with high molecular weight. The first group is made out of easily bio-degradable compounds, mainly fatty acids. In acidic leachate, the amount may be more than 90% of TOC. The second group consists of rather stable organics derived from cellulose and lignin. This group is present carboxylic and hydroxylic groups, which are predominant in methanogenic leachate and are difficult to degrade. Other than these organics, benzene, amino acids, phenols and halogenated compounds, i.e. absorbable organic halides (AOX) may be detected in methanogenic leachates. Moreover, extremely high levels of ammoniacal nitrogen (500 to 3000mg/L ) can be observed too (Cossu *et al.*,2003)

Stabilized leachate has the following properties according to Baig and Liechti,2001;

- COD <2,000 mg/LSlightly alkaline pH
- Biodegradability (expressed as BOD 5/COD) of 0.1

### 2. Effect of Leachate on the Environment

Leachate contains many substances and can be classified into 5 groups:

- Major ions such as Ca, Mg, Na, K, SO<sub>4</sub>, NO<sub>3</sub>, NH<sub>4</sub>, Cl, etc.
- Trace inorganic compounds such as Fe, Mn, Cr, Ni, Pb, etc.
- Organic such as COD, BOD, TOC
- Bacteriological such as pathogenic microorganisms, coliforms, etc.
- Physical such as pH, redox potential.

The major environmental problems at landfills have resulted from the loss of leachate from the site and the subsequent contamination of surrounding land and water. Leachate may contaminate on the surface water and ground water.

#### 3. Treatment and disposal of landfill leachate

If the solid waste has very low biodegradability and toxicity, prevention of precipitation on the landfill would be a mail treatment option. But, in general water input is essential for biodegradation of wastes to achieve high biostabilization.

Compared to municipal waste water treatment, leachate treatment has a relatively limited history. Also, leachate treatment regulations vary from country to country. Some countries have strict regulations, some countries require simply collection of leachate and some countries have no definite requirements. Germany is one such country having a treated leachate requirement.

COD, BOD<sub>5</sub>, AOX and Nitrogen are the main parameters to be considered in leachate treatment. Variety of alternatives are available for partial and complete treatment of landfill leachate.

Few treatment options are:

- Leachate channeling
  - o Combined treatment with domestic wastewater
  - o Recycling
  - o Lagooning with recycling
- Biological processes
  - o Aerobic treatment
  - o Anaerobic treatment
- Chemical/Physical treatment
  - o Chemical precipitation
  - o Chemical Oxidation
  - o Adsorption and activated carbon
  - o Reverse osmosis
  - o Ammonia stripping

#### 4. Leachate Re-circulation

Leachate is collected and returned to the top of the landfill. This approach has the benefit of accelerating the sterilization of the organic materials present in the waste. (Edward *et al*, 1995)

Leachate re-circulation can be utilized during the early stages of landfill development, when leachate production quantities are low. In addition, re-circulation can be utilized in later stages of development to eliminate problems of off-site transport during peak production period or during downtimes of transport devices. Re-circulation reduces the hydraulic peaks and can serve to even out the chemical and biological concentration variations of the liquid wastes (Edward *et al.*, 1995)

Apparent advantages of using leachate re-circulation include the following:

- It delays disposal of leachate
- It provides treatment for BOD and speeds up decomposition
- It enhances CH<sub>4</sub> production rate
- It lowers the treatment cost

• It allows buffers and nutrients to be added if needed to accelerate anaerobic decomposition

Disadvantages of leachate re-circulation include field pumping problems settling, clogging and freeze up, odors and the necessity to design the leachate collection system to handle higher hydraulic loading (Edward *et al.*, 1995)

Leachate quality data from five full-scale re-circulating landfills are illustrated in Table 4 and Table 5 provides leachate characteristics as a function of landfill stabilization phase for both conventional and re-circulating landfills, while Table 5 compares all data.

|                            | Phase        | e II               | Phase        | e III              | Phase        | IV                 | Phase        | e V                |
|----------------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|
| Doromotor                  | Trans        | ition              | Acid for     | mation             | Methane for  | ormation           | Final Ma     | turation           |
| Parameter                  | Conventional | Re-<br>circulation | Conventional | Re-<br>circulation | Conventional | Re-<br>circulation | Conventional | Re-<br>circulation |
| BOD; mg/L                  | 100-1000     | 0-6893             | 1000-57700   | 0-28000            | 600-3400     | 100-10000          | 4-120        | 100                |
| COD;mg/L                   | 480-18000    | 20-20000           | 1500-71000   | 11600-<br>34550    | 580-9760     | 1800-<br>17000     | 31-9000      | 770-1000           |
| TVA (mg/L as acitic acid)  | 100-3000     | 200-2700           | 3000-18800   | 0-30730            | 250-4000     | 0-3900             | 0            | -                  |
| BOD/COD                    | 0.23-0.87    | 0.1-0.98           | 0.4-0.8      | 0.45-0.95          | 0.17-0.64    | 0.05-0.8           | 0.02-0.13    | 0.05-0.08          |
| Ammonia(mg/L<br>as N)      | 120-125      | 76-125             | 2-1030       | 0-1800             | 6-430        | 32-1850            | 6-430        | 420-580            |
| рН                         | 6.7          | 5.4-8.1            | 4.7-7.7      | 5.7-7.4            | 6.3-8.8      | 5.9-8.6            | 7.1-8.8      | 7.4-8.3            |
| Conductivity<br>(µmhos/cm) | 2450-3310    | 2200-8000          | 1600-17100   | 10000-<br>18000    | 2900-7700    | 4200-<br>16000     | 1400-5400    | -                  |

 Table 4
 Landfill constituent concentration ranges as a function of the degree of landfill stabilization

Source: Reinhart (1996)

| Parameter        | Conventional | Re-circulating |
|------------------|--------------|----------------|
| Iron; (mg/L)     | 20-2100      | 4-1095         |
| BOD; (mg/L)      | 20-40000     | 12-28000       |
| COD; (mg/L)      | 500-60000    | 20-34560       |
| Ammonia; (mg/L)  | 30-3000      | 6-1850         |
| Chloride; (mg/L) | 100-5000     | 9-1884         |
| Zinc ; (mg/L)    | 6-370        | 0.1-66         |

 Table 5
 Leachate constituents of conventionally operated landfills and landfills with leachate re-circulation

### **Source**: Reinhart (1996)

From these data, it appears that leachate characteristics of re-circulating landfills follow a pattern similar to that of conventional landfill, i.e. moving through phases of acidogenesis methanogenesis and maturation (although few re-circulating landfills have reached maturation) (Reinhart and Yousfi,1996). As a matter of fact, the overall magnitudes of various leachate components, during the consecutive phases of landfill stabilization, are quite comparable in both types of landfill. However, the acidogenic phase tends to be more pronounced in leachate recycling landfills as opposed to conventional landfills.

#### 5. Lysimeter studies with Leachate Re-circulation in Asia

Recently many researches were aimed at sequential operation with leachate recirculation in laboratory scale. A few examples of laboratory and pilot scale bioreactor studies in Asia are illustrated in Table 6.

| Research Title                                                                                                                                               | Reference                              | Country  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|
| The effect of precipitation on municipal solid waste<br>decomposition and methane production in simulated<br>landfill bioreactor with leachate recirculation | Petchsri <i>et al.</i> ,<br>2006       | Thailand |
| Bioreactor landfill lysimeter studies on Indian urban refuse                                                                                                 | Swati <i>et al.</i> ,<br>2005          | India    |
| 'Landfill Bioreactor': A Biotechnological solution for waste management.                                                                                     | Swati <i>et al.</i> ,<br>2006          | India    |
| Performance of bioreactor landfill with waste mined from a dumpsite.                                                                                         | Kurian <i>et al.</i> ,<br>2006         | India    |
| Impacts of aeration and active sludge addition on leachate recirculation bioreactor                                                                          | Jun <i>et al.</i> , 2007               | China    |
| Performance of leachate nitrogen removal in bioreactor landfill system                                                                                       | He <i>et al</i> ,2006-a                | China    |
| Characteristics of the bioreactor landfill system<br>using anaerobic–aerobic process for nitrogen<br>removal                                                 | He et al., 2006-b                      | China    |
| Pilot-scale experiment on anaerobic bioreactor landfills in China                                                                                            | Jianguo <i>et al.</i> ,<br>2006        | China    |
| Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor                                                                         | He,P-J <i>et al.</i> ,<br>2006-a       | China    |
| Effect of acidification percentage and volatile<br>organic acids on the anaerobic biological process in<br>simulated landfill bioreactors                    | Wang <i>et al.</i> , 2006              | China    |
| Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill                                                                                   | He,P-J <i>et al.</i> ,<br>2006-b       | China    |
| Landfill leachate treatment in assisted landfill bioreactor                                                                                                  | He,P-J <i>et</i><br><i>al.</i> ,2006-c | China    |

 Table 6
 Few examples of laboratory and pilot scale bioreactor studies in Asia

| Table6 | Few examples of laboratory and pilot scale bioreactor studies in A | sia |
|--------|--------------------------------------------------------------------|-----|
|        | (Continued)                                                        |     |

| Research Title                                                                                                                    | Reference                 | Country             |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|
| Comparison between controlled landfill reactor<br>and conditioned landfill bioreactor                                             | Luo <i>et al.</i> , 2004  | China               |
| Effect of leachate recycling and inoculation on<br>the biochemical characteristics of municipal<br>refuse in landfill bioreactors | Shen <i>et al.</i> , 2002 | China               |
| Evaluation of in situ ammonia removal in an aerated landfill bioreactor                                                           | Mertoglu et al., 2006     | Japan and<br>Turkey |

### **MATERIALS AND METHODS**

### **Materials**

### 1. Reactor design and configuration

The experiment was carried out using a lab scale lysimeters with batch operation. The lysimeter design is illustrated in Figure 2. The height of the lysimeter was 1m and the diameter was 0.2m. So the total volume was about 32L.But out of that volume 6L were separated to drain and extract leachate.



Figure 2 Lab scale vertical batch reactor design

The lysimeters were made of PVC and there was a leachate outlet at the bottom and leachate was collected to a container at the bottom and goes for the analysis. Leachate or rain water was distributed over the surface evenly using a porous shower. There were 6 lysimeters under different operational conditions.

### 2. Solid waste

2.1 Feedstock preparation

Solid waste was collected from Nonthaburi dumpsite, in the Nonthaburi province of Thailand.

High Compacted waste(HC): - Fresh Solid waste was taken from Nonthaburi open dumpsite and shredded to a size where it can be put in to the lysimeters and compacted them similar to the density of sanitary landfill waste  $(437 \text{kg/m}^3)$ 

High Compacted waste without Plastic (HC-w/p):- Separated polythene, plastic like substances from fresh waste and compacted to a density of 437kg/m<sup>3</sup>.

Low Compacted Waste(LC): - Fresh waste was shredded as before and fed it to in lysimeters.

Old Waste(OW):- 8 years old waste was taken from Nonthaburi dumpsite and shredded as before and fill it to lysimeters.

Pre treated waste(PT):- Non biodegradable waste was separated from open dump fresh waste composted for a period of 2 months before filling the lysimeters for leachate recirculation condition where some waste was composted for a period of 6 months for storm condition..

### 2.2 Feed stock characteristics

Physically, the fresh waste was characterized by high fraction of fruit peels, vegetable straps and garden waste. It is the reason for the waste to have very high moisture content and high organic fraction (volatile solid). Physical composition of high compacted waste and high compacted waste without plastic are illustrated in Table 7. In pre-treated waste, the composition was assumed to be almost same to high compacted waste since they were taken from same landfill site.

Physical and chemical characteristics of solid waste before feeding in to lysimeters are presented in Table 8.It was noted that characteristics of solid waste were almost similar for three runs in each waste type except in pre-treated waste. In  $2^{nd}$  run solid waste was composted for about 2 months period and fed in to lysimeters as pre-treated waste. In the 1st Run solid waste was composted about 6 months and fed in to lysimeters as pre-treated waste. Therefore except pre-treated waste, it was satisfied the attempt to have similar characteristics for easy comparison.

| Components          | HC or LC[% -wet<br>basis] | HC-w/p[% -wet basis] |  |
|---------------------|---------------------------|----------------------|--|
| Plastic             | 20.8±2.85                 |                      |  |
| Paper               | 11.9±6.26                 | 15.1                 |  |
| Textile<br>wood     | 3.6±2.99<br>0             | 4.6<br>0.0           |  |
| Metal               | $0.4 \pm 0.00$            | 0.5                  |  |
| Rubber and foam     | $0.4 \pm 0.00$            | 0.5                  |  |
| Bone and shell      | 0.9±1.13                  | 1.1                  |  |
| Glass               | 2.1±2.11                  | 2.7                  |  |
| Others              | 5.5±4.51                  | 6.9                  |  |
| Garden waste        | 31.2±10.14                | 39.3                 |  |
| Food waste          | 23.2±1.89                 | 29.3                 |  |
| Rice & Noodles      | 2.2±1.75                  | 2.8                  |  |
| Vegetable and fruit | 16.1±1.36                 | 20.3                 |  |
| egg shell           | $0.8 \pm 0.84$            | 1.0                  |  |
| Meat & fish         | 1.3±0.41                  | 1.6                  |  |
| others              | 2.8±2.20                  | 3.5                  |  |
| Total               | 100                       | 100.0                |  |

 Table 7 Physical composition of solid waste

| Parameter | Unit                        | Low<br>Compacted<br>waste(LC) | Pre-treated<br>waste for 2<br>months(PT) | Pre-treated<br>waste for 6<br>months(PT) | High<br>Compacted<br>waste(HC) | High Compacted<br>waste without<br>plastic(HC-w/p) | 8 years old<br>waste(OW) |
|-----------|-----------------------------|-------------------------------|------------------------------------------|------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------|
| Density   | [kg/m3]                     | 221±5.81                      | 650±6.20                                 | 850±15.5                                 | 437±10.8                       | 437±10.8                                           | 177±08.6                 |
| Porosity  | [-]                         | 0.71±0.01                     | $0.41 \pm 0.02$                          | $0.19 \pm 0.01$                          | $0.46 \pm 0.03$                | $0.45 \pm 0.03$                                    | $0.80 \pm 0.05$          |
| FC        | [mm/m]                      | 744±11                        | 737±05                                   | 718±06                                   | 694±14                         | 669±37                                             | 317±20                   |
| TS        | [%]                         | 35.72±2.75                    | 30.36±1.76                               | 27.27±0.60                               | 35.72±2.75                     | 33.46±1.00                                         | 97.44±0.16               |
| MC        | [%-wet<br>basis]            | 64.28±2.75                    | 69.64±1.76                               | -<br>72.73±0.60                          | 64.28±2.75                     | 66.54±1.00                                         | 2.56±0.16                |
| Ash       | [%-wet<br>basis]            | 4.65±0.77                     | 14.10±1.23                               | $14.02 \pm 0.81$                         | 4.65±0.77                      | 9.40±2.72                                          | 67.88±10.91              |
| VS        | [%-wet<br>basis]            | 31.07±3.52                    | 16.26±0.53                               | 13.25±0.61                               | 31.07±3.52                     | 24.05±1.96                                         | 29.56±11.03              |
| TKN       | [mg N/kg]                   | 25200.00                      | 34253                                    | 34253                                    | 25200                          | 17220                                              | 6627                     |
| Sulfur    | [%-dry<br>weight]           | $0.023 \pm 0.002$             | 0.026±0.000                              | 0.023±0.000                              | 0.023±0.001                    | 0.013±0.002                                        | 0.007±0.00               |
| Chlorine  | [%-dry<br>weight]           | 0.44±0.006                    | 1.95±0.040                               | 1.29±0.146                               | 0.44±0.038                     | 5.78±0.230                                         | 2.00±0.297               |
| Cellulose | [%-dry<br>weight]<br>[%-dry | 38.10±0.1                     | 13.78±0.95                               | 7.33±0.11                                | 38.10±0.1                      | 50.67±0.06                                         | 2.33±0.02                |
| Lignin    | weight]                     | 41.27±1.35                    | 30.33±0.32                               | 24.13±0.85                               | 41.27±1.35                     | 26.27±2.59                                         | 40.70±0.44               |

 Table 8
 Physical and Chemical characteristics of solid waste

#### Methods

#### **1. Reactor operation**

In the first run, two months period storm conditions was simulated according to the past 6 years historical rainfall data of Thailand with low compacted waste, high compacted waste, pre treated waste and old waste.

Simultaneously, one lysimeter was analyzed for leachate under high compacted waste without plastic. There also two months period storm conditions were simulated.

For the process of second run, four lysimeters were taken with low compacted waste and leachate recirculation was done by adding 100%, 75%, 50% And 35% of maximum rainfall intensity, the data obtained from historical rainfall data of Thailand for past 6 years. They are 1100, 825, 550, 385 ml respectively for lysimeters. Leachate was recirculated in weekly basis.

Simultaneously, the other lysimeter with low compacted waste was simulated with internal storage (submerged condition) and leachate was not being recirculated and leachate was analyzed in weekly basis

For the process of third, four lysimeters were taken to analyze two different leachate recirculation rates with high compacted waste and pre treated waste. The rates were 100%(1100ml) and 35%(385ml) of maximum rainfall intensity. One lysimeter was taken to analyze one leachate recirculation rate with high compacted waste without plastic. The rate was 100% (1100ml).

Simultaneously; one lysimeter was simulated to analyze the leachate quality under internal storage (submerged conditions) only with high compacted waste.

Following table explains the abbreviations used in different conditions and different types of waste at results and discussion.

 Table 9
 Abbreviations used in different conditions and different solid waste types

|                                                     | Operation condition         |                           |                          |                          |                          |                  |  |
|-----------------------------------------------------|-----------------------------|---------------------------|--------------------------|--------------------------|--------------------------|------------------|--|
| Solid waste type                                    | Storm                       | Ι                         | eachate re               | ecirculatio              | n                        | Internal         |  |
|                                                     | Storm                       | 100%                      | 75%                      | 50%                      | 35%                      | storage          |  |
| Low Compacted<br>waste (LC)                         | $St_{C1}$                   | LR <sub>C1</sub> -<br>100 | LR <sub>C1</sub> -<br>75 | LR <sub>C1</sub> -<br>50 | LR <sub>C1</sub> -<br>35 | IS <sub>C1</sub> |  |
|                                                     | $St_{C2}$                   | LR <sub>C2</sub> -<br>100 |                          |                          | LR <sub>C2</sub> -<br>35 | IS <sub>C2</sub> |  |
| High Compacted<br>waste (HC)                        | $\mathrm{St}_{\mathrm{P1}}$ | LR <sub>P1</sub> -<br>100 |                          |                          |                          |                  |  |
|                                                     | StP <sub>S1</sub>           | LR <sub>S1</sub> -<br>100 |                          |                          |                          |                  |  |
| High Compacted<br>waste without<br>Plastic (HC-w/p) | St <sub>P2</sub>            | LR <sub>P2</sub> -<br>100 |                          |                          |                          |                  |  |
| Pre-treated<br>waste (PT)                           | St <sub>S2</sub>            | LR <sub>S2</sub> -<br>100 |                          |                          | LR <sub>S2</sub> -<br>35 |                  |  |
| Old waste (OW)                                      | St <sub>S3</sub>            |                           |                          |                          |                          |                  |  |

Flow chart of the reactor operation is described in Figure 3



Figure 3 Flow diagram of reactor operation

At leachate recirculation condition, there were several leachate recirculation conditions and they are described in Figure 4



Figure 4 Reactor operation under leachate recirculation condition

### 2. Sampling and analysis

Sampling and analysis in this study were comprised of, solid waste (fresh and digestate) and leachate. Nutrients were analyzed both in solid (TKN) waste and leachate (TKN and NH<sub>4</sub>-N) The procedure of each experiment will be described in detail in the following section.

### a) Solid waste analysis

Solid waste analysis was done at the initial stage, where loading period of lysimeter and final stage where remove solid waste from lysimeters.

Homogenous samples were taken to determine the solid waste characteristics of the original sample. The general information on solid waste analysis is depicted in Table 10. Both fresh and digestate waste were analyzed for physical parameters

 Table 10 Physical parameters analyzed in fresh waste and digestate waste

| Parameters           | Method/Instrument    | Frequency                  |
|----------------------|----------------------|----------------------------|
| Moisture content (%) | Gravimetric analysis |                            |
| Total solid (%)      | Gravimetric analysis | Before fill solid waste to |
| Volatile solid       | Muffle furnace       | busing stans and offer the |
| Ash content          | Muffle furnace       | lysimeters and after the   |
| Compaction density   |                      | whole operation            |
| Porosity             | See Appendix B       | 1                          |
| Field Capacity       |                      |                            |

Both fresh and digested waste were analyzed for nutrients. In general, N,P,K are the major components found in MSW. N, P, K are the macro nutrient which are essential for the growth of microorganisms. But in the analysis, only N(TKN) was analyzed as a Nutrient at the beginning of feeding lysimeters. Together with N, S and Cl were analyzed at the beginning and after the whole process. Cellulose and Lignin were analyzed in all types of waste at the beginning and only analyzed in sanitary landfill waste and sanitary landfill waste without plastic after the removal from lysimeters. Table 11 depicted the general information on Nutrient analysis.
| Table 11 Genera | l information | on nutrients | analysis |
|-----------------|---------------|--------------|----------|
|-----------------|---------------|--------------|----------|

| Parameters                     | Method/instruments                                         | Frequency                          |
|--------------------------------|------------------------------------------------------------|------------------------------------|
| N (% by dry<br>weight)         | Macro- Kjeldahl analysis                                   | Before fill SW in to<br>lysimeters |
| Cl (% by dry                   | Bomb calorie meter +                                       | Before and after the               |
| weight)                        | Argentometric method                                       | operation                          |
| S (% by dry<br>weight)         | Bomb calorie meter + Turbidimetric<br>method               | Before and after the operation     |
| Cellulose (% by<br>dry weight) | ASTM E 1758-95 <sup>e1</sup> method +<br>Spectrophotometer | Before and after the operation     |
| Lignin (% by dry<br>weight)    | ASTM E 1758-95 <sup>e1</sup>                               | Before and after the operation     |

b) Leachate analysis

Leachate analysis was carried out from the starting up of the process until the end. Leachate sampling and analysis were conducted once a week. Following parameters were measured in the laboratory:

- Biological Oxygen Demand (BOD)- Total and Soluble
- Chemical oxygen demand (COD) Total and Soluble
- Nitrogenous species:  $NH_4 N$ , TKN (Total Kjeldahl Nitrogen)
- Total Solids
- Total Suspended solids
- Total Dissolve solids
- pH

Leachate analysis was conducted by following the Standard Method for Examination of Water and Wastewater (APHA *et al.*, 1997). Table 12 lists the methods of analyzing those parameters.

Consider the storm conditions, some sample volumes in  $St_{S2}$  and  $St_{S3}$  were not enough for the analysis. To overcome that obstacle, samples were composite proportionate to their output volume to achieve the required volume for analysis

| Parameters             | Method/instrument                               | Frequency                                                                                     |
|------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                        | Wiethod/ instrument                             |                                                                                               |
| COD (mg/L)             | Closed dichromate-reflux<br>titration method    | Weekly basis in leachate<br>recirculation condition<br>and continuously in<br>storm condition |
| BOD (mg/L)             | 5-day BOD test-standard<br>method 5210B         |                                                                                               |
| NH <sub>4</sub> -N     | Standard method 4500B:<br>Distillation method   | Weekly basis in leachate                                                                      |
| TKN (mg/L)             | Standard method 4500B:<br>Macro kjeldahl method | recirculation condition                                                                       |
| pH                     | pH meter                                        | and selected dates in                                                                         |
| Total Solids           | Standard method 2540B                           | storm condition                                                                               |
| Total Dissolved Solids | Standard method 2540C                           |                                                                                               |
| Total Suspended Solids | Standard method 2540D                           |                                                                                               |

 Table 12
 General information on leachate analysis parameters

c) Water Balance in lysimeters

Water balance in the lysimeters were determined by the measurement of leachate amount drained from each lysimeter. The water balance equation can be described as follows.

$$V_I = V_L + V_E - V_R$$
 (2)

Where  $V_I = Volume of rainwater added$ 

 $V_L$  = Volume of drained leachate

 $V_E$  = Volume of water loss through evaporation

 $V_R$  = Volume of water produced during waste biodegradation

# **RESULTS AND DISCUSSION**

# 1. Leaching during Storm Events

According to the historical rainfall data obtained from Bangkok, it was observed the storm condition prevails for about 2 months period per year (Appendix Figure B1). This condition was simulated in the experiment and observed that intensive daily rainfall events can extract more pollutant loads to the leachate, despite the overall leaching behavior is decreasing with the time. This situation is true both for organic and nitrogenous leaching from the lysimeters and for all types of waste.

- 1.1 Leachate characteristics in different kind of solid waste
  - a) Leachate characteristics of low compacted waste

As mentioned above, with the intensive rainfall events, this lysimeter leached high pollutant loads regardless of organic or nitrogenous pollutants. But the overall trend seems to be reducing over the time. Figure 5 depicts the Total BOD, TCOD,TKN and TDS load in mg per Kg of TS. All parameters were measured for selected dates except for TCOD. It was measure continuously. The cumulative specific pollutant loads were 11109, 9566, 65838, 15716, 16688, 864, 985, 696 mg/kg TS (see appendix C) for TBOD, SBOD, TCOD, SCOD, TDS, SS, TKN and NH<sub>4</sub>-N respectively.



Figure 5 Variation of Total BOD<sub>5</sub>, Total COD, TKN and TDS in Open dump fresh waste in terms of specific pollutant loads

b) Leachate characteristics of high compacted waste

The leaching pattern of pollutants is similar to low compacted waste. But this waste type leaches more pollutant loads. The cumulative specific pollutant loads are 13106, 11024, 101325, 18112, 14754, 388, 1303 and 1081 mg/kg TS (see appendix C) for TBOD, SBOD, TCOD, SCOD, TDS, SS, TKN and NH<sub>4</sub>-N respectively.

### c) Leachate characteristics of high compacted waste without plastic

The leaching pattern of pollutants is similar to high compacted waste and all other types of waste. The cumulative specific pollutant loads are 14657, 12126, 98290, 24151, 16190, 909, 1059 and 795 mg/kg TS (see appendix C) for TBOD, SBOD, TCOD, SCOD, TDS, SS, TKN and NH<sub>4</sub>-N respectively.

#### d) Leachate characteristics of pre treated waste

As mentioned above like other types of waste, the pattern is more or less similar to other types of waste. But Cumulative specific pollutant loads seems to be lower than above waste types. The cumulative specific pollutant loads are 3.32, 2.22, 464, 83.53, 2065, 43.8, 6.39 and 1.14 mg/kg TS (see appendix C) for TBOD, SBOD, TCOD, SCOD, TDS, SS, TKN and NH<sub>4</sub>-N respectively.

e) Leachate characteristics of old waste

The pollutant load leaching pattern is similar to other waste types but the cumulative specific load is lower than above waste types except pre-treated waste. The cumulative specific pollutant loads are 7.87, 5.41, 526, 133, 1730, 63.8, 10.38 and 1.86 mg/kg TS for TBOD, SBOD, TCOD, SCOD, TDS, SS, TKN and NH<sub>4</sub>-N respectively.

- 1.2 Comparison of leachate characteristics in different kind of solid waste
  - a) Effect of waste compaction density

In this section leachate characteristics of  $St_{C1}$  (low compacted waste) and  $St_{C2}$  (high compacted waste) will be compared. High compacted waste was achieved by increasing the compaction density of open dump fresh waste (from

221kgm<sup>-3</sup> to 437kgm<sup>-3</sup>) which was obtained from Nonthaburi dumpsite. So the results will show the effect of compaction in leaching under heavy storm events.

Figure 6 presents the organic concentration variation in  $St_{C1}$  and  $St_{C2}$  in terms of total BOD<sub>5</sub>, and Total COD. Soluble BOD<sub>5</sub> and Soluble COD concentration variation also behave similar to Total BOD<sub>5</sub> and COD.

The result shows that  $TBOD_5$  and TCOD concentration in leachate reduced with run time. The same trends were observed for SBOD and SCOD. Also substantial decline in concentrations (plateaus) can be seen along with heavy rainfall events despite the reducing concentration trend. As depicted in the Figure 6,  $St_{C2}$ organic concentration is higher compared to  $St_{C1}$ . It seems the organic pollutant concentration leaching out from the lysimeters increases with the level of compaction of solid waste.



Figure 6 Organic concentration variation in St<sub>C1</sub> and St<sub>C2</sub>

Beside the organic pollutant concentration variation,  $St_{C2}$  got the highest specific organic pollutant load (mg/kg TS) both in terms of total and soluble BOD<sub>5</sub> and COD compared to  $St_{C1}$ . From the variation of TBOD<sub>5</sub>, SBOD<sub>5</sub>, TCOD and SCOD it seems that the specific organic load in leachate reduces with time. With in 2 months period storm event, daily flushing of organic pollutants could be the possible reason to reduce organic load except other than microbial activities going on this short time of operation. Even together with this pattern also higher specific organic loads

can be observe with higher rainfall events though the pollutant concentration were decreased with high rainfall events. Figure 7 illustrates the specific organic load variation over the time in TBOD<sub>5</sub> and TCOD. SBOD<sub>5</sub> and SCOD also behave similar to this pattern. In specific organic loads variation also, level of compaction density should be the possible reason to get high specific organic loads to the leachate in St<sub>C2</sub>. Figure 8 shows the organic loads variation in terms of cumulative specific loads in TBOD<sub>5</sub> and TCOD. The other cumulative specific organic loads also behave similar to above patterns (SBOD<sub>5</sub> and SCOD)



Figure 7 Specific organic load variation in  $St_{C1}$  and  $St_{C2}$ 



Figure 8 Cumulative specific organic load variation in  $St_{C1}$  and  $St_{C2}$ 

Figure 9 presents the nitrogen concentration variation in  $St_{C1}$  and  $St_{C2}$ . The result shows that NH<sub>4</sub>-N and TKN concentration in leachate reduced with run time similarly to organic concentration variations. This is because flushing effect of nitrogenous substances due to heavy rainfall events. But along with that decreasing trend substantial decline in concentrations can be observed with intensive storm events.

Looking in to nitrogen leaching, it can be seen that  $St_{C2}$  got the higher nitrogen concentration than  $St_{C1}$ . This reveals that level of compaction density has an impact on nitrogen leaching from solid waste. That is higher the compaction density, higher the nitrogen leaching from solid waste. But both types of waste got reducing trends over the time.



Figure 9 Nitrogen concentration variation in  $St_{C1}$  and  $St_{C2}$ 

Specific nitrogen load variation over the time also has a quite similar trend to specific organic load variation and with the intensive rainfall events it shows high specific nitrogen load leaching from the lysimeters despite the nitrogen concentration decreases with heavy rainfall events. But overall specific nitrogen load leaching pattern is decreased over the time. This is because of flushing effect of nitrogenous pollutants from lysimeters due to storm conditions. Figure 10 shows the cumulative specific nitrogen load leaching from solid waste over 61 days. From the cumulative values it can be clearly see, that the  $St_{C2}$  has higher value of Sp. nitrogen

load over the  $St_{C1}$ . This impresses that, with the increasing compaction densities of solid waste can extract more pollutants to the leachate in terms of organic and nitrogen pollutants at storm conditions.



**Figure 10** Cumulative Sp. Nitrogen load variation in  $St_{C1}$  and  $St_{C2}$ 

Total Dissolve Solid (TDS) concentration in lysimeters brings the same trends as organic and nitrogen pollutant concentration variation in lysimeters where Dissolve solids representing for the hydrolysis product of particulate substrate in all lysimeters. It has a reducing trend over the operation time and TDS load also got a reducing trend. But both in 2 types of waste the sp. load was increased by high rainfall events similar to sp. organic and nitrogen load leaching from lysimeters. Also St<sub>C2</sub> got the highest value for both concentration and load of TDS than St<sub>C1</sub>. But when compares the cumulative TDS load per kg of TS (solid waste), the highest value was from S<sub>op</sub> regardless of the compaction density. This situation is also true for Suspended Solid (SS).This reveal that the difference in pollutant loads(mg) or pollutant concentrations(mg/L)in TDS and SS over the time between St<sub>C2</sub> and St<sub>C1</sub> is not significant compared to organic and nitrogen pollutant concentrations. So when cumulative sp. loads comes per a kg TS (of solid waste), since the weight of initial solid waste is higher in St<sub>C2</sub> than St<sub>C1</sub>, the final value becomes lower in St<sub>C2</sub>. Figure 11 shows the TDS and SS concentration variation over the time and Figure 12 shows



TDS and SS loads variation over the time and Figure 13 presents their cumulative sp. loads variation.

Figure 11 TDS and SS concentration variation in  $St_{C1}$  and  $St_{C2}$ 



Figure 12 TDS and SS load (mg)variation in  $St_{C1}$  and  $St_{C2}$ 



Figure 13 Cumulative sp. TS, TDS and SS load variation in  $St_{C1}$  and  $St_{C2}$ 

### b) Effect of waste stabilization

In this section leachate characteristics of  $St_{S1}$ (high compacted waste),  $St_{S2}$  (pre-treated waste) and  $St_{S3}$  (old waste) will be compared.  $St_{S1}$  is the fresh waste which was obtained from Nonthaburi dumpsite and compacted up to a density of 437kgm-<sup>3</sup>.  $St_{S2}$  is the same waste which was obtained from that dumpsite and removed their non biodegradable part from the waste and composted for a period of 6 months. So this is more stabilized than fresh waste.  $St_{S3}$  is the waste kept at the same dump site for a period of 8 years without any pre-treatment. In this section effect of these stabilization stages to the leachate quality will be discussed.

Table 13 presents the organic concentration variation in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$  in terms of total BOD, and Soluble COD.

| Day | RF(mm) | Total | BOD <sub>5</sub> (m | g/L)  | Soluble          | le COD(mg/L)     |                  |  |
|-----|--------|-------|---------------------|-------|------------------|------------------|------------------|--|
| Day |        |       | $St_{S1}$ $St_{S2}$ |       | St <sub>S1</sub> | St <sub>S2</sub> | St <sub>S3</sub> |  |
| 4   | 7.9    | 22800 | 14.40               | 32.40 | 32000            | 320              | 160              |  |
| 7   | 16.9   | 18000 | 6.00                | 19.20 | 32000            | 160              | 400              |  |
| 12  | 32.1   | 12000 | 7.80                | 9.00  | 11648            | 73               | 87               |  |
| 19  | 9.3    | 19000 | 7.50                | 10.20 | 39424            | 282              | 211              |  |
| 25  | 20.9   | 11000 | 6.60                | 5.70  | 13184            | 66               | 49               |  |
| 31  | 16.3   | 4500  | 1.20                | 1.50  | 6400             | 144              | 96               |  |
| 39  | 34.7   | 6750  | 2.30                | 2.20  | 9600             | 160              | 96               |  |
| 44  | 15.1   | 9750  |                     |       | 9312             | 93               | 78               |  |
| 55  | 6.6    | 8700  | 1.10                | 0.00  | 13184            | 132              | 115              |  |
| 61  | 4.6    | 12000 |                     |       | 12032            |                  | 75               |  |

**Table 13** TBOD and SCOD concentration variation in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$ 

The result shows that TBOD and SCOD concentration in leachate reduced with run time. SBOD and TCOD also varied similar to TBOD and SCOD, they are expressed in Appendix Table C25 and C26. Drastic plateaus can be seen along the reducing trend with heavy rainfall events. There is a significant reduction in organic loads in pre-treated waste( $St_{S2}$ ) and old waste( $St_{S3}$ ) compared to high compacted waste( $St_{S1}$ ). But compare the results of  $St_{S2}$  and  $St_{S3}$ , there is no significant difference can be seen. Table 14 shows the organic loads variation along the time in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$  in terms of total BOD, and Soluble COD.

| Day | RF(mm) | Total BOD <sub>5</sub> (mg) |                  |                  | Soluble          | e COD(m          | lg)              |
|-----|--------|-----------------------------|------------------|------------------|------------------|------------------|------------------|
|     |        | $\mathbf{St}_{\mathbf{S1}}$ | St <sub>S2</sub> | St <sub>S3</sub> | St <sub>S1</sub> | St <sub>S2</sub> | St <sub>S3</sub> |
| 4   | 7.9    | 3443                        | 1.6              | 6.7              | 4832             | 35               | 33               |
| 7   | 16.9   | 8802                        | 2.9              | 9.1              | 15648            | 78               | 189              |
| 12  | 32.1   | 11304                       | 6.5              | 7.9              | 10972            | 60               | 77               |
| 19  | 9.3    | 4560                        | 1.1              | 2.4              | 9462             | 40               | 50               |
| 25  | 20.9   | 7458                        | 3.8              | 3.5              | 8939             | 38               | 30               |
| 31  | 16.3   | 2358                        | 0.5              | 0.7              | 3354             | 59               | 43               |
| 39  | 34.7   | 6615                        | 1.8              | 2.0              | 9408             | 128              | 89               |
| 44  | 15.1   | 2428                        |                  |                  | 2319             | 13               | 17               |
| 55  | 6.6    | 1079                        | 0.1              | 0.0              | 1635             | 8                | 13               |
| 61  | 4.6    | 444                         |                  |                  | 445              |                  | 2                |

Table 14 TBOD<sub>5</sub> and SCOD load variation in St<sub>S1</sub>, St<sub>S2</sub> and St<sub>S3</sub>

Soluble BOD<sub>5</sub> and Total COD load fluctuations also behave similar to above results and they are presented in Appendix Table C25 and C26 (multiply concentrations with Appendix Table C5, Run 3 values). Organic loads also have a reducing trend over the time but high peaks with heavy rainfall events. This is due to the amount of water leach out from the lysimeters. As the amount of water is high, it can extract more pollutants to the water. But it is obvious, that from high compacted waste (St<sub>S1</sub>), it leaches more organic loads than pre-treated (St<sub>S2</sub>) waste and old waste (St<sub>S3</sub>). But there is no significant difference in organic load leaching between St<sub>S2</sub> and St<sub>S3</sub>. But when consider the cumulative values; it is significant that highest sp.organic load is from St<sub>S1</sub>, St<sub>S3</sub> and then St<sub>S2</sub> respectively. Table 15 presents their cumulative values in terms of TBOD<sub>5</sub> and SCOD. As other sp. organic pollutant loads also behave similar to these patterns, they are expressed in Appendix Table C25 and C26.

| Day | RF(mm) |           | ive sp. Tl<br>(mg/Kg T |                  |           | ulative sp.<br>ad(mg/Kg |                  |
|-----|--------|-----------|------------------------|------------------|-----------|-------------------------|------------------|
|     |        | $St_{S1}$ | St <sub>S2</sub>       | St <sub>S3</sub> | $St_{S1}$ | St <sub>S2</sub>        | St <sub>S3</sub> |
| 4   | 7.9    | 930       | 0.29                   | 1.63             | 1306      | 6.34                    | 8.04             |
| 7   | 16.9   | 3309      | 0.82                   | 3.84             | 5535      | 20.57                   | 54.19            |
| 12  | 32.1   | 6365      | 1.99                   | 5.77             | 8501      | 31.54                   | 72.85            |
| 19  | 9.3    | 7597      | 2.19                   | 6.36             | 11058     | 38.86                   | 85.11            |
| 25  | 20.9   | 9613      | 2.88                   | 7.21             | 13474     | 45.79                   | 92.47            |
| 31  | 16.3   | 10250     | 2.97                   | 7.37             | 14380     | 56.58                   | 102.93           |
| 39  | 34.7   | 12038     | 3.31                   | 7.87             | 16923     | 79.82                   | 124.59           |
| 44  | 15.1   | 12694     | 3.31                   | 7.87             | 17550     | 82.14                   | 128.85           |
| 55  | 6.6    | 12986     | 3.32                   | 7.87             | 17991     | 83.53                   | 132.11           |
| 61  | 4.6    | 13106     | 3.32                   | 7.87             | 18112     | 83.53                   | 132.70           |

Table 15 Cumulative sp. TBOD<sub>5</sub> and SCOD load variation in St<sub>S1</sub>, St<sub>S2</sub> and St<sub>S3</sub>

Above table reveals that with the level of stabilization, solid waste leach less organic pollutants to the leachate. More over, by pre treating solid waste can shorten the waste stabilization time. So this will enhance the low leaching of organics to the environment. TBOD<sub>5</sub> to TCOD ratio also suggests that pre-treated waste is more stabilized than old waste and it is presented in table 16.

| _   |           | BOD/COD          |                  |
|-----|-----------|------------------|------------------|
| Day | $St_{S1}$ | St <sub>S2</sub> | St <sub>S3</sub> |
| 4   | 0.59      | 0.03             | 0.20             |
| 7   | 0.47      | 0.02             | 0.04             |
| 12  | 0.41      | 0.05             | 0.07             |
| 19  | 0.37      | 0.02             | 0.04             |
| 25  | 0.56      | 0.05             | 0.12             |
| 31  | 0.35      | 0.01             | 0.01             |
| 39  | 2.11      | 0.01             | 0.02             |
| 44  | 1.57      |                  |                  |
| 55  | 2.10      | 0.00             | 0.00             |
| 61  | 2.66      |                  |                  |

Table 16 BOD<sub>5</sub> to COD ratio in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$ 

Table 17 presents the nitrogen concentration variation in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$ . The result shows that NH<sub>4</sub>-N and TKN concentration in leachate reduced with run time similarly to organic concentration variations.

The reduction in nitrogen concentration is drastic up to day 12 and then tends to fluctuate until up to day 61 in  $St_{S2}$  and  $St_{S3}$ . But there is a slight reduction can be seen during that period. Like in the organic pollutant concentrations, drastic reductions in nitrogen concentrations with the heavy rainfall events cannot be seen in this scenario except in  $St_{S1}$ . Nitrogen load leaching also shows a similar trend as nitrogen concentration over the time as well as organic load variation over the time. But high peaks cannot be seen with intensive rainfall events like organic loads except  $St_{S1}$  and TKN load variation in  $St_{S2}$  and  $St_{S3}$ . But the overall pattern tends to reduce over the time in all types of waste. This reducing trend is due to the flushing of nitrogenous substances from solid waste, because of storm conditions. Table 18 shows the cumulative sp. nitrogen load variation along the time in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$  in terms of TKN load and  $NH_4$ -N load.

| Day              | RF(mm)    | n) TKN (mg/L)    |                  |                  | NH <sub>4</sub> -N(mg/L) |                  |       |  |
|------------------|-----------|------------------|------------------|------------------|--------------------------|------------------|-------|--|
| · · · · <u> </u> | $St_{S1}$ | St <sub>S2</sub> | St <sub>S3</sub> | St <sub>S1</sub> | St <sub>S2</sub>         | St <sub>S3</sub> |       |  |
| 4                | 7.9       | 1568             | 64.0             | 40.0             | 1344                     | 16.80            | 11.20 |  |
| 7                | 16.9      | 1540             | 9.8              | 19.6             | 1288                     | 6.72             | 5.60  |  |
| 12               | 32.1      | 1157             | 8.4              | 11.2             | 933                      | 0.47             | 0.93  |  |
| 19               | 9.3       | 1400             | 10.9             | 11.5             | 1204                     | 0.84             | 2.00  |  |
| 25               | 20.9      | 1064             | 9.5              | 8.2              | 868                      | 0.0              | 0.70  |  |
| 31               | 16.3      | 1050             | 6.0              | 6.0              | 854                      | 0.0              | 0.56  |  |
| 39               | 34.7      | 770              | 7.3              | 4.0              | 644                      | 0.8              | 0.56  |  |
| 44               | 15.1      | 952              | 5.6              | 2.2              | 818                      | 0.0              | 0.34  |  |
| 55               | 6.6       | 896              | 4.5              | 4.0              | 801                      | 0.3              | 0.78  |  |
| 61               | 4.6       | 875              | 0.0              | 3.6              | 826                      | 0.0              | 0.60  |  |

Table 17 TKN and NH<sub>4</sub>-N concentration variation in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$ 

Table 18 Cumulative sp. TKN and NH4-N load variation in  $\mathrm{St}_{\mathrm{S1}},\,\mathrm{St}_{\mathrm{S2}}$  and  $\mathrm{St}_{\mathrm{S3}}$ 

| Day | RF(mm) | Cumulative sp. TKN load<br>(mg/Kg TS) |                  |                  |           | lative sp. ]<br>d(mg/Kg ' | sp. NH4-N<br>Kg TS) |  |
|-----|--------|---------------------------------------|------------------|------------------|-----------|---------------------------|---------------------|--|
|     |        | St <sub>S1</sub>                      | St <sub>S2</sub> | St <sub>S3</sub> | $St_{S1}$ | St <sub>S2</sub>          | St <sub>S3</sub>    |  |
| 4   | 7.9    | 64                                    | 1.27             | 2.01             | 55        | 0.33                      | 0.56                |  |
| 7   | 16.9   | 268                                   | 2.14             | 4.27             | 225       | 0.93                      | 1.21                |  |
| 12  | 32.1   | 562                                   | 3.41             | 6.66             | 463       | 1.00                      | 1.41                |  |
| 19  | 9.3    | 653                                   | 3.69             | 7.33             | 541       | 1.02                      | 1.52                |  |
| 25  | 20.9   | 848                                   | 4.69             | 8.55             | 700       | 1.02                      | 1.63                |  |
| 31  | 16.3   | 997                                   | 5.14             | 9.20             | 821       | 1.02                      | 1.69                |  |
| 39  | 34.7   | 1201                                  | 6.20             | 10.11            | 991       | 1.14                      | 1.82                |  |
| 44  | 15.1   | 1265                                  | 6.34             | 10.23            | 1046      | 1.14                      | 1.83                |  |
| 55  | 6.6    | 1295                                  | 6.39             | 10.35            | 1073      | 1.14                      | 1.86                |  |
| 61  | 4.6    | 1303                                  | 6.39             | 10.38            | 1081      | 1.14                      | 1.86                |  |

Above results reveals that  $St_{S1}$  has the highest sp. nitrogen loads compared to  $St_{S2}$  and  $St_{S3}$ .

Further the lowest vales are from  $St_{S2}$ . This suggests with the level of waste stabilization, it leaches low nitrogenous pollutants to the leachate. More over by pre-treating solid waste; can enhance the stabilization level of solid waste and there by can reduce the pollutant leaching to the environment.

TDS concentration reduced substantially up to day 12 and subsequently tends to fluctuate within a constant range up to day 61 in  $St_{S2}$  and  $St_{S1}$ . In  $St_{S3}$  it tends to fluctuate within a constant range. SS reduced up to day 12 in all three types of waste and subsequently try to fluctuate within a constant range until up to day 61 except  $St_{S2}$ . But pollutant loads not acting similar to this pattern. In  $St_{S2}$  and  $St_{S3}$  TDS and SS loads fluctuate within a constant range whilst in  $St_{S1}$  the fluctuations are significant.  $St_{S1}$  has high peaks with heavy rainfall events as it flushes more pollutants with amount of water loads to the lysimeters. But when consider about the cumulative sp. TDS load, it is clear that initially higher pollutant load is from  $St_{S3}$  and after about 35 days, it becomes lower than  $St_{S2}$ , but the highest is still from  $St_{S1}$ . When compare the results of cumulative SS load variation in  $St_{S2}$  and  $St_{S3}$ ;  $St_{S3}$  has the higher pollutant load than the  $St_{S2}$ . Figure 14 depicts the TDS and SS concentration variation, Figure 15 presents the TDS and SS load variation and Figure 16 depicts the cumulative sp. TDS and SS load variation over time.



Figure 14 TDS and SS concentration variation in St<sub>S1</sub>, St<sub>S2</sub> and St<sub>S3</sub>



Figure 15 TDS and SS load variation in  $St_{S1}$ ,  $St_{S2}$  and  $St_{S3}$ 



Figure 16 Cumulative sp. TDS and SS load variation in St<sub>S1</sub>, St<sub>S2</sub> and St<sub>S3</sub>

As depicted in Figure 16,  $St_{S1}$  has the highest cumulative sp. pollutant load. Subsequently in  $St_{S2}$  where in cumulative sp. TDS load and in  $St_{S3}$  in cumulative sp. SS load.

# c) Effect of plastic in waste

In this section leachate characteristics of  $St_{P1}$  (high compacted waste) and  $St_{P2}$  (high compacted waste without plastic) will be compared.  $St_{P1}$  is high compacted waste which was obtained from Nonthaburi dumpsite and compacted up to 437kgm<sup>-3</sup>.  $St_{P2}$  is the same waste which was from Nonthaburi dumpsite and removed all the plastic and polythene substances from solid waste manually subsequently compacted up to 437kgm<sup>-3</sup>. Then those 2 types of waste were fed in to lysimeters and facilitated with storm conditions over a period of 61 days. So in this section, effect of plastic on final leachate quality will be discussed by comparing the results of those two types of waste.

Figure 17 depicts the organic pollutant concentrations in  $St_{P1}$  and  $St_{P2}$  in terms of Total BOD<sub>5</sub> and Total COD. Of course, the Soluble BOD<sub>5</sub> and Soluble COD behave quite similar to this pattern. Figure 17 indicate, that no significant difference in pollutant concentration variation between  $St_{P1}$  and  $St_{P2}$ . Also there is no significant difference in sp.organic pollutant loads (mg/kg TS) between those two types of waste as pollutant concentrations.



Figure 17 Organic concentration variation in St<sub>P1</sub> and St<sub>P2</sub>

Figure 18 depicts the cumulative sp. organic load variation over time. The results demonstrated the fact that, high compacted waste without plastic ( $St_{P2}$ ) has higher cumulative pollutant load over high compacted waste with plastic ( $St_{P1}$ ) except in Total COD. It seemed that in TCOD, initially the higher COD was from  $St_{P2}$ , but then it tends to decline after 21 days over  $St_{P1}$ . But as a whole,  $St_{P2}$  got the higher cumulative sp.organic pollutant load leaching in to the leachate than  $St_{P1}$ . So possible reason might be due to high amount of moisture in  $St_{P2}$  than  $St_{P1}$  As the initial weight of both type of waste were same, of course there should be high dry weight in  $St_{P1}$  than  $St_{P2}$  since  $St_{P1}$  has more polythene than  $St_{P2}$ . Though there is no significant difference in organic pollutant load between those two types of waste, as the weight of TS is in  $St_{P2}$  is low compared to  $St_{P1}$ , the final cumulative sp. organic pollutant load becomes higher in  $St_{P2}$  than  $St_{P1}$ . There might be other reasons as well, such as the cumulative loads were measured intermittently except for TCOD, so  $St_{P1}$  got higher values for TCOD than  $St_{P2}$ . If the other parameters were also measures continuously, the results may be other way around.



Figure 18 Cumulative sp. Organic load variation in St<sub>P1</sub> and St<sub>P2</sub>

Figure 19 presents the concentration of total soluble nitrogen and ammonia nitrogen in  $St_{P1}$  and  $St_{P2}$ . It could be seen that same configuration as carbonaceous materials were depicted. There was no difference in behavior of hydrolysis for carbonaceous and nitrogenous organic. Initially, high concentration of both TKN and NH<sub>4</sub>-N was noticed. Then they were reduced gradually. However  $St_{P1}$ appeared to have higher concentrations as well as higher sp. pollutant load over  $St_{P2}$ where it was not significant in organic concentrations. For this situation plastic might be the possible reason to have high nitrogen content in  $St_{P1}$ . However, the results were still equivocal.



Figure 19 Nitrogen concentration variation in  $St_{P1}$  and  $St_{P2}$ 

Figure 20 illustrates the cumulative sp. nitrogen load variation in terms of TKN and NH<sub>4</sub>-N.



**Figure 20** Cumulative sp. Nitrogen load variation in  $St_{P1}$  and  $St_{P2}$ 

It is clear that  $St_{P1}$  got the higher pollutant load over  $St_{P2}$ . As mentioned earlier, plastic might be the possible reason to get higher values for cumulative nitrogen loads for  $St_{P1}$ . But this is still equivocal.

TDS concentration also has the same trend as appeared in nitrogen and organic concentration variation. Nevertheless there is no significant difference in concentrations between  $St_{P1}$  and  $St_{P2}$ . Neither have a remarkable decline with high

rainfall intensities. Also there is no significant difference in pollutant load between  $St_{P1}$  and  $St_{P2}$ .

However, cumulative sp. loads of TDS and SS reveal that higher load is from  $St_{P2}$  over  $St_{P1}$ . This configuration is more or less similar to the pattern of cumulative sp. organic load variation in lysimeters. The reason should be the same as mentioned under cumulative sp. organic load variation. Figure 21 presents their cumulative sp load values.



Figure 21 Cumulative sp. TDS and SS load in St<sub>P1</sub> and St<sub>P2</sub>

#### 2. Leaching in the landfill at leachate recirculation condition

- 2.1 Leachate characteristics in different kind of solid waste
  - a) Leachate characteristics of low compacted waste

In low compacted waste there were 4 rates of leachate recirculation. They are 100%, 75%, 50% and 35% where a volume of 1100, 825, 550 and 385 ml respectively for each lysimeter. But there are no significant different in pollutant concentrations among those 4 rates. But the tendency is higher the recirculation rate, higher the pollutant load leach from the lysimeters. Figure 22 shows the pollutant concentration variation in terms of  $TBOD_5$  and TKN. However, it is clear from cumulative sp. Load values; the highest sp. load was from highest leachate recirculation rate. The cumulative values for  $TBOD_5$  are 13203, 10315, 7504 and 6818 for 100%, 75%, 50% and 35% of maximum rainfall intensity (see appendix C). This order of values from higher to lower in pollutant loads are also true for organic, nitrogen and TDS,SS leaching from lysimeters.



Figure 22 TBOD<sub>5</sub> variation in low compacted waste (LR<sub>C1</sub>)

## b) Leachate characteristics of high compacted waste

In high compacted waste there were only 2 rates of leachate recirculation. They are 100% and 35%. The difference in 2 rates is significant in pollutant concentrations as well as sp. pollutant load. The lowest concentration was from 100% and highest cumulative sp. pollutant load was also from 100% max. RF intensity. Figure 23 shows the pollutant concentration variation in terms of TBOD<sub>5</sub> and TCOD.



Figure 23 TBOD<sub>5</sub> variation in high compacted waste (LR<sub>C2</sub>)

# c) Leachate characteristics of high compacted waste without plastic

In high compacted waste without plastic, there were only 1 rate of leachate recirculation. That is only 100%. The variation pattern of pollutant concentration as well as pollutant load is more or less similar to high compacted waste.

d) Leachate characteristics of pre treated waste

In pre-treated waste also there were only 2 rates of leachate recirculation. They are 100% and 35%. The difference in 2 rates is significant in pollutant concentrations as well as sp. pollutant load. The lowest concentration was from 100% max. RF intensity (LR<sub>C2</sub>-100). However, the highest cumulative sp. load was not from 100% like in LC and HC. It is contradictory to LC and HC waste. Beside that there is a notable decline in organic concentrations as well as cumulative sp. organic load over the time, which were not can be seen in other types of waste. The results reveals the fact that pre-treated waste is more stabilize than low compacted and high compacted waste. Figure 24 depicts the organic concentration and cumulative sp. load in terms of TBOD<sub>5</sub>.



Figure 24 TBOD<sub>5</sub> concentration and cumulative sp. load variation in pre-treated waste (LR<sub>S2</sub>)

- 2.2 Comparison of leachate characteristics in different kind of solid waste
  - a) Effect of waste compaction density

In this section leachate characteristics of  $LR_{C1}$ -100(LC-100%) and  $LR_{C2}$ -100 (HC-100%) will be compared.

Figure 25 presents the organic concentration variation in  $LR_{C1}$ -100 and  $LR_{C2}$ -100 in terms of total BOD, and Total COD. Soluble BOD and Soluble COD concentration variation also behave similar to Total BOD and COD.



Figure 25 Organic concentration variation in LR<sub>C1</sub>-100 and LR<sub>C2</sub>-100

Organic concentrations vary within a constant range along the time both in  $LR_{C1}$ -100 and  $LR_{C2}$ -100. But the highest values are from  $LR_{C2}$ -100. This indicates that higher the compaction density, higher the organic concentration leaching under leachate recirculation condition. The scenario is also agreed with the situation under storm event. But the only difference is there are no plateaus and peaks can be observe like in storm condition. In addition to that there is no reduction in concentrations over the time since the leachate was recirculated weekly.

In spite to above tendency, cumulative sp. loads in each waste type behave in a different manner. Figure 26 presents their cumulative sp. organic loads .



Figure 26 Cumulative sp. organic load in LR<sub>C1</sub>-100 and LR<sub>C2</sub>-100

The figure exhibits the highest values are from  $LR_{C1}$ -100 over  $LR_{C2}$ -100. This is not the trend what was expected in storm events. Under storm events, organic concentration as well as cumulative sp. organic load was from  $St_{C2}$ . Under storm events the gap of cumulative organic load (mg) between  $St_{C2}$  and  $St_{C1}$  was higher compared to leachate recirculation condition. But under leachate recirculation condition, this gap was not much compared to storm events. Figure 27 presents the cumulative organic load (mg) in terms of TBOD, both under storm condition and leachate recirculation condition.



Figure 27 Cumulative Organic load-mg in LC and HC under leachate recirculation (LR) and storm conditions (IS)

Therefore when it appears as the cumulative sp. load, low compacted waste (LC) got the highest value than high compacted waste (HC) as the gap is not much in cumulative load (mg) graph. This would be the possible reason to get a higher value for  $LR_{C1}$  when compared to  $LR_{C2}$ . This results reveals the fact that cumulative sp. organic load not depends on the compaction density, but highly depends on the weight of TS in the solid waste. Also other cumulative sp. organic loads are behaving to the above trend.

Nitrogen leaching also behaves similar to the organic leaching from lysimeters. Figure 28 depicts the nitrogen concentration and cumulative sp. load in terms of TKN variation in  $LR_{C1}$ -100 and  $LR_{C2}$ -100. NH4-N also varies more or less similar to TKN variation.



Figure 28 TKN concentration and cumulative sp. load in  $LR_{C1}$ -100 and  $LR_{C2}$ -100

It seemed that cumulative sp. nitrogen load also not depends on the compaction density as cumulative sp. organic loads, in contrary nitrogen concentrations depend on the compaction density. Therefore it can be concluded that pollutant concentration is proportionate to the compaction density where as cumulative sp. pollutant load is not depends on the compaction density.

TDS and SS also behave similar to organic and nitrogen leaching from lysimeters.

When compared the results of leachate recirculation condition and storm condition, the notable fact that can be seen in all concentrations (organic, nitrogen and TDS, SS) is, under leachate recirculation condition, concentrations fluctuate within a constant range where it has high peaks and plateaus and reducing over the time under storm condition. However when consider the overall leachate load; it is higher in storm conditions than leachate recirculation condition, although the initial pollutant load may be same under leachate recirculation condition and storm condition, which was also pointed out by Chugh *et al.* (1998). Figure 29 exhibit the overall pollutant load as a cumulative value in TCOD.



Figure 29 Cumulative sp. TCOD load in LC and HC at LR and St.

b) Effect of waste stabilization

In this section results of  $LR_{S1}$ -100 (HC-100%) and  $LR_{S2}$ -100 (PT-100%) will be discussed.  $LR_{S1}$ -100 is the fresh waste which was obtained from Nonthaburi dumpsite and compacted up to a density of 437kgm-<sup>3</sup>.  $LR_{S2}$ -100 is the same waste which was obtained from that dumpsite and removed their non biodegradable part from the waste and composted for a period of 2 months. But as mentioned above, for storm conditions, pre-treated waste was obtained by composting the same waste up to 6 months.

It was found  $LR_{S2}$ -100 has lower concentration over the time compared to  $LR_{S1}$ -100. Cumulative sp. organic pollutant load also behave similar to the above pattern and the values are presented in Table19.

|      | Cumula             | time an             | Cumul              | tirra an           | Cumula             | tirra an           | Cumula             | time an            |
|------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|      | Cumula             | 1                   |                    | ative sp.          | Cumula             | 1                  | Cumulative sp.     |                    |
|      | TBOD               | $\mathbf{b}_5$ load | SBOL               | 05 load            | TCC                | )D                 | SC                 | OD                 |
| Week | (mg/K              | lg TS)              | (mg/K              | (g TS)             | load(mg/           | 'Kg TS)            | load(mg            | /Kg TS)            |
|      | LR <sub>S1</sub> - | LR <sub>S2</sub> -  | LR <sub>S1</sub> - | LR <sub>S2</sub> - | LR <sub>S1</sub> - | LR <sub>S2</sub> - | LR <sub>S1</sub> - | LR <sub>S2</sub> - |
|      | 100                | 100                 | 100                | 100                | 100                | 100                | 100                | 100                |
| 1    | 6738               | 16.4                | 6539               | 14.5               | 16741              | 617                | 14881              | 617                |
| 2    | 8023               | 14.1                | 7403               | 11.8               | 15047              | 575                | 12750              | 575                |
| 3    | 8504               | 12.1                | 7326               | 10.2               | 17172              | 745                | 13473              | 611                |
| 4    | 8604               | 9.6                 | 7681               | 7.5                | 17625              | 441                | 16005              | 324                |
| 5    | 9373               | 8.6                 | 7760               | 6.9                | 20858              | 258                | 16122              | 235                |
| 6    | 8923               | 9.0                 | 7460               | 6.4                | 20858              | 385                | 14826              | 255                |
| 7    | 9767               | 9.5                 | 8738               | 6.8                | 20799              | 654                | 16719              | 389                |
| 8    | 8896               | 8.8                 | 8365               | 5.8                | 18645              | 577                | 16019              | 401                |

Table 19 Cumulative sp. Organic load variation in LR<sub>S1</sub>-100 and LR<sub>S2</sub>-100

But they are fluctuating in a constant range where, increment is not obvious as storm event. Figure 30 shows the cumulative values in terms of TCOD in leachate recirculation and storm condition.

These stable values in leachate recirculation condition prove the means that it leaches less organic pollutants compared to storm condition and it is recirculated within the system. In addition to that these results reveals that stabilized waste like pre-treated waste leach less organic pollutants than other none stabilized waste.



Figure 30 Cumulative sp. TCOD in HC,PT and OW in St and LR condition.

Nitrogen leaching also has similar trend as organic leaching behavior. (Kuruparan and Nisvanathan, 2003) found that pre treated landfill cell had minimum TKN concentration (4 fold) and minimum TKN loads (5 fold) compare to the engineered landfill cell. Leikam and Stegmann , 1999 also observed a similar trend in mechanically biologically pre-treated waste in pilot-scale lysimeters in Germany operated for 14 months, where a five fold reduction in TKN between non-treated wastes and pre-treated waste (1000 to200 mg/L) But in this experiment though the minimum TKN concentration and TKN loads were recorded from treated organic waste, TKN concentration was 4 fold and TKN load was 45 fold compared to high compacted waste.

Further treated organic waste had a minimum NH<sub>4</sub>-N concentration (35 fold) and minimum NH<sub>4</sub>-N load (78fold) compared to the high compacted waste cell.

Mentioned above results have shown that, the fold of reduction in nitrogen leaching vary depend on composition of waste, time consumed for the pre treatment, compaction density, moisture content in the waste and some other environmental factors. However, by pre treating waste; can reduce final nitrogen leaching in to the environment. Therefore pre treatment could be considered to minimize nitrogen concentration to a large extent in future land filling activities.

TDS and SS also varies similar to organic and nitrogen leaching in lysimeters.

From the above results it can be concluded that, stabilized waste like pre-treated waste leach less pollutant concentrations as well as less sp. pollutant load compared to high compacted waste.

c) Effect of plastic in waste

In this section, leachate characteristic of  $LR_{P1}$ -100 (high compacted waste) and  $LR_{P2}$ -100 (high compacted waste without plastic) will be compared.

Unlike in storm event, there is a considerable difference in organic concentration between  $LR_{P1}$ -100 and  $LR_{P2}$ -100.  $LR_{P1}$ -100 got the highest concentration levels for organic leaching compared to  $LR_{P2}$ -100. But in storm event there is no such significant difference among them. Figure 31 depicts the concentration variation of organic pollutants between  $LR_{P1}$ -100 and  $LR_{P2}$ -100. They are presented in terms of TBOD and TCOD and SBOD and SCOD values also behaving similar to these trends.



Figure 31 Organic concentration variation in LR<sub>P1</sub>-100 and LR<sub>P2</sub>-100

Even the cumulative sp. organic load is high in  $LR_{P1}$ -100 than  $LR_{P2}$ -100. In addition to that there is no remarkable increase in cumulative values, like in storm event.

Plastic has organic origin and consist of monomers, polymers or elastomers. This organic fraction is chemically digested when determining for COD and, might give a higher values for TCOD and SCOD when compared to LR<sub>P1</sub>-100. Also 1%-2% of plastic undergoes decomposition and some plastic bags contain some sticky residues which contributed for the final BOD<sub>5</sub> value. This may be the possible reason for giving higher BOD<sub>5</sub> value for LR<sub>P1</sub>-100than LR<sub>P2</sub>-100. So the end result is high compacted waste without plastic provides a low organic leaching to the environment compared to high compacted waste with plastic.

Nitrogen leaching is also same as organic concentration variation. Moreover, in storm events also, waste with plastic obtained the highest values over the waste without plastic.

For this situation plastic might be the possible reason to have high nitrogen content in  $LR_{P1}$ -100. However, the results were still equivocal and it is recommended that waste without plastic has to be closely investigated in future test

cells.TDS and SS also obtained higher values for  $LR_{P1}$ -100 than  $LR_{P2}$ -100 for pollutant concentrations as well as for cumulative pollutant load.

#### 3. Leaching in the landfill at internal storage condition

Under this condition two lysimeters were filled with low compacted waste( $IS_{C1}$ ) and high compacted waste( $IS_{C2}$ ) by using same waste which was obtained from Nonthaburi dumpsite. High compacted waste was obtained by compacting waste up to 437kgm<sup>-3</sup>.

- 3.1 Comparison of leachate characteristics
  - a) Effect of waste compaction density

In this section  $IS_{C1}$  (low compacted waste) and  $IS_{C2}$  (high compacted waste) will be compared. All pollutant concentrations show a similar trend along the time. In all pollutant concentrations,  $IS_{C2}$  seems to be having the highest compared to  $IS_{C1}$ . Figure 32 presents the pollutant concentrations (Organic, Nitrogen and TDS, SS) variation in terms of TBOD, TCOD, TKN and TDS concentrations. Other pollutant concentrations are also behaving equal to this pattern.

However when compare the total sp. pollutant leaching from the cell; IS<sub>C1</sub> obtained the highest value than IS<sub>C2</sub>. It was expected the volume of water to make it submerge could be the reason to have a highest sp. pollutant load in IS<sub>C1</sub>. Which means it needed more volume of water to submerge IS<sub>C1</sub> than IS<sub>C2</sub>. This volume of water has a proportional relationship on final pollutant leaching load from the lysimeters. Figure 33 illustrates the pollutant load leaching from IS<sub>C1</sub> and IS<sub>C2</sub>.



Figure 32 Pollutant concentration variation in  $IS_{C1}$  and  $IS_{C2}$ 



Figure 33 Sp. Pollutant load leach in  $IS_{C1}$  and  $IS_{C2}$ 

# a) Compare with leachate recirculation condition

When consider the pollutant concentration variation in submerged condition, there is a remarkable decline in values compared to leachate recirculation condition. However it has the highest sp. pollutant load leaching since it contains more volume of water to submerge the cell. Figure 34 depicts the concentration variation in terms of TCOD compared to leachate recirculation condition.



Figure 34 TCOD concentration variation in leachate recirculation and submerged condition

Table 20 presents the sp. pollutant load leach compared to leachate recirculation condition both in low compacted waste and high compacted waste.

|                   |                      |                           | Low c                    | ompacte                  | d waste                  |                  | High c                    | High compacted waste     |                  |  |
|-------------------|----------------------|---------------------------|--------------------------|--------------------------|--------------------------|------------------|---------------------------|--------------------------|------------------|--|
| Parameter         | Unit                 | LR <sub>C1</sub> -<br>100 | LR <sub>C1</sub> -<br>75 | LR <sub>C1</sub> -<br>50 | LR <sub>C1</sub> -<br>35 | IS <sub>c1</sub> | LR <sub>C2</sub> -<br>100 | LR <sub>C2</sub> -<br>35 | IS <sub>c2</sub> |  |
| TBOD <sub>5</sub> | mg/kg<br>TS          | 6450                      | 4800                     | 3411                     | 2684                     | 79847            | 5616                      | 2650                     | 37459            |  |
| SBOD <sub>5</sub> | mg/kg<br>TS          | 5092                      | 4800                     | 3411                     | 1611                     | 67563            | 5464                      | 2578                     | 23724            |  |
| TCOD              | mg/kg<br>TS          | 15320                     | 13487                    | 9104                     | 7716                     | 227012           | 11511                     | 5432                     | 52610            |  |
| SCOD              | mg/kg<br>TS          | 12534                     | 10375                    | 6303                     | 4409                     | 126118           | 10232                     | 5070                     | 47349            |  |
| TKN               | mg/kg<br>TS<br>mg/kg | 776                       | 507                      | 462                      | 288                      | 5159             | 453                       | 192                      | 2331             |  |
| NH4-N             | TS                   | 404                       | 348                      | 291                      | 210                      | 4299             | 439                       | 181                      | 2302             |  |

**Table 20** Sp. pollutant load leach in LC and HC at leachate recirculation and internal storage condition

#### 4. pH Variation in Lysimeters

#### 4.1 pH Variation in Storm condition

pH is an important factor which governs the process that occurs within a landfill. It can influence the rate at which the landfill stabilizes. Figure 35 presents the pH variation in lysimeters. It is obvious that  $St_{C1}$ ,  $St_{C2}$  and  $St_{P2}$  ranged between 5 to 6 where it is 7 to 8 in  $St_{S2}$  and  $St_{S3}$ . Similar observations were also made by Trankler et al., 2005b in lysimeter studies, Bangkok, Thailand as well as under temperate climate by Khattabi et al., 2002 at Etueffont landfill, France.

This indicates that  $St_{C1}$ ,  $St_{C2}$  and  $St_{P2}$  are in the stage of acidogenic and  $St_{S2}$  and  $St_{S3}$  are almost reached to a more stabilization stage. But in  $St_{C1}$  pH has increased up to 7.72 at the latter stage of experiment seems it is becoming to a more stabilization stage.


Figure 35 Variation of pH in lysimeters at storm condition

#### 4.2 pH Variation in leachate recirculation and internal storage condition



Figure 36 depicts the pH variation in lysimeters at LR and IS

Figure 36 pH variation in lysimeters at leachate recirculation and internal storage condition

Except in pre-treated waste, pH is varied between 5.2 and 5.6 in other lysimeters. But in  $LR_{C1}$ -35 tried to achieve to a more stabilize stage at the end of operation by reaching to pH 7. This situation is more or less similar with the situation

existed in the low compacted waste under storm condition. The results demonstrated the fact that pre-treated waste has already reached to a stabilized stage where other types of waste are at the acidogenic phase.

#### 5. Water Balance in Lysimeters

Figure 37 shows the water balance in lysimeters and Table 21shows the percentage leach out from the lysimeters.



Figure 37 Water balance in lysimeters

| Leaching              | in landfill                | Leaching durin              | g storm events             |
|-----------------------|----------------------------|-----------------------------|----------------------------|
| Lysimeter name        | % leach from<br>lysimeters | Lysimeter name              | % leach from<br>lysimeters |
| LR <sub>C1</sub> -100 | 24                         | $St_{C1}$                   | 92                         |
| LR <sub>C1</sub> -75  | 20                         |                             |                            |
| LR <sub>C1</sub> -50  | 13                         |                             |                            |
| LR <sub>C1</sub> -35  | 12                         |                             |                            |
| LR <sub>C2</sub> -100 | 15                         | $St_{C2}$                   | 90                         |
| LR <sub>C2</sub> -35  | 5                          |                             |                            |
| LR <sub>P2</sub> -100 | 19                         | $\mathrm{St}_{\mathrm{P2}}$ | 98                         |
| LR <sub>S2</sub> -100 | 31                         | $\mathrm{St}_{\mathrm{S2}}$ | 92                         |
| LR <sub>S2</sub> -35  | 10                         |                             |                            |
| IS <sub>C1</sub>      | 88                         | St <sub>S3</sub>            | 74                         |
| IS <sub>C2</sub>      | 67                         |                             |                            |

#### 6. Carbon and Nitrogen balance in lysimeters

To investigate the portion of organic carbon removed with leachate, Total organic carbon (TOC) measured in random samples and linear relation ship was drawn with COD values. The random leachate samples were analyzed for each type of waste and found 5 linear relationships in accordance to the each waste type. Thereafter the required TOC values were derived with the help of linear relationship. The equations derived from this relationship for each waste type has been given in the

appendix B. Used Cumulative TOC values at storm condition to find the amount of TCOD leach. At internal storage condition and leachate recirculation condition, the final COD value was taken to calculate the amount of TCOD leach. VS in each waste type was used to find the approximate carbon in solid waste. Figure 38 explains the C balance in lysimeters.



Figure 38 Carbon Balance in lysimeters

The percent Carbon leach from each lysimeter can be found from the following equation.

% carbon leach from lysimeters = 
$$\frac{\text{Total COD load in leachate}}{\text{Approximate C in Solid waste}} \times 100$$
 (3)

Table 22 depicts the percent C leach in each lysimeter

| Stor             | m       | Leachate rec          | irculation | Internal s       | torage  |
|------------------|---------|-----------------------|------------|------------------|---------|
| Lysimeter        | % leach | Lysimeter             | % leach    | Lysimeter        | % leach |
| St <sub>C1</sub> | 9.27    | LR <sub>C1</sub> -100 | 1.87       | IS <sub>C1</sub> | 27.78   |
| St <sub>C2</sub> | 9.62    | LR <sub>C1</sub> -75  | 1.65       | IS <sub>C2</sub> | 4.44    |
| St <sub>P2</sub> | 13.46   | LR <sub>C1</sub> -50  | 1.11       |                  |         |
| St <sub>82</sub> | 0.09    | LR <sub>C1</sub> -35  | 0.94       |                  |         |
| St <sub>S3</sub> | 0.14    | LR <sub>C2</sub> -100 | 0.97       |                  |         |
|                  |         | LR <sub>C2</sub> -35  | 0.46       |                  |         |
|                  |         | LR <sub>P2</sub> -100 | 1.26       |                  |         |
|                  |         | LR <sub>S1</sub> -100 | 0.04       |                  |         |
|                  |         | LR <sub>S1</sub> -35  | 0.01       |                  |         |

### Table 22 Percent Carbon leach from each lysimeter

To investigate the portion of nitrogen removed with leachate, TKN was measured before solid waste was fed into lysimeters. At the storm condition, since the leachate was measured for TKN intermittently, the exact TKN leach cannot be determined. But

at leachate recirculation condition and internal storage condition, the final leachate TKN value was taken to determine the percent N leach from lysimeters. Figure 39 explains the Nitrogen balance in lysimeters.



Figure 39 Nitrogen Balance in lysimeters

The percent Nitrogen leach from each lysimeter can be found from the following equation.

%nitrogen leach from lysimeters =  $\frac{\text{Total TKN load in leachate}}{\text{TKN in Solid waste}} \times 100$  (4)

Table 23 depicts the percent N leach in each lysimeter

| Leachate re           | circulation | Internal s | storage |
|-----------------------|-------------|------------|---------|
| Lysimeter             | % leach     | Lysimeter  | % leach |
| LR <sub>C1</sub> -100 | 3.08        | $IS_{C1}$  | 20.5    |
| LR <sub>C1</sub> -75  | 2.01        | $IS_{C2}$  | 9.2     |
| LR <sub>C1</sub> -50  | 1.83        |            |         |
| LR <sub>C1</sub> -35  | 1.14        |            |         |
| LR <sub>C2</sub> -100 | 1.80        |            |         |
| LR <sub>C2</sub> -35  | 0.76        |            |         |
| LR <sub>P2</sub> -100 | 2.54        |            |         |
| LR <sub>S1</sub> -100 | 0.02        |            |         |
| LR <sub>S1</sub> -35  | 0.08        |            |         |

 Table 23
 Percent Nitrogen leach from each lysimeter

#### 7. Changes to the solid waste characteristics after the operation

Run 1

Table 24 reveals that moisture content has increased when compared to initial moisture content of low compacted waste, high compacted waste and high compacted waste without plastic. In old waste the increment in moisture content is substantial when compared to initial moisture content. But initial moisture content of pre-treated waste (for 6 months) is higher than the final moisture content after remove solid waste from the lysimeters. Density also behaves similarly to the moisture content of solid waste. Porosity has increased in all waste types compared to initial values except other than pre-treated waste (for 6 months). In high compacted waste without plastic and old waste, field capacity has increased compared to initial values but in pre-treated waste, it has reduced and in low compacted waste and high compacted waste, no change can be observed to the field capacity. Other parameters are described in Table 24.

Table 25 reveals that moisture content has increased when compared to initial moisture content of low compacted waste. Substantial increase in density, along with leachate recirculation rate and internal storage condition.

Porosity has decreased with leachate recirculation rate and lowest was recorded in internal storage condition. But there was no any drastic change in field capacity when compared with initial low compacted where slight increase in all lysimeters except submerged cell.

#### Run 3

Table 26 reveals that moisture content has increased when compared to initial moisture content of high compacted waste, high compacted waste without plastic and pre-treated waste. Highest moisture content has recorded in IS<sub>C1</sub> as it was under submerged condition. Substantial increment in density along with leachate recirculation rate and internal storage condition can be seen in all lysimeters, except LR<sub>S2</sub>-100 and 35. Increase in density of LR<sub>S2</sub>-100 and 35 seems more or less same. Porosity has decreased with leachate recirculation rate and lowest was recorded in internal storage condition. Filed capacity has increased drastically in LR<sub>C2</sub>-100 and 35 when compared to initial value (high compacted waste). There is slight increase in field capacity in LR<sub>S2</sub>-100 and 35when compared to initial pre-treated waste. But in all those 4 lysimeters, field capacity has reduced along with leachate recirculation rate. In LR<sub>P2</sub> also, field capacity has increased drastically when compared to initial value of high compacted waste without plastic. In IS<sub>C2</sub>, increase in field capacity is slight when compared to  $LR_{C2}$ -100 and 35. It reveals the process of leachate recirculation has an effect on final field capacity compared to internal storage condition.

| Parameter | Unit           | LC                | HC                | HC-w/p            | РТ                | OW                |
|-----------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Density   | [kg/m3]        | 327               | 488               | 523               | 758               | 324               |
| Porosity  | [-]            | $0.53 \pm 0.09$   | $0.38 \pm 0.02$   | $0.45 \pm 0.01$   | $0.31 \pm 0.01$   | $0.63 \pm 0.03$   |
| FC        | [mm/m]         | 744±22            | 694±13            | 776±31            | 688±11            | 463±11            |
| TS        | [%]            | $32.00 \pm 1.66$  | $29.84 \pm 0.73$  | $23.55 \pm 2.42$  | $34.04 \pm 0.79$  | 67.16±2.59        |
| MC        | [%-wet basis]  | 68.00±1.66        | 70.16±0.73        | $76.45 \pm 2.42$  | 65.96±0.79        | 32.84±2.59        |
| Ash       | [%-wet basis]  | $4.26 \pm 0.14$   | $5.05 \pm 0.40$   | $4.82 \pm 0.36$   | $18.29 \pm 0.83$  | 31.03±5.24        |
| VS        | [%-wet basis]  | 27.74±1.79        | $24.78 \pm 0.84$  | 18.73±2.09        | $15.75 \pm 0.04$  | 36.13±2.65        |
| Sulfur    | [%-dry weight] | $0.016 \pm 0.001$ | $0.009 \pm 0.001$ | $0.031 \pm 0.002$ | $0.017 \pm 0.000$ | $0.015 \pm 0.001$ |
| Chlorine  | [%-dry weight] | $1.49 \pm 0.136$  | 1.91±0.040        | $0.69 \pm 0.032$  | 1.12±0.188        | 4.75±0.178        |
| Cellulose | [%-dry weight] |                   | $22.00 \pm 0.04$  | 33.11±0.11        |                   |                   |
| Lignin    | [%-dry weight] |                   | 51.73±0.95        | 29.17±2.03        |                   |                   |

**Table 24** The changes to the physical, chemical characteristics of solid waste after 61 days in Run 1(storm condition)

| Parameter      | Unit -         |                   | Leachate reci   | rculation (LR)    |                   | Internal<br>storage(IS) |
|----------------|----------------|-------------------|-----------------|-------------------|-------------------|-------------------------|
| i di difficici | Ollit          | LC-100            | LC-75           | LC-50             | LC-35             | LC                      |
| Density        | [kg/m3]        | 403               | 377             | 375               | 349               | 450                     |
| Porosity       | [-]            | 0.41±0.02         | $0.45 \pm 0.02$ | 0.45±0.01         | $0.47 \pm 0.02$   | 0.38±0.01               |
| FC             | [mm/m]         | 757±10            | 745±22          | 795±17            | 777±09            | 730±08                  |
| TS             | [%]            | 24.49±0.70        | 32.08±0.66      | 22.90±1.38        | 24.04±1.14        | 26.99±0.75              |
| MC             | [%-wet basis]  | 75.51±0.70        | 67.92±0.66      | 77.10±1.38        | 75.96±1.14        | 73.01±0.75              |
| Ash            | [%-wet basis]  | $3.40 \pm 0.40$   | 4.05±0.32       | 4.47±0.28         | 3.76±0.28         | 4.08±0.62               |
| VS             | [%-wet basis]  | 21.09±0.31        | 21.34±1.60      | 18.43±1.66        | 20.28±1.42        | 22.91±0.13              |
| Sulfur         | [%-dry weight] | $0.005 \pm 0.002$ | 0.011±0.001     | $0.009 \pm 0.002$ | $0.004 \pm 0.000$ | 0.006±0.001             |
| Chlorine       | [%-dry weight] | 2.34±0.156        | 1.19±0.096      | 1.69±0.081        | 1.10±0.040        | 1.27±0.080              |

**Table 25** The changes to the physical, chemical characteristics of solid waste after 60 days in Run 2

| Parameter  | Unit -         |                   | Leac              | hate recirculation | (LR)              |                   | Internal<br>storage(IS) |
|------------|----------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------------|
| 1 drameter | Oint           | PT-100            | PT-35             | HC-100             | HC-35             | HC-w/p            | НС                      |
| Density    | [kg/m3]        | 697               | 698               | 565                | 561               | 552               | 627                     |
| Porosity   | [-]            | 0.38±0.02         | $0.40 \pm 0.02$   | $0.32 \pm 0.02$    | $0.35 \pm 0.04$   | $0.42 \pm 0.02$   | 0.32±0.02               |
| FC         | [mm/m]         | 760±06            | 765±15            | 775±11             | 794±18            | 740±11            | 726±15                  |
| TS         | [%]            | 26.59±0.47        | 27.24±2.48        | 31.34±1.76         | 26.06±1.46        | 26.97±0.05        | 25.65±0.54              |
| MC         | [%-wet basis]  | 73.41±0.47        | 72.76±2.48        | 68.66±1.76         | 73.94±1.46        | 73.03±0.05        | 74.35±0.54              |
| Ash        | [%-wet basis]  | 12.73±0.61        | 12.51±3.12        | 6.20±1.79          | 6.86±2.16         | 8.67±0.33         | 4.38±0.92               |
| VS         | [%-wet basis]  | 13.85±0.15        | 14.73±0.63        | 25.13±0.27         | 19.21±1.04        | 18.30±0.37        | 21.28±0.3               |
| Sulfur     | [%-dry weight] | $0.013 \pm 0.001$ | $0.026 \pm 0.001$ | $0.007 \pm 0.000$  | $0.005 \pm 0.001$ | $0.007 \pm 0.000$ | $0.059 \pm 0.00$        |
| Chlorine   | [%-dry weight] | $0.62 \pm 0.021$  | $1.02 \pm 0.064$  | 1.71±0.240         | 2.22±0.283        | $2.09 \pm 0.140$  | 1.73±0.038              |
| Cellulose  | [%-dry weight] |                   |                   | 22.87±0.12         |                   | 33.43±0.12        |                         |
| Lignin     | [%-dry weight] |                   |                   | 28.89±1.82         |                   | 33.57±1.30        |                         |

**Table 26** The changes to the physical, chemical characteristics of solid waste after 60 days in Run 3

#### CONCLUSION

The study worked on finding leachate characteristic in different solid waste disposal conditions and operation techniques in tropics. These findings can be categorized into two sectors namely, leaching during storm conditions and leaching in the landfill due to leachate recirculation and submerged condition. The leachate characteristics were obtained in different solid waste disposal conditions such as; effect of solid waste compaction density on leaching, effect of waste stabilization techniques on leachate quality, effect of plastic in waste on leachate quality and effect of leachate recirculation rate in leaching. From the results obtained for previously mentioned factors, following conclusions can be drawn.

1. Under heavy rainfall events, waste cells leach more pollutant loads to the leachate in spite of reducing trend over the time. Moreover, higher the leachate recirculation rate, higher the pollutants discharge from the lysimeters in fresh waste. In contrary, pre-treated waste leach lower cumulative pollutant load per kg of TS with higher leachate recirculation rate. This reveals that leachate recirculation rate is not a fact on leaching in stabilized waste. However recirculation would help in gradual leaching of pollutants from the lysimeters.

2. However, internal storage condition leach highest sp. pollutant loads compared to leachate recirculation condition and storm conditions, when fed with low compacted waste. However, when fed with high compacted waste, storm condition leaches highest sp. pollutant load compared to other conditions.

The lowest sp. pollutant loads were from leachate recirculation condition, storm condition and then submerge condition respectively in low compacted waste. In leachate recirculation condition, the percent decrease in TCOD is 61% than storm condition and in storm condition it is 71% of TCOD than submerge condition. In high compacted waste the lowest sp. pollutant loads were from leachate recirculation, internal storage and storm condition respectively. In leachate recirculation condition,

the percent decrease in TCOD is 65% than internal storage condition and in IS condition it is 48% TCOD than storm condition

3. Under leachate recirculation condition and submerged condition, sanitary landfill waste obtained the lowest cumulative pollutant load per kg of TS over open dump fresh waste where it was not same under storm condition.

4. There is a remarkable decline in pollutant load discharging in to the leachate with the stage of solid waste stabilization compared to sanitary landfill waste. Further, by pre-treating solid waste can reduce the pollutant leaching in to the leachate. When compare the cumulative pollutant load per kg of TS of pre-treated waste with 8 years old waste at storm condition, the percentage reduction is 58% of TBOD<sub>5</sub>, 12% of TCOD and 38% of TKN. So this reveals that pre-treatment is more appropriate technique to reduce pollutant leaching in to the leachate and also a technique of waste stabilization. At leachate recirculation condition, the percent reduction in pre-treated waste compared to sanitary landfill waste is, 100% TBOD<sub>5</sub>, 97% of TCOD and 92% of TKN.

5. According to the results obtained, it can be concluded that by removing polythene and plastic from the waste, can reduce the pollutant leaching in to the leachate. This was more obvious at leachate recirculation condition. In sanitary landfill waste without plastic, the percent reduction in cumulative pollutant load per kg of TS is 16% TBOD<sub>5</sub>, 22% TCOD and 19% TKN than sanitary landfill waste with plastic under leachate recirculation condition.

However, in storm conditions; since the cumulative pollutant loads were obtained by intermittent values, the results cannot be compared as it interprets fewer figures than what should be expected. On the other hand it presents higher cumulative loads for sanitary landfill waste without plastic since they were not taken continuously. But for the TCOD, it gave a lower value for sanitary landfill waste without plastic and possible reason seemed it was measured continuously. There the percent decrease is 3% TCOD than sanitary landfill waste with plastic.

#### RECOMMENDATION

Based on the results, the following recommendations are made for future works:

1. The Experiment should be carry out pilot scale to find whether there are any changes to the results obtained by lab scale study.

2. Since sanitary landfill waste without plastic leached less pollutant loads to the leachate, this should be closely investigate in future test cells, as this could be a new way of dumping solid waste in future landfills, because it leaches less pollutant loads to the landfill body.

#### LITERATURE CITED

- APHA, AWWA and WEF. 1997. Standards Methods for the Examination of
   Water and Wastewater. 20<sup>th</sup> Edition. American Public Health Association,
   Washington, D.C.
- Baig, S. and P.A. Liechti. 2001. Ozone treatment for biorefractory COD removal.Water science and technology 43 (2): 197-204.
- Chian, E.S.K. and F.B. Dewalle. 1976. Sanitary landfill Leachates and their treatment. J.Envi. Engi. Division ASCE 102(EE2): 411-431.
- Chugh, S., W. Clarke, P. Pullammanappallil and V. Rudolph. 1998. Effect of recirculated leachate volume on MSW degradation. Waste Management & Research 16(6): 564-573.
- Cosuu, R., A.M. Polcaro, M.C. Lavagnolo and S. Palmas. 2003. **Treatment of MSW landfill leachate by electrochemical oxidation**. Available source: http://www.sardiniasymposium.it/paparmodel.pdf. January 25, 2007.
- He, P. J., X. Qu, L. M. Shao, G. J. Li and D. J. Lee. 2006.Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor. Journal of Hazardous Materials 142: 288–296-a.
- He, P. J., J. F. Xue, L.M. Shao, G.J. Li and D.J. Lee. 2006.Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill. Water Research 40: 1465 – 1473-b.
- He, P. J., X. Qu, L. M. Shao and D. L. Lee. 2006. Landfill leachate treatment in assisted landfill bioreactor. Journal of Environmental Science 18(1): 176-179-c.

- He, R., D. Shen, Y. Zhu. 2006. Performance of leachate nitrogen removal in bioreactor landfill system. Chinese journal of applied economy 17: 520-524-a.
- He, R., X.W. Liu, Z. J. Zhang and D.S. Shen. 2006.Characteristics of the bioreactor landfill system using an anaerobic–aerobic process for nitrogen removal.
   Journal of Bioresource Technology 54 : 65–73-b.
- Edward, A.M., F.A. Rovers and G.J. Farquhar. 1995. Solid waste landfill engineering and design. Prentic-Hall, Inc.
- Ehrig, H.J. 1983. Quality and quantity of sanitary landfill leachate. **Waste Management and Research** 1: 53-68.
- Jianguo, J., Y. Guodong , D. Zhou, H. Yunfeng, H. Zhonglin, F. Xiangming, Z. Shengyong and Z. Chaoping. 2006. Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Management 27(7): 893–901.
- Jun,D., Z.Yongsheng, R.K. Henry and H. Me. 2007. Impacts of aeration and active sludge addition on leachate recirculation bioreactor. Journal of Hazardous materials 40: 324-329
- Khattabi, H., L. Aleya and J. Mania. 2002, Changes in the quality of landfill leachates from recent and aged municipal solid waste. Waste management and Research 8: 357-364.
- Kurian, J., R. Nagendran, O.P. Karthikeyan and M.Swati. 2006. Performance of bioreactor landfill with waste mined from a dumpsite, Environmental Monitoring Assessment. Available Source: http://www.wslf.ait.ac.th. September 12, 2007.

- Kuruparan, P., O. Tubtimthai, C. Visvanathan and J. Tränkler. 2003. Influence of Tropical Seasonal Variations, Operation Modes and Waste Composition on Leachate Characteristics and Landfill Settlement. Workshop on "Sustainable Landfill Management" Anna University. Chennai, India.
- Leikam, K. and R. Stegmann. 1999. Influnce of Mechanical-biological pretreatment of municipalsolid waste on landfill behaviour. **Waste management and research** 17: 424-429.
- Lema, J. M., R. Mendez and R. Blazquez. 1988. Characteristics of Landfill Leachates and Alternatives for their treatment: A Review. Water, Air and Soil Pollution 40: 223-250.
- Luo, F., W. Z.Chen, F.Z. Song, X. P. Li and G. Q. Zhang. 2004. Comparison between controlled landfill reactor and conditioned landfill bioreactor. Journal of Environmental Sciences 16( 5): 874-880.
- Mertoglu, B., B. Call, B. Inanc and I. Ozturk. 2006. Evaluation of in situ ammonia removal in an aerated landfill bioreactor. Process biochemistry 41: 2359-2366.
- Petchsri,P., S.Towprayoon, P.Chaiprasert and A.Nopharatana.2006. The effect of precipitation on municipal solid waste decomposition and methane production in simulated landfill bioreactor with leachate recirculation. Science and technologyv29: 615-631.
- Qasim, S.R. 1994. Sanitary landfill leachate: Generation, Control, and Treatment. Pennsylvania, Technomic Publishing Company, Inc. ISBN 1-56676-129-8.

- Reinhart D.R., and A.B. Al-Yousfi. 1996. The impact of leachate recirculating on municipal solid waste landfill operating characteristics. Waste Management and Research 14: 337-346.
- Shen, D. S., R. He, G. P. Ren, I. Traore and X. S. Feng. 2002. Effect of leachate recycling and inoculation on the biochemical characteristics of municipal refuse in landfill bioreactors. Journal of Environmental Sciences 14(3): 406-412.
- Swati,M., J.Kurian and R. Nagendran. 2005. Bioreactor landfill lysimeter studies on Indian urban refuse. Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium. Cagliari, Italy.
- Swati, M., J. Kurian and R. Nagendran. 2006. 'Landfill Bioreactor': A Biotechnological solution for waste management. Available Source: http://www.wslf.ait.ac.th. September 12, 2007.
- Tchobanoglous, G., H. Theisen and S.A. Vigil.1993. Integrated solid waste management. Singapore: McGraw-Hill, Inc.
- Tränkler, J. and P.M.R.P. Ranaweera, 2001. Pre-treatment prior final disposal- A case study for Thailand. Proceedings Sardinia 2001, Eighth International Waste Management and Landfill Symposium. Pula, Cagliari, Italy-a.
- Tränkler, J., D.R. Manandhari, Q. Xiaoning, V. Sivapornpun and W. Scholl. 2001.
  Effects of monsooning conditions on the management of landfill leachate in the tropical countries. Proceedings Sardinia 2001, Eighth International waste management and landfill symposium. Pula, Cagliari, Italy,ii: 59-68-b.

- Visvanathan, C., J. Tränkler, B.F.A. Basnayake, C. Chiemchaisri, K. Joseph and Z Gongming. 2003. Landfill management in Asia –Notions about future approaches to appropriate and sustainable solutions. Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium. Cagliari, Italy.
- Wang, J., D.Shen and Y. Xu. 2006. Effect of acidification percentage and volatile organic acids on the anaerobic biological process in simulated landfill bioreactors. **Process Biochemistry** 41: 1677–1681.

.

**APPENDICES** 

**Appendix A** Photographs

# **Feed Stock Preparation**





## Appendix B

Figures and calculations



Appendix Figure B1 Average rainfall pattern (year 2001 to 2006); storm period from September to October

#### **Compaction Density**

$$\rho_{\text{waste}} = \underline{M1}$$
  
V1

 $\rho_{\text{waste}} \quad : \text{Density of waste} \quad$ 

*M1* : Weight of waste (kg)

VI : Volume of waste (m<sup>3</sup>)

#### Porosity



#### **Field Capacity**

The field capacity of solid waste is the total amount of moisture that can be retained in a waste sample subjected to the downward pull of gravity.



*w*<sub>2</sub> -*w*<sub>0</sub>

#### Calculation of cumulative pollutant load at leachate recirculation condition

BOD output-BOD load for sample = BOD input

Actual BOD output = BOD output –BOD input

Cumulative BOD = Initial BOD out put+ actual BOD output 1+ actual BOD output 2..

| BOD<br>leach | BOD<br>input | actual<br>BOD<br>output-<br>mg | Cumulative<br>BOD leach-<br>mg |           | Cumulative sp.<br>BOD leach-<br>mg/kg |
|--------------|--------------|--------------------------------|--------------------------------|-----------|---------------------------------------|
| 15015        |              | 15015                          | 15015                          | 15015/1.9 | 7903                                  |
| 20228        | 14333        | 5895                           | 20910                          | 20910/1.9 | 11005                                 |
| 23674        | 19530        | 4144                           | 25054                          | 25054/1.9 | 13186                                 |

Eg:- at low compacted waste with 100% LR

Appendix C Tables

| Week | Date      |        |       | IS    |       |      |
|------|-----------|--------|-------|-------|-------|------|
| WCCK | Date      | LC-100 | LC-75 | LC-50 | LC-35 | LC   |
| 1    | 4/3/2007  | 5.41   | 5.45  | 5.66  | 5.51  | 5.42 |
| 2    | 17/4/2007 | 5.32   | 5.32  | 5.47  | 5.5   | 5.42 |
| 3    | 18/4/2007 | 5.33   | 5.3   | 5.35  | 5.47  | 5.4  |
| 4    | 24/4/2007 | 5.4    | 5.38  | 5.35  | 5.4   | 5.39 |
| 5    | 1/5/2007  | 5.42   | 5.41  | 5.4   | 5.5   | 5.35 |
| 6    | 8/5/2007  | 5.52   | 5.49  | 5.53  | 5.6   | 5.32 |
| 7    | 14/5/2007 | 5.55   | 5.56  | 5.51  | 6.26  | 5.29 |
| 8    | 23/5/2007 | 5.67   | 5.71  | 5.62  | 6.99  | 5.36 |

Appendix Table C1 pH Variation in Lysimeters -Run 2(LR and IS)

Appendix Table C2 pH Variation in Lysimeters -Run 3 (LR and IS)

|      |           |        |       | LR         |       |        | IS   |
|------|-----------|--------|-------|------------|-------|--------|------|
| Week | Date      | PT-100 | PT-35 | HC-<br>100 | HC-35 | HC-w/p | НС   |
| 1    | 25/6/2007 | 7.63   | 7.29  | 5.48       | 5.55  | 5.48   | 5.4  |
| 2    | 27/6/2007 | 7.61   | 7.66  | 5.4        | 5.49  | 5.39   | 5.33 |
| 3    | 2/7/2007  | 7.66   | 7.79  | 5.4        | 5.46  | 5.4    | 5.28 |
| 4    | 9/7/2007  | 7.66   | 7.75  | 5.43       | 5.44  | 5.42   | 5.3  |
| 5    | 16/7/2007 | 7.78   | 7.8   | 5.47       | 5.48  | 5.48   | 5.31 |
| 6    | 23/7/2007 | 7.73   | 7.69  | 5.38       | 5.37  | 5.42   | 5.24 |
| 7    | 31/7/2007 | 7.68   | 7.75  | 5.41       | 5.40  | 5.40   | 5.26 |
| 8    | 6/8/2007  | 7.51   | 7.69  | 5.46       | 5.44  | 5.53   | 5.28 |

| Day | Date       | LC   | HC   | HC-w/p | РТ   | OW   |
|-----|------------|------|------|--------|------|------|
| 4   | 26/9/2007  | 5.54 | 5.49 | 5.47   | 7.46 | 7.59 |
| 7   | 29/9/2007  | 5.46 | 5.42 | 5.38   | 7.16 | 7.3  |
| 12  | 4/10/2007  | 5.34 | 5.58 | 5.42   | 6.99 | 7.25 |
| 19  | 11/10/2007 | 5.24 | 5.53 | 5.39   | 7.29 | 7.58 |
| 25  | 17/10/2007 | 5.37 | 5.48 | 5.3    | 7.07 | 7.47 |
| 31  | 23/10/2007 | 5.46 | 5.51 | 5.37   | 7.12 | 7.48 |
| 39  | 31/10/2007 | 5.7  | 5.49 | 5.55   | 7.08 | 7.56 |
| 44  | 5/11/2007  | 5.86 | 5.47 | 5.5    | 7.68 | 8.10 |
| 55  | 16/11/2007 | 6.81 | 5.37 | 5.75   | 7.85 | 8.14 |
| 61  | 24/11/2007 | 7.72 | 5.39 | 5.97   | 8.25 | 8.39 |

Appendix Table C3 pH Variation in Lysimeters -Run 1(storm)

# Appendix Table C4 Weight of each type of waste fill into lysimeters at initially and their TS amount

| Solid waste type                     | Symbol | Weight to<br>lysimeter-kg | TS%-wet<br>basis | Dry<br>weight-kg |
|--------------------------------------|--------|---------------------------|------------------|------------------|
| Low compacted waste                  | LC     | 5.2                       | 35.72            | 1.9              |
| High compacted waste                 | НС     | 10.3                      | 35.72            | 3.7              |
| High compacted waste without plastic | HC-w/p | 10.3                      | 33.46            | 3.4              |
| Pre treated waste <sup>a</sup>       | РТ     | 15.3                      | 30.36            | 4.7              |
| Pre treat waste <sup>b</sup>         | РТ     | 20.0                      | 27.27            | 5.5              |
| 8 years old waste                    | OW     | 4.2                       | 97.44            | 4.1              |

<sup>a</sup> = composted for about 2 months

 $^{b}$  = composted for about 6 months

|                   | Week | Date       | LC-<br>100 | LC-75 | LC-50      | LC-35 | IS-LC      |       |
|-------------------|------|------------|------------|-------|------------|-------|------------|-------|
|                   | 1    | 3/4/2007   | 1100       | 825   | 550        | 385   |            |       |
|                   | 2    | 10/4/2007  | 1450       | 775   | 500        | 500   |            |       |
| d IS              | 3    | 17/4/2007  | 1475       | 1100  | 665        | 587   |            |       |
| R an              | 4    | 23/4/2007  | 1050       | 800   | 450        | 300   |            |       |
| Run 2 (LR and IS) | 5    | 30/4/2007  | 1100       | 800   | 530        | 350   |            |       |
| (un               | 6    | 5/5/2007   | 1175       | 875   | 575        | 425   |            |       |
| Υ.<br>Υ           | 7    | 15/5/2007  | 1065       | 825   | 540        | 400   |            |       |
|                   | 8    | 21/5/2007  | 1075       | 800   | 540        | 425   | 19450      |       |
|                   | Week | Date       | PT-<br>100 | PT-35 | HC-<br>100 | HC-35 | HC-<br>w/p | IS-HC |
|                   | 1    | 25/6/2007  | 1030       | 1020  | 1222       | 250   | 1000       |       |
|                   | 2    | 27/6/2007  | 900        | 270   | 925        | 170   | 955        |       |
| Run3 (LR and IS)  | 3    | 2/7/2007   | 897        | 175   | 986        | 239   | 925        |       |
| R an              | 4    | 9/7/2007   | 925        | 250   | 982        | 235   | 1035       |       |
| 3 (LJ             | 5    | 16/7/2007  | 900        | 255   | 985        | 282   | 1015       |       |
| Run               | 6    | 23/7/2007  | 967        | 268   | 925        | 287   | 1035       |       |
| Η                 | 7    | 31/7/2007  | 1040       | 300   | 1060       | 315   | 1085       |       |
|                   | 8    | 6/8/2007   | 935        | 255   | 936        | 265   | 982        | 7700  |
|                   | Day  | Date       | LC         | HC    | HC-<br>w/p | РТ    | OW         |       |
|                   | 4    | 26/9/2007  | 178        | 151   | 222        | 109   | 206        |       |
|                   | 7    | 29/9/2007  | 508        | 489   | 534        | 489   | 473        |       |
|                   | 12   | 4/10/2007  | 939        | 942   | 955        | 829   | 876        |       |
|                   | 19   | 11/10/2007 | 285        | 240   | 265        | 143   | 238        |       |
| 1(St              | 25   | 17/10/2007 | 640        | 678   | 668        | 578   | 610        |       |
| Run 1(St)         | 31   | 23/10/2007 | 511        | 524   | 524        | 412   | 447        |       |
| H                 | 39   | 31/10/2007 | 1025       | 980   | 1008       | 799   | 925        |       |
|                   | 44   | 5/10/2007  | 340        | 249   | 289        | 137   | 225        |       |
|                   | 55   | 16/10/2007 | 160        | 124   | 166        | 58    | 116        |       |
|                   | 61   | 22/10/2007 | 52         | 37    | 48         | 12    | 32         |       |

Appendix Table C5 Leachate output from Lysimeters-ml

|      |           |            | Total BOD <sub>5</sub> |            |           |       |            |           |           |                                    |       |            |           |           |           |  |
|------|-----------|------------|------------------------|------------|-----------|-------|------------|-----------|-----------|------------------------------------|-------|------------|-----------|-----------|-----------|--|
| Week | Date      |            | Conce                  | entration- | mg/L      |       |            | Sp. Load  | d-mg/K    | Cumulative sp. load-mg/Kg<br>of TS |       |            |           |           |           |  |
|      |           | LC-<br>100 | LC-<br>75              | LC-<br>50  | LC-<br>35 | IS-LC | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35                          | IS-LC | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35 |  |
| 1    | 4/4/2007  | 13650      | 5700                   | 9450       | 10200     | 9300  | 7903       | 2475      | 2736      | 2584                               |       | 7903       | 2475      | 2736      | 2584      |  |
| 2    | 13/4/2007 | 13950      | 12600                  | 12900      | 12750     | 8100  | 10646      | 5139      | 3395      | 4579                               |       | 11005      | 5289      | 3643      | 4914      |  |
| 3    | 20/4/2007 | 16050      | 20100                  | 21750      | 17400     | 8400  | 12460      | 11637     | 7613      | 5190                               |       | 13186      | 12118     | 8201      | 5984      |  |
| 4    | 26/4/2007 | 15000      | 20250                  | 20850      | 16800     | 9900  | 8289       | 8526      | 4938      | 2984                               |       | 12184      | 11917     | 6843      | 5564      |  |
| 5    | 3/5/2007  | 21300      | 20850                  | 19950      | 18900     | 10800 | 12332      | 8779      | 5565      | 2791                               |       | 16423      | 12703     | 8238      | 5768      |  |
| 6    | 9/5/2007  | 13350      | 15450                  | 15300      | 15150     | 7800  | 8256       | 7115      | 4630      | 2416                               |       | 13693      | 11807     | 7828      | 5792      |  |
| 7    | 16/5/2007 | 15000      | 13200                  | 14400      | 10800     | 7800  | 8408       | 5732      | 4093      | 2526                               |       | 14372      | 10830     | 7693      | 6187      |  |
| 8    | 23/5/2007 | 11400      | 11400                  | 12000      | 12000     | 7800  | 6450       | 4800      | 3411      | 2684                               | 79847 | 13203      | 10315     | 7504      | 6818      |  |

Appendix Table C6 Total BOD<sub>5</sub> variation in lysimeter- Run 2 (LR and IS)

|      |           | Soluble BOD <sub>5</sub> |           |           |           |           |            |           |           |          |                                 |            |       |       |       |
|------|-----------|--------------------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|----------|---------------------------------|------------|-------|-------|-------|
| Week | Date      | Concentration- mg/L      |           |           |           |           |            | Sp. L     | .oad-mg/] | Kg of TS | Cumulative sp. load-mg/Kg of TS |            |       |       |       |
|      |           | LC-<br>100               | LC-<br>75 | LC-<br>50 | LC-<br>35 | IS-<br>LC | LC-<br>100 | LC-<br>75 | LC-50     | LC-35    | IS-LC                           | LC-<br>100 | LC-75 | LC-50 | LC-35 |
| 1    | 4/4/2007  | 6600                     | 4200      | 6300      | 6000      | 5700      | 3821       | 1824      | 1824      | 1216     |                                 | 3821       | 1824  | 1824  | 1216  |
| 2    | 13/4/2007 | 9600                     | 10500     | 10200     | 9300      | 6000      | 7326       | 4283      | 2684      | 2447     |                                 | 7500       | 4393  | 2850  | 2605  |
| 3    | 20/4/2007 | 11400                    | 10800     | 10800     | 12000     | 6900      | 8850       | 6253      | 3780      | 3707     |                                 | 9276       | 6639  | 4214  | 4110  |
| 4    | 26/4/2007 | 12000                    | 12000     | 17400     | 13800     | 9900      | 6632       | 5053      | 4121      | 2179     |                                 | 9308       | 7003  | 5209  | 3857  |
| 5    | 3/5/2007  | 16800                    | 16200     | 16500     | 14700     | 9600      | 9726       | 6821      | 4603      | 2708     |                                 | 12561      | 9087  | 6332  | 4677  |
| 6    | 9/5/2007  | 12900                    | 14700     | 15000     | 12900     | 7500      | 7978       | 6770      | 4539      | 2886     |                                 | 11873      | 9632  | 6703  | 5241  |
| 7    | 16/5/2007 | 11400                    | 12600     | 13800     | 6000      | 7200      | 6390       | 5471      | 3922      | 1263     |                                 | 10794      | 8721  | 6480  | 3958  |
| 8    | 23/5/2007 | 9000                     | 11400     | 12000     | 7200      | 6600      | 5092       | 4800      | 3411      | 1611     | 67563                           | 10097      | 8447  | 6441  | 4543  |

Appendix Table C7 Soluble BOD<sub>5</sub> variation in lysimeters- Run 2 (LR and IS)

|      |           |            | Total COD |           |           |       |            |           |           |                                 |        |            |           |           |           |  |
|------|-----------|------------|-----------|-----------|-----------|-------|------------|-----------|-----------|---------------------------------|--------|------------|-----------|-----------|-----------|--|
| Week | Date      |            | Conce     | entration |           |       | Sp. Loa    | d-mg/K    | Lg of TS  | Cumulative sp. load-mg/Kg of TS |        |            |           |           |           |  |
|      |           | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35 | IS-LC | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35                       | IS-LC  | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35 |  |
| 1    | 8/4/2007  | 19200      | 24511     | 24576     | 18432     | 16384 | 11116      | 10643     | 7114      | 3735                            |        | 11116      | 10643     | 7114      | 3735      |  |
| 2    | 18/4/2007 | 22528      | 26624     | 18432     | 24576     | 12288 | 17192      | 10860     | 5928      | 6467                            |        | 17698      | 11505     | 6575      | 6952      |  |
| 3    | 24/4/2007 | 24576      | 20480     | 24576     | 20480     | 14336 | 19079      | 11857     | 8602      | 6327                            |        | 20177      | 13202     | 9841      | 7459      |  |
| 4    | 2/5/2007  | 22528      | 22528     | 30720     | 28672     | 12288 | 12450      | 9485      | 7276      | 4527                            |        | 18398      | 13795     | 10003     | 7836      |  |
| 5    | 6/5/2007  | 26624      | 28672     | 32768     | 26624     | 14336 | 15414      | 12072     | 9141      | 4904                            |        | 21659      | 16975     | 12999     | 8817      |  |
| 6    | 9/5/2007  | 27789      | 30336     | 27808     | 32864     | 20224 | 17186      | 13971     | 8416      | 7351                            |        | 25112      | 19930     | 13137     | 11965     |  |
| 7    | 15/5/2007 | 27104      | 32032     | 32032     | 34496     | 22176 | 15193      | 13909     | 9104      | 7262                            |        | 24216      | 20666     | 14557     | 12741     |  |
| 8    | 23/5/2007 | 27077      | 32032     | 32032     | 34496     | 22176 | 15320      | 13487     | 9104      | 7716                            | 227012 | 25770      | 21256     | 15653     | 14556     |  |

Appendix Table C8 Total COD variation in lysimeters- Run 2 (LR and IS)

|      |           |            | Soluble COD |            |           |       |            |           |           |                                 |        |            |           |           |           |  |
|------|-----------|------------|-------------|------------|-----------|-------|------------|-----------|-----------|---------------------------------|--------|------------|-----------|-----------|-----------|--|
| Week | Date      |            | Conce       | entration- | - mg/L    |       |            | Sp. Loa   | d-mg/K    | Cumulative sp. load-mg/Kg of TS |        |            |           |           |           |  |
|      |           | LC-<br>100 | LC-<br>75   | LC-<br>50  | LC-<br>35 | IS-LC | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35                       | IS-LC  | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35 |  |
| 1    | 8/4/2007  | 13714      | 6816        | 13632      | 9088      | 11360 | 7940       | 2960      | 3946      | 1842                            |        | 7940       | 2960      | 3946      | 1842      |  |
| 2    | 18/4/2007 | 18176      | 20448       | 18176      | 20448     | 11360 | 13871      | 8341      | 4783      | 5381                            |        | 14232      | 8520      | 5142      | 5620      |  |
| 3    | 24/4/2007 | 22720      | 18176       | 22720      | 18176     | 11360 | 17638      | 10523     | 7952      | 5615                            |        | 18477      | 11240     | 8789      | 6393      |  |
| 4    | 2/5/2007  | 21818      | 21760       | 23936      | 26112     | 10880 | 12057      | 9162      | 5669      | 4123                            |        | 17381      | 12510     | 7881      | 6833      |  |
| 5    | 6/5/2007  | 19584      | 19584       | 23936      | 19584     | 13056 | 11338      | 8246      | 6677      | 3608                            |        | 16949      | 12167     | 9771      | 6867      |  |
| 6    | 9/5/2007  | 17408      | 23936       | 21760      | 23936     | 13056 | 10765      | 11023     | 6585      | 5354                            |        | 17613      | 15666     | 10309     | 9129      |  |
| 7    | 15/5/2007 | 22176      | 24640       | 24992      | 20448     | 9088  | 12430      | 10699     | 7103      | 4305                            |        | 19965      | 15971     | 11400     | 8709      |  |
| 8    | 23/5/2007 | 22154      | 24640       | 22176      | 19712     | 12320 | 12534      | 10375     | 6303      | 4409                            | 126118 | 21236      | 16425     | 11454     | 9621      |  |

**Appendix Table C9** Soluble COD variation in lysimeters- Run 2 (LR and IS)

|      |           |            | TKN   |           |         |       |            |          |           |           |                                 |            |       |       |           |
|------|-----------|------------|-------|-----------|---------|-------|------------|----------|-----------|-----------|---------------------------------|------------|-------|-------|-----------|
| Week | Date      |            | Conce | entration | n- mg/L |       |            | Sp. Load | l-mg/K    | g of TS   | Cumulative sp. load-mg/Kg of TS |            |       |       |           |
|      |           | LC-<br>100 | LC-75 | LC-<br>50 | LC-35   | IS-LC | LC-<br>100 | LC-75    | LC-<br>50 | LC-<br>35 | IS-LC                           | LC-<br>100 | LC-75 | LC-50 | LC-<br>35 |
| 1    | 5/4/2007  | 742        | 560   | 798       | 714     | 490   | 430        | 243      | 231       | 145       |                                 | 430        | 243   | 231   | 145       |
| 2    | 8/4/2007  | 882        | 798   | 1218      | 1050    | 574   | 673        | 326      | 321       | 276       |                                 | 693        | 340   | 342   | 295       |
| 3    | 19/4/2007 | 1470       | 980   | 1442      | 1512    | 546   | 1141       | 567      | 505       | 467       |                                 | 1184       | 603   | 558   | 514       |
| 4    | 26/4/2007 | 1204       | 1190  | 1680      | 1316    | 602   | 665        | 501      | 398       | 208       |                                 | 998        | 679   | 538   | 415       |
| 5    | 4/5/2007  | 1484       | 1456  | 1680      | 1400    | 588   | 859        | 613      | 469       | 258       |                                 | 1208       | 822   | 671   | 493       |
| 6    | 14/5/2007 | 1344       | 1484  | 1624      | 1372    | 546   | 831        | 683      | 491       | 307       |                                 | 1274       | 946   | 738   | 579       |
| 7    | 18/5/2007 | 1428       | 1232  | 1484      | 1148    | 560   | 800        | 535      | 422       | 242       |                                 | 1296       | 837   | 711   | 550       |
| 8    | 21/5/2007 | 1372       | 1204  | 1624      | 1288    | 504   | 776        | 507      | 462       | 288       | 5159                            | 1347       | 847   | 802   | 641       |

Appendix Table C10 TKN variation in lysimeters- Run 2 (LR and IS)
|      |           |            |           |            |         |       |            | NH4-     | -N        |           |       |            |                  |       |           |
|------|-----------|------------|-----------|------------|---------|-------|------------|----------|-----------|-----------|-------|------------|------------------|-------|-----------|
| Week | Date      |            | Con       | centration | n- mg/L |       |            | Sp. Load | l-mg/K    | g of TS   |       | Cumu       | lative sp.<br>TS | -     | Kg of     |
|      |           | LC-<br>100 | LC-<br>75 | LC-50      | LC-35   | IS-LC | LC-<br>100 | LC-75    | LC-<br>50 | LC-<br>35 | IS-LC | LC-<br>100 | LC-75            | LC-50 | LC-<br>35 |
| 1    | 5/4/2007  | 487        | 353       | 610        | 532     | 409   | 282        | 153      | 177       | 108       |       | 282        | 153              | 177   | 108       |
| 2    | 19/4/2007 | 742        | 644       | 910        | 721     | 385   | 566        | 263      | 239       | 190       |       | 579        | 272              | 256   | 204       |
| 3    | 19/4/2007 | 658        | 693       | 973        | 763     | 322   | 511        | 401      | 341       | 236       |       | 543        | 427              | 381   | 269       |
| 4    | 26/4/2007 | 840        | 859       | 1223       | 980     | 383   | 464        | 362      | 290       | 155       |       | 626        | 488              | 388   | 269       |
| 5    | 4/5/2007  | 826        | 868       | 1078       | 980     | 462   | 478        | 365      | 301       | 181       |       | 651        | 515              | 445   | 315       |
| 6    | 14/5/2007 | 770        | 840       | 1022       | 966     | 420   | 476        | 387      | 309       | 216       |       | 702        | 568              | 482   | 377       |
| 7    | 18/5/2007 | 714        | 840       | 1022       | 756     | 406   | 400        | 365      | 290       | 159       |       | 656        | 568              | 490   | 345       |
| 8    | 22/5/2007 | 714        | 826       | 1022       | 938     | 420   | 404        | 348      | 290       | 210       | 4299  | 697        | 578              | 525   | 426       |

Appendix Table C11 NH<sub>4</sub>-N variation in lysimeters- Run 2 (LR and IS)

|      |           |            |           |            |           |       |            | TS        |           |           |       |            |                 |           |           |
|------|-----------|------------|-----------|------------|-----------|-------|------------|-----------|-----------|-----------|-------|------------|-----------------|-----------|-----------|
| Week | Date      |            | Conce     | entration- | · mg/L    |       |            | Sp. Load  | d-mg/K    | g of TS   |       | Cumula     | ative sp.<br>TS | -         | /Kg of    |
|      |           | LC-<br>100 | LC-<br>75 | LC-<br>50  | LC-<br>35 | IS-LC | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35 | IS-LC | LC-<br>100 | LC-<br>75       | LC-<br>50 | LC-<br>35 |
| 1    | 5/4/2007  | 13605      | 10445     | 13215      | 13150     | 10425 | 7877       | 4535      | 3825      | 2665      |       | 7877       | 4535            | 3825      | 2665      |
| 2    | 15/4/2007 | 17695      | 16555     | 18035      | 16405     | 9385  | 13504      | 6753      | 4746      | 4317      |       | 13862      | 7028            | 5094      | 4663      |
| 3    | 18/4/2007 | 20705      | 19915     | 23625      | 20895     | 9255  | 16074      | 11530     | 8269      | 6455      |       | 16897      | 12240           | 9091      | 7233      |
| 4    | 24/4/2007 | 21660      | 21430     | 26095      | 22725     | 9025  | 11970      | 9023      | 6180      | 3588      |       | 16880      | 12616           | 8433      | 6587      |
| 5    | 2/5/2007  | 21305      | 22050     | 23980      | 23420     | 9690  | 12334      | 9284      | 6689      | 4314      |       | 17530      | 13441           | 9903      | 7792      |
| 6    | 8/5/2007  | 19825      | 21420     | 21350      | 21945     | 9060  | 12260      | 9864      | 6461      | 4909      |       | 18801      | 14834           | 10306     | 9003      |
| 7    | 15/5/2007 | 18175      | 18820     | 21250      | 18605     | 8140  | 10188      | 8172      | 6039      | 3917      |       | 17511      | 13705           | 10446     | 8588      |
| 8    | 22/5/2007 | 17310      | 19105     | 20545      | 17890     | 7840  | 9794       | 8044      | 5839      | 4002      | 80257 | 18074      | 14171           | 10973     | 9408      |

**Appendix Table C12** TS variation in lysimeters – Run 2 (LR and IS)

|      |           |            |        |           |        |           |            | TDS       |           |           |       |            |                    |           |           |
|------|-----------|------------|--------|-----------|--------|-----------|------------|-----------|-----------|-----------|-------|------------|--------------------|-----------|-----------|
| Week | Date      |            | Conce  | ntration- | mg/L   |           |            | Sp. Loa   | d-mg/K    | g of TS   | 5     | Cumu       | lative sp.<br>of T |           | ng/Kg     |
|      |           | LC-<br>100 | LC-75  | LC-50     | LC-35  | IS-<br>LC | LC-<br>100 | LC-<br>75 | LC-<br>50 | LC-<br>35 | IS-LC | LC-<br>100 | LC-<br>75          | LC-<br>50 | LC-<br>35 |
| 1    | 5/4/2007  | 13,055     | 9,950  | 11,410    | 12,470 | 9,945     | 7558       | 4320      | 3303      | 2527      |       | 7558       | 4320               | 3303      | 2527      |
| 2    | 17/4/2007 | 13,832     | 12,773 | 13,560    | 11,873 | 7,293     | 10556      | 5210      | 3568      | 3125      |       | 10900      | 5472               | 3869      | 3453      |
| 3    | 19/4/2007 | 15,847     | 15,200 | 19,747    | 16,440 | 7,507     | 12302      | 8800      | 6911      | 5079      |       | 13010      | 9398               | 7568      | 5720      |
| 4    | 24/4/2007 | 17507      | 17620  | 21367     | 18760  | 6900      | 9675       | 7419      | 5061      | 2962      |       | 13510      | 10217              | 6913      | 5351      |
| 5    | 2/5/2007  | 16013      | 17147  | 17220     | 17500  | 7160      | 9271       | 7220      | 4803      | 3224      |       | 13336      | 10481              | 7443      | 6007      |
| 6    | 8/5/2007  | 16547      | 18247  | 17320     | 17280  | 7240      | 10233      | 8403      | 5242      | 3865      |       | 15310      | 12296              | 8334      | 7109      |
| 7    | 15/5/2007 | 15447      | 17000  | 17473     | 15540  | 7340      | 8658       | 7382      | 4966      | 3272      |       | 14388      | 11755              | 8515      | 6970      |
| 8    | 22/5/2007 | 14560      | 15893  | 16173     | 13487  | 6107      | 8238       | 6692      | 4597      | 3017      | 62513 | 14781      | 11602              | 8743      | 7329      |

**Appendix Table C13** TDS variation in lysimeters – Run 2 (LR and IS)

|      |           |            |       |            |       |           |            | e l       | SS       |          |       |            |           |                |        |
|------|-----------|------------|-------|------------|-------|-----------|------------|-----------|----------|----------|-------|------------|-----------|----------------|--------|
| Week | Date      |            | Conce | entration- | mg/L  |           |            | Sp. L     | oad-mg/k | Kg of TS |       | Cumu       |           | p. load-<br>TS | -mg/Kg |
|      |           | LC-<br>100 | LC-75 | LC-50      | LC-35 | IS-<br>LC | LC-<br>100 | LC-<br>75 | LC-50    | LC-35    | IS-LC | LC-<br>100 | LC-<br>75 | LC-<br>50      | LC-35  |
| 1    | 5/4/2007  | 655        | 625   | 1165       | 735   | 505       | 379        | 271       | 337      | 149      |       | 379        | 271       | 337            | 149    |
| 2    | 17/4/2007 | 1387       | 833   | 1360       | 1360  | 713       | 1059       | 340       | 358      | 358      |       | 1076       | 356       | 389            | 377    |
| 3    | 19/4/2007 | 1433       | 1227  | 887        | 1253  | 613       | 1113       | 710       | 310      | 387      |       | 1166       | 749       | 377            | 442    |
| 4    | 24/4/2007 | 1167       | 707   | 1100       | 900   | 627       | 645        | 298       | 261      | 142      |       | 981        | 513       | 381            | 330    |
| 5    | 2/5/2007  | 1060       | 780   | 1367       | 1340  | 627       | 614        | 328       | 381      | 247      |       | 966        | 563       | 542            | 454    |
| 6    | 8/5/2007  | 600        | 480   | 760        | 1,100 | 520       | 371        | 221       | 230      | 246      |       | 790        | 484       | 427            | 489    |
| 7    | 15/5/2007 | 813        | 647   | 1,147      | 1,067 | 580       | 456        | 281       | 326      | 225      |       | 899        | 557       | 543            | 496    |
| 8    | 22/5/2007 | 607        | 520   | 1,000      | 1,053 | 433       | 343        | 219       | 284      | 236      | 4436  | 829        | 515       | 540            | 549    |

**Appendix Table C14** SS variation in lysimeters – Run 2 (LR and IS)

|      |           |            |           |            |           |            |           |            | Tot       | al BOI     | $\mathbf{D}_5$ |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|----------------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | l         | Concent    | ration- r | ng/L       |           |            | Sp.       | Load-1     | mg/Kg          | of TS      |           | Cum        | ulative   | e sp. loa<br>TS | ad-mg/    | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | PT-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35      | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | НС-<br>35 | HC-<br>w/p |
| 1    | 27/6/2007 | 75         | 72        | 20400      | 31800     | 12600      | 10800     | 16.4       | 15.6      | 6738       | 2149           | 3706       |           | 16.4       | 15.6      | 6738            | 2149      | 3706       |
| 2    | 2/7/2007  | 69         | 69        | 29400      | 34800     | 18600      | 15000     | 13.2       | 4.0       | 7350       | 1599           | 5224       |           | 14.1       | 13.7      | 8023            | 2072      | 5447       |
| 3    | 5/7/2007  | 54         | 66        | 27600      | 36000     | 18600      | 15000     | 10.3       | 2.5       | 7355       | 2325           | 5060       |           | 12.1       | 13.1      | 8504            | 3362      | 5611       |
| 4    | 9/7/2007  | 36         | 57        | 26400      | 33000     | 16800      | 15000     | 7.1        | 3.0       | 7007       | 2096           | 5114       |           | 9.6        | 14.5      | 8604            | 3717      | 5993       |
| 5    | 16/7/2007 | 27         | 60        | 27600      | 37800     | 22200      | 18000     | 5.2        | 3.3       | 7348       | 2881           | 6627       |           | 8.6        | 16.2      | 9373            | 5037      | 7803       |
| 6    | 23/7/2007 | 24         | 56        | 25800      | 37500     | 21000      | 14400     | 4.9        | 3.2       | 6450       | 2909           | 6393       |           | 9.0        | 17.5      | 8923            | 5678      | 7960       |
| 7    | 31/7/2007 | 21         | 41        | 24000      | 34000     | 21000      | 15000     | 4.6        | 2.6       | 6876       | 2895           | 6701       |           | 9.5        | 18.8      | 9767            | 6272      | 8639       |
| 8    | 6/8/2007  | 17         | 33        | 22200      | 37000     | 18000      | 18000     | 3.3        | 1.8       | 5616       | 2650           | 5199       | 37459     | 8.8        | 19.4      | 8896            | 6578      | 7507       |

**Appendix Table C15** Total BOD<sub>5</sub> variation in lysimeters – Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            | Solu      | ble BO     | $DD_5$    |            |           |            |           |                |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|----------------|-----------|------------|
| Week | Date      |            | (         | Concent    | ration- r | ng/L       |           |            | Sp.       | Load-1     | mg/Kg     | of TS      |           | Cum        | ulative   | e sp. lo<br>TS | ad-mg/    | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | PT-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | PT-<br>100 | РТ-<br>35 | HC-<br>100     | НС-<br>35 | HC-<br>w/p |
| 1    | 27/6/2007 | 66         | 66        | 19800      | 31200     | 12000      | 10500     | 14.5       | 14.3      | 6539       | 2108      | 3529       |           | 14.5       | 14.3      | 6539           | 2108      | 3529       |
| 2    | 2/7/2007  | 57         | 60        | 27000      | 34200     | 18000      | 11700     | 10.9       | 3.4       | 6750       | 1571      | 5056       |           | 11.8       | 12.4      | 7403           | 2035      | 5268       |
| 3    | 5/7/2007  | 45         | 57        | 23400      | 35400     | 18000      | 14400     | 8.6        | 2.1       | 6236       | 2287      | 4897       |           | 10.2       | 11.8      | 7326           | 3305      | 5426       |
| 4    | 9/7/2007  | 27         | 51        | 23400      | 32400     | 16200      | 12600     | 5.3        | 2.7       | 6210       | 2058      | 4931       |           | 7.5        | 13.1      | 7681           | 3650      | 5779       |
| 5    | 16/7/2007 | 21         | 36        | 22200      | 34800     | 18600      | 12600     | 4.0        | 2.0       | 5910       | 2652      | 5553       |           | 6.9        | 13.7      | 7760           | 4770      | 6686       |
| 6    | 23/7/2007 | 15         | 38        | 21000      | 34500     | 19800      | 12600     | 3.1        | 2.1       | 5250       | 2676      | 6027       |           | 6.4        | 14.7      | 7460           | 5358      | 7489       |
| 7    | 31/7/2007 | 14         | 29        | 21600      | 33000     | 20400      | 12600     | 3.0        | 1.8       | 6188       | 2809      | 6510       |           | 6.8        | 15.7      | 8738           | 6051      | 8321       |
| 8    | 6/8/2007  | 8          | 24        | 21600      | 36000     | 17400      | 11400     | 1.5        | 1.3       | 5464       | 2578      | 5026       | 23724     | 5.8        | 16.1      | 8365           | 6355      | 7196       |

Appendix Table C16 Soluble BOD<sub>5</sub> variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            | Г         | Total CC   | )D        |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | С         | oncentr    | ation- m  | ng/L       |           |            | Sp        | . Load-1   | mg/Kg     | of TS      |           | Cur        | nulativ   | ve sp. lo<br>TS | ad-mg/l   | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | HC-<br>35 | HC-<br>w/p |
| 1    | 28/6/2007 | 2816       | 2816      | 50688      | 70400     | 36608      | 30976     | 617        | 611       | 16741      | 4757      | 10767      |           | 617        | 611       | 16741           | 4757      | 10767      |
| 2    | 30/6/2007 | 2816       | 3520      | 53504      | 73216     | 33792      | 30976     | 539        | 202       | 13376      | 3364      | 9492       |           | 575        | 583       | 15047           | 4410      | 10138      |
| 3    | 3/7/2007  | 3529       | 2194      | 54912      | 67584     | 39424      | 28160     | 674        | 82        | 14633      | 4366      | 10726      |           | 745        | 507       | 17172           | 6599      | 11968      |
| 4    | 11/7/2007 | 1646       | 1097      | 53486      | 78171     | 43886      | 24686     | 324        | 58        | 14195      | 4965      | 13359      |           | 441        | 512       | 17625           | 8295      | 15297      |
| 5    | 18/7/2007 | 519        | 1555      | 62208      | 77760     | 42768      | 25920     | 99         | 84        | 16561      | 5927      | 12768      |           | 258        | 566       | 20858           | 10524     | 15480      |
| 6    | 24/7/2007 | 1038       | 2074      | 62208      | 77760     | 38880      | 20736     | 214        | 118       | 15552      | 6032      | 11836      |           | 385        | 636       | 20858           | 11890     | 15303      |
| 7    | 1/8/2007  | 2021       | 2022      | 50560      | 75840     | 34128      | 25280     | 447        | 129       | 14485      | 6457      | 10891      |           | 654        | 717       | 20799           | 13576     | 15044      |
| 8    | 7/8/2007  | 1516       | 2022      | 45504      | 75840     | 34128      | 25280     | 302        | 110       | 11511      | 5432      | 9857       | 52610     | 577        | 767       | 18645           | 13781     | 14613      |

Appendix Table C17 Total COD variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            | Sc        | luble C    | OD        |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | С         | oncentr    | ation- m  | ng/L       |           |            | Sp        | . Load-1   | ng/Kg     | of TS      |           | Cur        | nulativ   | ve sp. lo<br>TS | ad-mg/l   | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | НС-<br>35 | HC-<br>w/p |
| 1    | 28/6/2007 | 2816       | 2112      | 45056      | 67584     | 33792      | 22528     | 617        | 458       | 14881      | 4566      | 9939       |           | 617        | 458       | 14881           | 4566      | 9939       |
| 2    | 30/6/2007 | 2816       | 2112      | 45056      | 64768     | 33792      | 22528     | 539        | 121       | 11264      | 2976      | 9492       |           | 575        | 407       | 12750           | 3980      | 10088      |
| 3    | 3/7/2007  | 2824       | 1408      | 42240      | 63360     | 36608      | 22528     | 539        | 52        | 11256      | 4093      | 9960       |           | 611        | 365       | 13473           | 6148      | 11152      |
| 4    | 11/7/2007 | 1097       | 549       | 49371      | 74057     | 38400      | 21943     | 216        | 29        | 13103      | 4704      | 11689      |           | 324        | 359       | 16005           | 7786      | 13528      |
| 5    | 18/7/2007 | 519        | 1037      | 46656      | 72576     | 38880      | 23328     | 99         | 56        | 12421      | 5531      | 11607      |           | 235        | 401       | 16122           | 9815      | 14123      |
| 6    | 24/7/2007 | 519        | 1037      | 41472      | 72576     | 31104      | 18144     | 107        | 59        | 10368      | 5630      | 9468       |           | 255        | 428       | 14826           | 11090     | 12671      |
| 7    | 1/8/2007  | 1011       | 1517      | 40448      | 65728     | 30336      | 20224     | 224        | 97        | 11588      | 5596      | 9681       |           | 389        | 501       | 16719           | 12233     | 13432      |
| 8    | 7/8/2007  | 1011       | 1517      | 40448      | 70784     | 30336      | 22752     | 201        | 82        | 10232      | 5070      | 8762       | 47349     | 401        | 538       | 16019           | 12773     | 13048      |

Appendix Table C18 Soluble COD variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            |           | TKN        |           |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | С         | oncentr    | ation- n  | ng/L       |           |            | Sp. I     | Load-m     | g/Kg o    | f TS       |           | Cum        | ulative   | e sp. loa<br>TS | ad-mg/    | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | PT-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | НС-<br>35 | HC-<br>w/p |
| 1    | 26/6/2007 | 252        | 196       | 4060       | 4032      | 1960       | 1512      | 55.2       | 42.5      | 1341       | 272       | 576        |           | 55         | 43        | 1341            | 272       | 576        |
| 2    | 29/6/2007 | 289        | 271       | 3584       | 3696      | 2464       | 1736      | 55.4       | 15.5      | 896        | 170       | 692        |           | 59         | 42        | 1030            | 230       | 727        |
| 3    | 4/7/2007  | 373        | 401       | 4032       | 3920      | 2464       | 1456      | 71.3       | 14.9      | 1074       | 253       | 670        |           | 78         | 45        | 1266            | 373       | 748        |
| 4    | 10/7/2007 | 416        | 400       | 3696       | 4480      | 2464       | 1400      | 81.9       | 21.3      | 981        | 285       | 750        |           | 94         | 56        | 1238            | 468       | 872        |
| 5    | 20/7/2007 | 456        | 432       | 2800       | 4144      | 2464       | 1400      | 87.3       | 23.4      | 745        | 316       | 736        |           | 110        | 69        | 1063            | 572       | 901        |
| 6    | 24/7/2007 | 456        | 544       | 1568       | 3024      | 2016       | 1428      | 93.8       | 31.0      | 392        | 235       | 614        |           | 127        | 86        | 755             | 558       | 822        |
| 7    | 2/8/2007  | 456        | 536       | 1792       | 2800      | 1568       | 1120      | 100.9      | 34.2      | 513        | 238       | 500        |           | 149        | 108       | 902             | 611       | 744        |
| 8    | 7/8/2007  | 40         | 488       | 1792       | 2688      | 1512       | 1120      | 8.0        | 26.5      | 453        | 193       | 437        | 2331      | 72         | 119       | 871             | 610       | 708        |

Appendix Table C19 TKN variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            | N         | IH <sub>4</sub> -N |           |            |           |            |           |                   |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|--------------------|-----------|------------|-----------|------------|-----------|-------------------|-----------|------------|
| Week | Date      |            | (         | Concenti   | ration- m | g/L        |           |            | Sp. ]     | Load-n             | ng/Kg d   | of TS      |           | Cun        | nulativ   | ve sp. 1<br>of TS |           | g/Kg       |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100         | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100        | НС-<br>35 | HC-<br>w/p |
| 1    | 26/6/2007 | 56         | 70        | 2086       | 2450      | 1274       | 924       | 12.3       | 15.2      | 689                | 166       | 375        |           | 12         | 15        | 689               | 166       | 375        |
| 2    | 29/6/2007 | 162        | 157       | 1792       | 2240      | 1400       | 980       | 31.1       | 9.0       | 448                | 103       | 393        |           | 32         | 18        | 517               | 139       | 416        |
| 3    | 4/7/2007  | 174        | 207       | 2184       | 2576      | 1848       | 980       | 33.1       | 7.7       | 582                | 166       | 503        |           | 36         | 19        | 680               | 239       | 550        |
| 4    | 10/7/2007 | 185        | 280       | 2072       | 2576      | 1568       | 980       | 36.4       | 14.9      | 550                | 164       | 477        |           | 41         | 29        | 683               | 278       | 557        |
| 5    | 20/7/2007 | 174        | 308       | 1792       | 2296      | 1400       | 994       | 33.2       | 16.7      | 477                | 175       | 418        |           | 43         | 38        | 644               | 331       | 525        |
| 6    | 24/7/2007 | 179        | 364       | 1512       | 2296      | 1400       | 1008      | 36.9       | 20.8      | 378                | 178       | 426        |           | 51         | 49        | 574               | 372       | 558        |
| 7    | 2/8/2007  | 73         | 403       | 1680       | 2352      | 1316       | 1106      | 16.1       | 25.7      | 481                | 200       | 420        |           | 36         | 67        | 702               | 431       | 577        |
| 8    | 7/8/2007  | 22         | 420       | 1736       | 2520      | 1372       | 1106      | 4.5        | 22.8      | 439                | 180       | 396        | 2302      | 27         | 77        | 687               | 449       | 576        |

Appendix Table C20 NH<sub>4</sub>-N variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            |           | TS         |           |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | С         | oncentr    | ation- m  | ng/L       |           |            | Sp.       | Load-n     | ng/Kg (   | of TS      |           | Cun        | nulativ   | e sp. loa<br>TS | ıd-mg/l   | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | PT-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | HC-<br>35 | HC-<br>w/p |
| 1    | 25/6/2007 | 7510       | 7180      | 44875      | 54345     | 27830      | 20220     | 1646       | 1558      | 14821      | 3672      | 8185       |           | 1646       | 1558      | 14821           | 3672      | 8185       |
| 2    | 28/6/2007 | 7750       | 6955      | 36540      | 54785     | 28435      | 18650     | 1484       | 400       | 9135       | 2517      | 7987       |           | 1580       | 1370      | 10615           | 3325      | 8478       |
| 3    | 3/7/2007  | 6605       | 6880      | 37205      | 54705     | 29940      | 18875     | 1261       | 256       | 9915       | 3534      | 8145       |           | 1455       | 1315      | 11987           | 5230      | 9138       |
| 4    | 10/7/2007 | 6326       | 6755      | 33410      | 48300     | 28435      | 18905     | 1245       | 359       | 8867       | 3068      | 8656       |           | 1524       | 1506      | 11543           | 5651      | 10177      |
| 5    | 17/7/2007 | 5810       | 6815      | 32980      | 51845     | 27885      | 18285     | 1113       | 370       | 8780       | 3951      | 8324       |           | 1553       | 1689      | 11997           | 7318      | 10348      |
| 6    | 24/7/2007 | 5715       | 6675      | 30880      | 49940     | 25715      | 18300     | 1176       | 381       | 7720       | 3874      | 7828       |           | 1752       | 1859      | 11472           | 8081      | 10343      |
| 7    | 1/8/2007  | 5725       | 6995      | 31865      | 50545     | 28495      | 20065     | 1267       | 446       | 9129       | 4303      | 9093       |           | 2038       | 2152      | 13382           | 9320      | 12062      |
| 8    | 6/8/2007  | 5355       | 6365      | 29400      | 49265     | 26660      | 18450     | 1065       | 345       | 7437       | 3528      | 7700       | 38396     | 2031       | 2289      | 12207           | 9365      | 11172      |

Appendix Table C21 TS variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            | 1         | TDS        |           |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | C         | Concentra  | ation- m  | g/L        |           |            | Sp.       | Load-m     | ng/Kg (   | of TS      |           | Cun        | nulativ   | e sp. loa<br>TS | ad-mg/    | Kg of      |
|      |           | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | НС-<br>35 | HC-<br>w/p |
| 1    | 26/6/2007 | 6,587      | 6,440     | 32,560     | 38,500    | 25,107     | 18627     | 1443       | 1398      | 10754      | 2601      | 7384       |           | 1443       | 1398      | 10754           | 2601      | 7384       |
| 2    | 27/6/2007 | 6,233      | 5,880     | 32,793     | 40,360    | 26,387     | 16633     | 1194       | 338       | 8198       | 1854      | 7412       |           | 1278       | 1208      | 9272            | 2427      | 7855       |
| 3    | 2/7/2007  | 5,527      | 5,907     | 31,793     | 40,030    | 25,740     | 16373     | 1055       | 220       | 8472       | 2586      | 7003       |           | 1218       | 1165      | 10078           | 3813      | 7912       |
| 4    | 9/7/2007  | 5547       | 6320      | 27540      | 40420     | 24733      | 16793     | 1092       | 336       | 7309       | 2567      | 7529       |           | 1326       | 1357      | 9430            | 4443      | 8892       |
| 5    | 16/7/2007 | 5607       | 6700      | 34080      | 52007     | 29369      | 18867     | 1074       | 364       | 9073       | 3964      | 8768       |           | 1449       | 1545      | 11640           | 6495      | 10567      |
| 6    | 23/7/2007 | 4733       | 5473      | 30113      | 45133     | 24620      | 17280     | 974        | 312       | 7528       | 3501      | 7495       |           | 1481       | 1651      | 10649           | 6876      | 9812       |
| 7    | 31/7/2007 | 5433       | 6373      | 28780      | 40353     | 24740      | 16773     | 1202       | 407       | 8245       | 3435      | 7895       |           | 1870       | 1932      | 11854           | 7542      | 10647      |
| 8    | 7/8/2007  | 5547       | 6453      | 29447      | 41050     | 24233      | 18027     | 1103       | 350       | 7449       | 2940      | 6999       | 37515     | 1957       | 2092      | 11524           | 7701      | 10188      |

Appendix Table C22 TDS variation in lysimeters– Run 3 (LR and IS)

|      |           |            |           |            |           |            |           |            |           | SS         |           |            |           |            |           |                 |           |            |
|------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------------|-----------|------------|
| Week | Date      |            | Co        | oncentra   | ation- n  | ng/L       |           |            | Sp.       | Load-n     | ng/Kg (   | of TS      |           | Cum        | ulative   | e sp. loa<br>TS | ad-mg/    | Kg of      |
|      |           | PT-<br>100 | РТ-<br>35 | HC-<br>100 | HC-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100 | НС-<br>35 | HC-<br>w/p | IS-<br>HC | РТ-<br>100 | РТ-<br>35 | HC-<br>100      | НС-<br>35 | HC-<br>w/p |
| 1    | 26/6/2007 | 607        | 427       | 3230       | 4350      | 1540       | 1673      | 133        | 93        | 1067       | 294       | 453        |           | 133        | 93        | 1067            | 294       | 453        |
| 2    | 27/6/2007 | 273        | 160       | 1587       | 2660      | 900        | 1207      | 52         | 9         | 397        | 122       | 253        |           | 60         | 67        | 503             | 187       | 280        |
| 3    | 2/7/2007  | 300        | 407       | 960        | 2730      | 940        | 707       | 57         | 15        | 256        | 176       | 256        |           | 68         | 75        | 388             | 284       | 299        |
| 4    | 9/7/2007  | 247        | 267       | 1093       | 1807      | 800        | 533       | 49         | 14        | 290        | 115       | 244        |           | 64         | 79        | 438             | 267       | 303        |
| 5    | 16/7/2007 | 273        | 247       | 1107       | 1947      | 660        | 487       | 52         | 13        | 295        | 148       | 197        |           | 74         | 85        | 460             | 330       | 271        |
| 6    | 23/7/2007 | 187        | 260       | 1173       | 2167      | 800        | 653       | 38         | 15        | 293        | 168       | 244        |           | 66         | 92        | 477             | 381       | 329        |
| 7    | 31/7/2007 | 207        | 293       | 947        | 1813      | 700        | 540       | 46         | 19        | 271        | 154       | 223        |           | 80         | 105       | 474             | 402       | 323        |
| 8    | 7/8/2007  | 187        | 213       | 913        | 2200      | 907        | 607       | 37         | 12        | 231        | 158       | 262        | 1263      | 78         | 108       | 449             | 435       | 374        |

Appendix Table C23 SS variation in lysimeters– Run 3 (LR and IS)

|     |            |       |          |            |     |    |      | Т       | otal BO    | D <sub>5</sub> |      |       |            |            |         |      |
|-----|------------|-------|----------|------------|-----|----|------|---------|------------|----------------|------|-------|------------|------------|---------|------|
| Day | Date       |       | Concenti | ration- m  | g/L |    | 5    | Sp. Loa | d-mg/K     | g of TS        |      | Cumu  | ılative sp | . load-mg  | g/Kg of | TS   |
|     |            | LC    | НС       | HC-<br>w/p | PT  | OW | LC   | НС      | HC-<br>w/p | РТ             | OW   | LC    | НС         | HC-<br>w/p | РТ      | OW   |
| 4   | 26/9/2007  | 12600 | 22800    | 18600      | 14  | 32 | 1180 | 930     | 1214       | 0.29           | 1.63 | 1180  | 930        | 1214       | 0.29    | 1.63 |
| 7   | 1/10/2007  | 11100 | 18000    | 19800      | 6   | 19 | 2968 | 2379    | 3110       | 0.53           | 2.22 | 4148  | 3309       | 4324       | 0.82    | 3.84 |
| 12  | 5/10/2007  | 5000  | 12000    | 13500      | 8   | 9  | 2471 | 3055    | 3792       | 1.18           | 1.92 | 6619  | 6365       | 8116       | 1.99    | 5.77 |
| 19  | 11/10/2007 | 7200  | 19000    | 17000      | 8   | 10 | 1080 | 1232    | 1325       | 0.20           | 0.59 | 7699  | 7597       | 9441       | 2.19    | 6.36 |
| 25  | 17/10/2007 | 4000  | 11000    | 10000      | 7   | 6  | 1347 | 2016    | 1965       | 0.69           | 0.85 | 9047  | 9613       | 11406      | 2.88    | 7.21 |
| 31  | 23/10/2007 | 1800  | 4500     | 3900       | 1   | 2  | 484  | 637     | 601        | 0.09           | 0.16 | 9531  | 10250      | 12007      | 2.97    | 7.37 |
| 39  | 31/10/2007 | 1800  | 6750     | 5775       | 2   | 2  | 971  | 1788    | 1712       | 0.33           | 0.50 | 10502 | 12038      | 13719      | 3.31    | 7.87 |
| 44  | 5/11/2007  | 2200  | 9750     | 6300       |     |    | 394  | 656     | 536        |                |      | 10895 | 12694      | 14255      | 3.31    | 7.87 |
| 55  | 16/11/2007 | 1800  | 8700     | 5850       | 1   | 0  | 152  | 292     | 286        | 0.01           | 0.00 | 11047 | 12986      | 14540      | 3.32    | 7.87 |
| 61  | 24/11/2007 | 2250  | 12000    | 8250       |     |    | 62   | 120     | 116        |                |      | 11109 | 13106      | 14657      | 3.32    | 7.87 |

Appendix Table C24 Total BOD<sub>5</sub> variation in lysimeters– Run 1 (St)

|     |            |       |         |            |     |     |      | Sol     | uble BC    | $DD_5$  |      |      |            |            |        |      |
|-----|------------|-------|---------|------------|-----|-----|------|---------|------------|---------|------|------|------------|------------|--------|------|
| Day | Date       |       | Concent | ration- m  | g/L |     | 5    | Sp. Loa | d-mg/K     | g of TS |      | Cum  | ulative sp | p. load-m  | g/Kg o | f TS |
|     |            | LC    | НС      | HC-<br>w/p | РТ  | OW  | LC   | НС      | HC-<br>w/p | РТ      | OW   | LC   | НС         | HC-<br>w/p | РТ     | OW   |
| 4   | 26/9/2007  | 10800 | 21000   | 16200      | 14  | 23  | 1012 | 857     | 1058       | 0.27    | 1.15 | 1012 | 857        | 1058       | 0.27   | 1.15 |
| 7   | 1/10/2007  | 8700  | 16800   | 16800      | 5   | 11  | 2326 | 2220    | 2639       | 0.43    | 1.25 | 3338 | 3077       | 3696       | 0.70   | 2.39 |
| 12  | 5/10/2007  | 4800  | 10000   | 11000      | 4.2 | 7.8 | 2372 | 2546    | 3090       | 0.63    | 1.67 | 5710 | 5623       | 6786       | 1.33   | 4.06 |
| 19  | 11/10/2007 | 7000  | 16500   | 16000      | 6.6 | 7.2 | 1050 | 1070    | 1247       | 0.17    | 0.42 | 6760 | 6694       | 8033       | 1.50   | 4.48 |
| 25  | 17/10/2007 | 3400  | 7500    | 8000       | 4.5 | 3.3 | 1145 | 1374    | 1572       | 0.47    | 0.49 | 7905 | 8068       | 9605       | 1.98   | 4.97 |
| 31  | 23/10/2007 | 1400  | 3900    | 3300       | 0.9 | 0.3 | 377  | 552     | 509        | 0.07    | 0.03 | 8282 | 8620       | 10113      | 2.05   | 5.00 |
| 39  | 31/10/2007 | 1450  | 6300    | 3975       | 1.2 | 1.8 | 782  | 1669    | 1178       | 0.17    | 0.41 | 9064 | 10289      | 11292      | 2.22   | 5.41 |
| 44  | 5/11/2007  | 1800  | 6000    | 5600       |     |     | 322  | 404     | 476        |         |      | 9386 | 10693      | 11768      | 2.22   | 5.41 |
| 55  | 16/11/2007 | 1500  | 6600    | 4950       |     |     | 126  | 221     | 242        |         |      | 9513 | 10914      | 12010      | 2.22   | 5.41 |
| 61  | 24/11/2007 | 1950  | 11000   | 8250       |     |     | 53   | 110     | 116        |         |      | 9566 | 11024      | 12126      | 2.22   | 5.41 |

Appendix Table C25 Soluble BOD<sub>5</sub> variation in lysimeters– Run 1 (St)

|     | _          |       |        |             |     |     |      | То       | tal COD    |       |    |       |             |              |         |     |
|-----|------------|-------|--------|-------------|-----|-----|------|----------|------------|-------|----|-------|-------------|--------------|---------|-----|
| Day | Date       |       | Concer | tration- mg | /L  |     |      | Sp. Load | l-mg/Kg    | of TS |    | Cu    | mulative sp | o. load-mg/F | Kg of T | S   |
| -   | -          | LC    | НС     | HC-w/p      | РТ  | OW  | LC   | НС       | HC-<br>w/p | РТ    | OW | LC    | НС          | HC-w/p       | РТ      | OW  |
| 1   | 24/9/2007  | 19200 | 32000  | 28800       | 480 | 480 | 1051 | 2612     | 2033       | 20    | 8  | 1051  | 2612        | 2033         | 20      | 8   |
| 2   | 24/9/2007  | 19200 | 51200  | 43200       | 320 | 640 | 303  | 720      | 1271       | 52    | 4  | 1354  | 3331        | 3304         | 73      | 12  |
| 3   | 28/9/2007  | 22400 | 44800  | 24000       | 320 | 800 | 1049 | 993      | 1489       | 5     | 13 | 2403  | 4324        | 4793         | 78      | 25  |
| 4   | 28/9/2007  | 22400 | 38400  | 48000       | 480 | 160 | 2099 | 1567     | 3134       | 10    | 8  | 4502  | 5891        | 7927         | 88      | 33  |
| 5   | 28/9/2007  | 16000 | 57600  | 48000       | 480 | 480 | 707  | 1681     | 2781       | 10    | 5  | 5209  | 7573        | 10708        | 97      | 37  |
| 6   | 28/9/2007  | 22400 | 32000  | 48000       | 160 | 640 | 5187 | 3338     | 7087       | 9     | 55 | 10397 | 10911       | 17795        | 106     | 92  |
| 7   | 3/10/2007  | 22400 | 38400  | 38400       | 240 | 480 | 5989 | 5075     | 6031       | 21    | 55 | 16386 | 15986       | 23826        | 127     | 14  |
| 8   | 3/10/2007  | 22400 | 38400  | 38400       | 160 | 480 | 1096 | 996      | 1457       | 4     | 6  | 17482 | 16982       | 25283        | 131     | 15. |
| 9   | 3/10/2007  | 19200 | 38400  | 33600       | 400 | 400 | 4861 | 5635     | 5020       | 27    | 37 | 22343 | 22618       | 30304        | 158     | 19  |
| 10  | 3/10/2007  | 22400 | 38400  | 33600       | 240 | 480 | 3183 | 2646     | 2797       | 10    | 24 | 25526 | 25264       | 33100        | 168     | 21  |
| 11  | 3/10/2007  | 22400 | 32000  | 33600       | 240 | 480 | 1238 | 1211     | 1482       | 6     | 8  | 26764 | 26475       | 34583        | 174     | 22  |
| 12  | 10/10/2007 | 8727  | 29120  | 30576       | 146 | 131 | 4313 | 7414     | 8588       | 22    | 28 | 31077 | 33889       | 43171        | 196     | 25  |
| 13  | 10/10/2007 | 8736  | 29120  | 21840       | 146 | 175 | 2694 | 4549     | 4040       | 15    | 24 | 33771 | 38438       | 47211        | 211     | 27  |
| 14  | 10/10/2007 | 5824  | 29120  | 21840       | 218 | 131 | 1962 | 5179     | 4400       | 25    | 19 | 35733 | 43617       | 51611        | 235     | 29: |
| 15  | 10/10/2007 | 14560 | 40768  | 17472       | 146 | 175 | 1257 | 1653     | 1028       | 5     | 5  | 36990 | 45269       | 52639        | 240     | 30  |
| 16  | 10/10/2007 | 5824  | 34944  | 26208       | 218 | 131 | 343  | 1332     | 956        | 5     | 2  | 37333 | 46601       | 53595        | 245     | 30  |

Appendix Table C26 Total COD variation in lysimeters– Run 1 (St)

|     |            |       |        |             |     |     |      | Tot      | al COD     |       |    |       |             |              |         |     |
|-----|------------|-------|--------|-------------|-----|-----|------|----------|------------|-------|----|-------|-------------|--------------|---------|-----|
| Day | Date       |       | Concen | tration- mg | /L  |     |      | Sp. Load | -mg/Kg c   | of TS |    | Cur   | nulative sp | o. load-mg/l | Kg of T | S   |
|     |            | LC    | НС     | HC-w/p      | РТ  | OW  | LC   | НС       | HC-<br>w/p | РТ    | OW | LC    | НС          | HC-w/p       | РТ      | OW  |
| 17  | 10/10/2007 | 8736  | 40768  | 26208       | 73  | 175 | 446  | 1025     | 162        | 1     | 2  | 37779 | 47626       | 53757        | 247     | 304 |
| 18  | 10/10/2007 | 8736  | 34944  | 26208       | 218 | 175 | 639  | 973      | 1742       | 3     | 3  | 38418 | 48599       | 55499        | 249     | 307 |
| 19  | 15/10/2007 | 18353 | 50688  | 42240       | 338 | 253 | 2753 | 3288     | 3292       | 9     | 15 | 41171 | 51886       | 58791        | 258     | 322 |
| 20  | 15/10/2007 | 16896 | 50688  | 33792       | 338 | 338 | 1334 | 1904     | 1759       | 8     | 10 | 42505 | 53791       | 60550        | 266     | 331 |
| 21  | 15/10/2007 | 8448  | 56320  | 25344       | 338 | 296 | 3023 | 10549    | 5203       | 36    | 44 | 45529 | 64339       | 65753        | 302     | 375 |
| 22  | 16/10/2007 | 7273  | 23296  | 21840       | 116 | 131 | 1106 | 1517     | 1933       | 5     | 8  | 46635 | 65857       | 67687        | 307     | 383 |
| 23  | 16/10/2007 | 8736  | 23296  | 17472       | 116 | 131 | 607  | 819      | 822        | 4     | 3  | 47242 | 66675       | 68509        | 310     | 386 |
| 24  | 16/10/2007 | 8736  | 23296  | 17472       | 58  | 131 | 1113 | 1240     | 1336       | 2     | 6  | 48354 | 67916       | 69845        | 312     | 392 |
| 25  | 19/10/2007 | 4966  | 19776  | 19776       | 132 | 49  | 1673 | 3624     | 3885       | 14    | 7  | 50027 | 71539       | 73730        | 326     | 399 |
| 26  | 19/10/2007 | 6592  | 19776  | 9888        | 132 | 99  | 725  | 882      | 614        | 5     | 4  | 50752 | 72421       | 74344        | 330     | 403 |
| 27  | 22/10/2007 | 3200  | 32000  | 24000       | 96  | 96  | 805  | 4394     | 3388       | 7     | 10 | 51557 | 76815       | 77732        | 337     | 413 |
| 28  | 22/10/2007 | 3200  | 32000  | 19200       | 144 | 48  | 216  | 891      | 751        | 4     | 1  | 51773 | 77706       | 78483        | 341     | 414 |
| 29  | 22/10/2007 | 11200 | 19200  | 19200       | 48  | 96  | 1008 | 893      | 1028       | 1     | 3  | 52781 | 78598       | 79511        | 342     | 417 |
| 30  | 22/10/2007 | 4800  | 25600  | 14400       | 96  | 96  | 884  | 2297     | 1423       | 4     | 7  | 53665 | 80895       | 80934        | 346     | 424 |
| 31  | 25/10/2007 | 4800  | 12800  | 19200       | 240 | 144 | 1291 | 1813     | 2959       | 18    | 16 | 54956 | 82708       | 83893        | 364     | 440 |

Appendix Table C26 Total COD variation in lysimeters- Run 1 (St) (Continued)

|          |                          |              |               |               |            |            |            | То         | tal COD     |         |        |                |                |                |            |          |
|----------|--------------------------|--------------|---------------|---------------|------------|------------|------------|------------|-------------|---------|--------|----------------|----------------|----------------|------------|----------|
| Day      | Date                     |              | Concen        | tration- mg   | /L         |            | S          | p. Load    | -mg/Kg      | g of TS | 5      | Cumu           | lative sp      | . load-mg      | /Kg of     | f TS     |
|          |                          | LC           | НС            | HC-w/p        | РТ         | OW         | LC         | НС         | HC-<br>w/p  | РТ      | OW     | LC             | НС             | HC-w/p         | PT         | OW       |
| 32       | 25/10/2007               | 8000         | 32000         | 4800          | 288        | 144        | 998        | 1842       | 333         | 9       | 7      | 55954          | 84550          | 84226          | 373        | 44       |
| 33       | 25/10/2007               | 9600         | 38400         | 28800         | 288        | 144        | 803        | 2034       | 1711        | 8       | 4      | 56757          | 86584          | 85938          | 381        | 45       |
| 34       | 30/10/2007               | 1455         | 17472         | 4368          | 87         | 87         | 74         | 656        | 113         | 1       | 1      | 56831          | 87241          | 86051          | 383        | 45       |
| 35       | 30/10/2007               | 1456         | 11648         | 13104         | 44         | 44         | 31         | 186        | 243         | 0       | 0      | 56862          | 87426          | 86293          | 383        | 45       |
| 36       | 30/10/2007               | 4368         | 5824          | 4368          | 131        | 44         | 290        | 145        | 108         | 1       | 0      | 57152          | 87571          | 86401          | 384        | 45       |
| 37       | 30/10/2007               | 2912         | 5824          | 13104         | 175        | 44         | 238        | 271        | 586         | 2       | 1      | 57389          | 87842          | 86987          | 386        | 45       |
| 38       | 30/10/2007               | 5824         | 11648         | 13104         | 87         | 87         | 319        | 293        | 366         | 1       | 1      | 57708          | 88135          | 87353          | 387        | 45       |
| 39       | 7/11/2007                | 3200         | 14400         | 6400          | 176        | 112        | 1726       | 3814       | 1897        | 26      | 25     | 59434          | 91949          | 89251          | 413        | 47       |
| 40       | 7/11/2007                | 1600         | 9600          | 3200          | 208        | 144        | 88         | 125        | 102         | 4       | 3      | 59522          | 92073          | 89352          | 417        | 48       |
| 41       | 7/11/2007                | 6400         | 14400         | 25600         | 208        | 112        | 357        | 362        | 700         | 3       | 2      | 59879          | 92435          | 90053          | 420        | 48       |
| 42       | 7/11/2007                | 16000        | 24000         | 12800         | 208        | 128        | 800        | 798        | 418         | 2       | 2      | 60679          | 93233          | 90470          | 422        | 48       |
| 43       | 7/11/2007                | 16000        | 19200         | 22400         | 176        | 96         | 682        | 540        | 501         | 2       | 1      | 61361          | 93773          | 90971          | 424        | 48       |
| 44       | 10/11/2007               | 6194         | 13968         | 12416         | 155        | 109        | 1108       | 940        | 1055        | 4       | 6      | 62469          | 94713          | 92026          | 428        | 49       |
| 45<br>46 | 10/11/2007<br>10/11/2007 | 4656<br>1552 | 9312<br>18624 | 12416<br>9312 | 155<br>124 | 109<br>109 | 980<br>132 | 881<br>820 | 1479<br>375 | 8       | 9<br>3 | 63450<br>63581 | 95594<br>96414 | 93505<br>93881 | 436<br>439 | 50<br>50 |

Appendix Table C26 Total COD variation in lysimeters- Run 1 (St) (Continued)

|     | _          |      |       |              |     |     |     | ,       | Fotal CC   | D      |    |       |             |          |         |     |
|-----|------------|------|-------|--------------|-----|-----|-----|---------|------------|--------|----|-------|-------------|----------|---------|-----|
| Day | Date       |      | Conce | ntration- mg | J/L |     | Sj  | p. Loac | l-mg/K     | g of [ | ГS | Cum   | ulative sp. | load-mg/ | Kg of ' | ГS  |
|     |            | LC   | НС    | HC-w/p       | РТ  | OW  | LC  | НС      | HC-<br>w/p | PT     | OW | LC    | НС          | HC-w/p   | РТ      | OW  |
| 47  | 10/11/2007 | 3104 | 9312  | 15520        | 124 | 78  | 261 | 357     | 634        | 2      | 2  | 63843 | 96771       | 94515    | 441     | 507 |
| 48  | 10/11/2007 | 3104 | 9312  | 9312         | 217 | 78  | 234 | 322     | 359        | 3      | 2  | 64076 | 97094       | 94874    | 445     | 509 |
| 49  | 13/11/2007 | 1500 | 13536 | 12032        | 241 | 90  | 118 | 541     | 428        | 4      | 2  | 64195 | 97635       | 95302    | 448     | 510 |
| 50  | 13/11/2007 | 1504 | 18048 | 9024         | 211 | 75  | 71  | 468     | 220        | 2      | 1  | 64266 | 98103       | 95522    | 450     | 511 |
| 51  | 13/11/2007 | 3310 | 16480 | 14832        | 180 | 135 | 94  | 258     | 244        | 1      | 1  | 64360 | 98362       | 95767    | 452     | 513 |
| 52  | 15/11/2007 | 3310 | 13184 | 12360        | 231 | 99  | 94  | 228     | 211        | 1      | 1  | 64454 | 98590       | 95978    | 452     | 513 |
| 53  | 15/11/2007 | 3296 | 16480 | 12360        | 198 | 115 | 137 | 218     | 153        | 1      | 1  | 64591 | 98808       | 96130    | 453     | 514 |
| 54  | 15/11/2007 | 3296 | 16480 | 12360        | 165 | 115 | 156 | 361     | 287        | 1      | 1  | 64747 | 99169       | 96417    | 454     | 515 |
| 55  | 24/11/2007 | 4138 | 19776 | 12360        | 264 | 132 | 348 | 663     | 603        | 3      | 4  | 65096 | 99831       | 97021    | 457     | 518 |
| 56  | 24/11/2007 | 2472 | 9888  | 9888         | 165 | 115 | 232 | 524     | 497        | 2      | 4  | 65327 | 100355      | 97518    | 460     | 522 |
| 57  | 27/11/2007 | 2400 | 16000 | 9600         | 160 | 96  | 105 | 432     | 291        | 2      | 2  | 65432 | 100788      | 97809    | 462     | 524 |
| 58  | 27/11/2007 | 5600 | 12800 | 9600         | 160 |     | 115 | 149     | 161        | 1      | 0  | 65547 | 100936      | 97970    | 463     | 524 |
| 59  | 27/11/2007 | 3200 | 16000 | 7200         |     | 112 | 93  | 156     | 89         | 0      | 1  | 65640 | 101092      | 98059    | 463     | 525 |
| 60  | 30/11/2007 | 3750 | 18048 | 9024         | 120 |     | 75  | 83      | 8          | 0      | 0  | 65715 | 101175      | 98067    | 463     | 525 |
| 61  | 30/11/2007 | 4512 | 15040 | 15792        | 180 | 120 | 123 | 150     | 223        | 0      | 1  | 65838 | 101325      | 98290    | 464     | 526 |

Appendix Table C26 Total COD variation in lysimeters- Run 1 (St) (Continued)

|     |            |       |         |            |      |     |      |        | Soluble    | COD      |       |       |          |            |         |        |
|-----|------------|-------|---------|------------|------|-----|------|--------|------------|----------|-------|-------|----------|------------|---------|--------|
| Day | Date       |       | Concent | ration- n  | ng/L |     |      | Sp. Lo | ad-mg/I    | Kg of TS | 5     | Cun   | nulative | sp. load-  | mg/Kg o | of TS  |
|     |            | LC    | НС      | HC-<br>w/p | РТ   | OW  | LC   | НС     | HC-<br>w/p | РТ       | OW    | LC    | НС       | HC-<br>w/p | РТ      | OW     |
| 4   | 28/9/2007  | 19200 | 32000   | 38400      | 320  | 160 | 1799 | 1306   | 2507       | 6.34     | 8.04  | 1799  | 1306     | 2507       | 6.34    | 8.04   |
| 7   | 3/10/2007  | 19200 | 32000   | 33600      | 160  | 400 | 5133 | 4229   | 5277       | 14.23    | 46.15 | 6932  | 5535     | 7784       | 20.57   | 54.19  |
| 12  | 10/10/2007 | 5818  | 11648   | 17472      | 73   | 87  | 2875 | 2966   | 4908       | 10.97    | 18.67 | 9808  | 8501     | 12692      | 31.54   | 72.85  |
| 19  | 15/10/2007 | 12706 | 39424   | 38016      | 282  | 211 | 1906 | 2557   | 2963       | 7.32     | 12.26 | 11713 | 11058    | 15655      | 38.86   | 85.11  |
| 25  | 19/10/2007 | 3310  | 13184   | 14832      | 66   | 49  | 1115 | 2416   | 2914       | 6.93     | 7.36  | 12829 | 13474    | 18569      | 45.79   | 92.47  |
| 31  | 25/10/2007 | 3200  | 6400    | 14400      | 144  | 96  | 861  | 906    | 2219       | 10.79    | 10.47 | 13689 | 14380    | 20788      | 56.58   | 102.93 |
| 39  | 7/11/2007  | 1600  | 9600    | 6400       | 160  | 96  | 863  | 2543   | 1897       | 23.24    | 21.66 | 14552 | 16923    | 22686      | 79.82   | 124.59 |
| 44  | 10/11/2007 | 4645  | 9312    | 9312       | 93   | 78  | 831  | 627    | 792        | 2.32     | 4.26  | 15384 | 17550    | 23477      | 82.14   | 128.85 |
| 55  | 24/11/2007 | 2483  | 13184   | 9888       | 132  | 115 | 209  | 442    | 483        | 1.39     | 3.26  | 15593 | 17991    | 23960      | 83.53   | 132.11 |
| 61  | 30/11/2007 | 4500  | 12032   | 13536      |      | 75  | 123  | 120    | 191        |          | 0.59  | 15716 | 18112    | 24151      | 83.53   | 132.70 |

Appendix Table C27 Soluble COD variation in lysimeters– Run 1 (St)

|     |            |      |         |            |      |     |     |        | TKN        | N       |      |     |          |            |         |       |
|-----|------------|------|---------|------------|------|-----|-----|--------|------------|---------|------|-----|----------|------------|---------|-------|
| Day | Date       |      | Concent | tration- r | ng/L |     |     | Sp. Lo | ad-mg/     | Kg of T | S    | Cur | nulative | sp. load   | l-mg/Kg | of TS |
|     | -          | LC   | НС      | HC-<br>w/p | PT   | OW  | LC  | НС     | HC-<br>w/p | РТ      | OW   | LC  | НС       | HC-<br>w/p | РТ      | OW    |
| 4   | 27/9/2007  | 1148 | 1568    | 1512       | 64   | 40  | 108 | 64     | 99         | 1.27    | 2.01 | 108 | 64       | 99         | 1.27    | 2.01  |
| 7   | 30/9/2007  | 840  | 1540    | 1288       | 10   | 20  | 225 | 204    | 202        | 0.87    | 2.26 | 332 | 268      | 301        | 2.14    | 4.27  |
| 12  | 5/10/2007  | 551  | 1157    | 1064       | 8    | 11  | 272 | 295    | 299        | 1.27    | 2.39 | 604 | 562      | 600        | 3.41    | 6.66  |
| 19  | 12/10/2007 | 553  | 1400    | 1232       | 11   | 11  | 83  | 91     | 96         | 0.28    | 0.67 | 687 | 653      | 696        | 3.69    | 7.33  |
| 25  | 18/10/2007 | 287  | 1064    | 630        | 10   | 8   | 97  | 195    | 124        | 1.00    | 1.22 | 784 | 848      | 820        | 4.69    | 8.55  |
| 31  | 24/10/2007 | 280  | 1050    | 518        | 6    | 6   | 75  | 149    | 80         | 0.45    | 0.66 | 859 | 997      | 900        | 5.14    | 9.20  |
| 39  | 5/11/2007  | 144  | 770     | 343        | 7    | 4   | 77  | 204    | 102        | 1.06    | 0.91 | 937 | 1201     | 1001       | 6.20    | 10.11 |
| 44  | 7/11/2007  | 162  | 952     | 381        | 5.6  | 2.2 | 29  | 64     | 32         | 0.14    | 0.12 | 966 | 1265     | 1034       | 6.34    | 10.23 |
| 55  | 27/11/2007 | 165  | 896     | 398        | 4.5  | 4.0 | 14  | 30     | 19         | 0.05    | 0.11 | 980 | 1295     | 1053       | 6.39    | 10.35 |
| 61  | 29/11/2007 | 199  | 875     | 459        | 0    | 3.6 | 5   | 9      | 6          | 0.00    | 0.03 | 985 | 1303     | 1059       | 6.39    | 10.38 |

Appendix Table C28 TKN variation in lysimeters– Run 1 (St)

|     |            |     |       |            |        |      |     |        | NH <sub>4</sub> -N | 1       |      |     |           |            |       |       |
|-----|------------|-----|-------|------------|--------|------|-----|--------|--------------------|---------|------|-----|-----------|------------|-------|-------|
| Day | Date       |     | Conce | ntration-  | · mg/L |      |     | Sp. Lo | ad-mg/             | Kg of T | S    | Cum | ulative s | p. load-   | mg/Kg | of TS |
|     |            | LC  | НС    | HC-<br>w/p | РТ     | OW   | LC  | НС     | HC-<br>w/p         | РТ      | OW   | LC  | НС        | HC-<br>w/p | РТ    | OW    |
| 4   | 27/9/2007  | 812 | 1344  | 1120       | 17     | 11   | 76  | 55     | 73                 | 0.33    | 0.56 | 76  | 55        | 73         | 0.33  | 0.56  |
| 7   | 30/9/2007  | 602 | 1288  | 1148       | 6.7    | 5.6  | 161 | 170    | 180                | 0.60    | 0.65 | 237 | 225       | 253        | 0.93  | 1.21  |
| 12  | 5/10/2007  | 392 | 933   | 747        | 0.5    | 0.9  | 194 | 238    | 210                | 0.07    | 0.20 | 431 | 463       | 463        | 1.00  | 1.41  |
| 19  | 12/10/2007 | 434 | 1204  | 966        | 0.8    | 2.0  | 65  | 78     | 75                 | 0.02    | 0.12 | 496 | 541       | 538        | 1.02  | 1.52  |
| 25  | 18/10/2007 | 203 | 868   | 420        | 0      | 0.7  | 68  | 159    | 83                 | 0.00    | 0.10 | 564 | 700       | 621        | 1.02  | 1.63  |
| 31  | 24/10/2007 | 154 | 854   | 350        | 0      | 0.56 | 41  | 121    | 54                 | 0.00    | 0.06 | 606 | 821       | 675        | 1.02  | 1.69  |
| 39  | 5/11/2007  | 102 | 644   | 252        | 0.78   | 0.56 | 55  | 171    | 75                 | 0.11    | 0.13 | 660 | 991       | 750        | 1.14  | 1.82  |
| 44  | 7/11/2007  | 115 | 818   | 297        | 0.00   | 0.34 | 21  | 55     | 25                 | 0.00    | 0.02 | 681 | 1046      | 775        | 1.14  | 1.83  |
| 55  | 27/11/2007 | 123 | 801   | 319        | 0.28   | 0.78 | 10  | 27     | 16                 | 0.00    | 0.02 | 691 | 1073      | 790        | 1.14  | 1.86  |
| 61  | 29/11/2007 | 176 | 826   | 347        | 0      | 0.60 | 5   | 8      | 5                  | 0.00    | 0.00 | 696 | 1081      | 795        | 1.14  | 1.86  |

Appendix Table C29 NH<sub>4</sub>-N variation in lysimeters– Run 1 (St)

|     |            |       |        |            |      |      |      |         | TS         |         |     |       |            |            |         |      |
|-----|------------|-------|--------|------------|------|------|------|---------|------------|---------|-----|-------|------------|------------|---------|------|
| Day | Date       |       | Concen | tration-   | mg/L |      | S    | p. Load | l-mg/Kg    | g of TS | 5   | Cum   | ulative sp | . load-m   | g/Kg of | f TS |
|     |            | LC    | НС     | HC-<br>w/p | РТ   | OW   | LC   | НС      | HC-<br>w/p | PT      | OW  | LC    | НС         | HC-<br>w/p | РТ      | OW   |
| 4   | 27/9/2007  | 14800 | 21595  | 22020      | 6660 | 1533 | 1387 | 881     | 1438       | 132     | 77  | 1387  | 881        | 1438       | 132     | 77   |
| 7   | 30/9/2007  | 11755 | 21765  | 20430      | 1835 | 4995 | 3143 | 2877    | 3209       | 163     | 576 | 4529  | 3758       | 4646       | 295     | 653  |
| 12  | 5/10/2007  | 8744  | 14848  | 14652      | 2000 | 2480 | 4321 | 3780    | 4115       | 301     | 530 | 8851  | 7538       | 8762       | 597     | 1183 |
| 19  | 12/10/2007 | 12768 | 20980  | 20212      | 2253 | 2210 | 1915 | 1361    | 1575       | 59      | 128 | 10766 | 8899       | 10337      | 655     | 1311 |
| 25  | 18/10/2007 | 5704  | 12884  | 10612      | 3088 | 1000 | 1921 | 2361    | 2085       | 325     | 149 | 12687 | 11260      | 12422      | 980     | 1460 |
| 31  | 24/10/2007 | 4163  | 10157  | 9307       | 3817 | 940  | 1120 | 1438    | 1434       | 286     | 102 | 13807 | 12698      | 13857      | 1266    | 1563 |
| 39  | 1/11/2007  | 3200  | 6760   | 6627       | 4017 | 763  | 1726 | 1790    | 1965       | 584     | 172 | 15533 | 14489      | 15821      | 1849    | 1735 |
| 44  | 6/11/2007  | 3947  | 10040  | 9417       | 4424 | 1052 | 706  | 676     | 800        | 110     | 58  | 16240 | 15164      | 16622      | 1959    | 1793 |
| 55  | 18/11/2007 | 4777  | 12953  | 11980      | 5390 | 1130 | 402  | 434     | 585        | 57      | 32  | 16642 | 15598      | 17207      | 2016    | 1825 |
| 61  | 24/11/2007 | 4115  | 8870   | 9247       | 4860 | 1087 | 113  | 89      | 131        | 11      | 8   | 16755 | 15687      | 17337      | 2027    | 1833 |

Appendix Table C30 TS variation in lysimeters– Run 1 (St)

|     |            |       |        |            |      |      |      |         | TDS        |         |     |       |            |            |         |      |
|-----|------------|-------|--------|------------|------|------|------|---------|------------|---------|-----|-------|------------|------------|---------|------|
| Day | Date       |       | Concer | tration-   | mg/L |      | S    | p. Loac | l-mg/Kg    | g of TS | 5   | Cum   | ulative sp | p. load-m  | ng/Kg o | fTS  |
|     |            | LC    | НС     | HC-<br>w/p | PT   | OW   | LC   | НС      | HC-<br>w/p | PT      | OW  | LC    | НС         | HC-<br>w/p | РТ      | OW   |
| 4   | 26/9/2007  | 17955 | 27635  | 26695      | 6347 | 1633 | 1682 | 1128    | 1743       | 126     | 82  | 1682  | 1128       | 1743       | 126     | 82   |
| 7   | 30/9/2007  | 11945 | 20440  | 19010      | 1870 | 4370 | 3194 | 2701    | 2986       | 166     | 504 | 4876  | 3829       | 4729       | 292     | 586  |
| 12  | 4/10/2007  | 8140  | 12225  | 12780      | 1943 | 2317 | 4023 | 3112    | 3590       | 293     | 495 | 8899  | 6942       | 8318       | 585     | 1081 |
| 19  | 11/10/2007 | 8650  | 14175  | 14890      | 1923 | 1797 | 1298 | 919     | 1161       | 50      | 104 | 10196 | 7861       | 9479       | 635     | 1185 |
| 25  | 17/10/2007 | 6725  | 12380  | 11500      | 2993 | 1027 | 2265 | 2269    | 2259       | 315     | 153 | 12461 | 10130      | 11738      | 950     | 1338 |
| 31  | 23/10/2007 | 4376  | 10124  | 9656       | 3963 | 990  | 1177 | 1434    | 1488       | 297     | 108 | 13638 | 11563      | 13227      | 1246    | 1446 |
| 39  | 31/10/2007 | 3610  | 8067   | 6220       | 4487 | 873  | 1948 | 2137    | 1844       | 652     | 197 | 15586 | 13700      | 15071      | 1898    | 1643 |
| 44  | 5/11/2007  | 3720  | 8993   | 7527       | 4148 | 896  | 666  | 605     | 640        | 103     | 49  | 16252 | 14305      | 15710      | 2002    | 1692 |
| 55  | 16/11/2007 | 3953  | 10833  | 7382       | 5065 | 1065 | 333  | 363     | 360        | 53      | 30  | 16584 | 14668      | 16071      | 2055    | 1723 |
| 61  | 24/11/2007 | 3795  | 8595   | 8427       | 4660 | 1023 | 104  | 86      | 119        | 10      | 8   | 16688 | 14754      | 16190      | 2065    | 1730 |

Appendix Table C31 TDS variation in lysimeters– Run 1 (St)

|     | Date       | SS                  |     |            |     |                      |     |     |            |       |                                 |     |     |            |      |      |
|-----|------------|---------------------|-----|------------|-----|----------------------|-----|-----|------------|-------|---------------------------------|-----|-----|------------|------|------|
| Day |            | Concentration- mg/L |     |            |     | Sp. Load-mg/Kg of TS |     |     |            |       | Cumulative sp. load-mg/Kg of TS |     |     |            |      |      |
|     |            | LC                  | НС  | HC-<br>w/p | РТ  | OW                   | LC  | НС  | HC-<br>w/p | РТ    | OW                              | LC  | НС  | HC-<br>w/p | РТ   | OW   |
| 4   | 26/9/2007  | 490                 | 830 | 620        | 220 | 227                  | 46  | 34  | 40         | 4.36  | 11.39                           | 46  | 34  | 40         | 4.4  | 11.4 |
| 7   | 30/9/2007  | 515                 | 630 | 850        | 45  | 225                  | 138 | 83  | 133        | 4.00  | 25.96                           | 184 | 117 | 174        | 8.4  | 37.3 |
| 12  | 4/10/2007  | 390                 | 430 | 395        | 13  | 43                   | 193 | 109 | 111        | 2.01  | 9.26                            | 376 | 227 | 285        | 10.4 | 46.6 |
| 19  | 11/10/2007 | 405                 | 285 | 325        | 27  | 40                   | 61  | 18  | 25         | 0.69  | 2.32                            | 437 | 245 | 310        | 11.1 | 48.9 |
| 25  | 17/10/2007 | 355                 | 265 | 535        | 33  | 13                   | 120 | 49  | 105        | 3.50  | 1.98                            | 557 | 294 | 415        | 14.6 | 50.9 |
| 31  | 23/10/2007 | 284                 | 152 | 532        | 97  | 17                   | 76  | 22  | 82         | 7.24  | 1.82                            | 633 | 315 | 497        | 21.8 | 52.7 |
| 39  | 31/10/2007 | 250                 | 170 | 784        | 90  | 30                   | 135 | 45  | 232        | 13.07 | 6.77                            | 768 | 360 | 730        | 34.9 | 59.5 |
| 44  | 5/11/2007  | 360                 | 213 | 1053       | 204 | 36                   | 64  | 14  | 90         | 5.08  | 1.98                            | 832 | 375 | 819        | 40.0 | 61.5 |
| 55  | 16/11/2007 | 277                 | 310 | 1600       | 325 | 65                   | 23  | 10  | 78         | 3.43  | 1.84                            | 856 | 385 | 897        | 43.4 | 63.3 |
| 61  | 24/11/2007 | 320                 | 275 | 820        | 200 | 63                   | 9   | 3   | 12         | 0.44  | 0.49                            | 864 | 388 | 909        | 43.8 | 63.8 |

Appendix Table C32 SS variation in lysimeters– Run 1 (St)

|                             | Storm                        | (St)                         |            | Le                    | achate reci                     | rculation(LR)                | Internal storage(IS) |                  |                                 |                              |            |
|-----------------------------|------------------------------|------------------------------|------------|-----------------------|---------------------------------|------------------------------|----------------------|------------------|---------------------------------|------------------------------|------------|
| Lysimeter                   | sp. C(kg)-<br>solid<br>waste | sp. TOC<br>(kg)-<br>leachate | %<br>leach | Lysimeter             | sp.<br>C(kg)-<br>solid<br>waste | sp. TOC<br>(kg)-<br>leachate | %<br>leach           | Lysimeter        | sp.<br>C(kg)-<br>solid<br>waste | sp. TOC<br>(kg)-<br>leachate | %<br>leach |
| $St_{C1}$                   | 0.483                        | 0.045                        | 9.3        | LR <sub>C1</sub> -100 | 0.483                           | 0.0091                       | 1.87                 | IS <sub>C1</sub> | 0.4832                          | 0.134                        | 27.78      |
| $St_{C2}$                   | 0.483                        | 0.047                        | 9.6        | LR <sub>C1</sub> -75  | 0.483                           | 0.0080                       | 1.65                 | IS <sub>C2</sub> | 0.4832                          | 0.021                        | 4.44       |
| $\mathrm{St}_{\mathrm{P2}}$ | 0.399                        | 0.054                        | 13.5       | LR <sub>C1</sub> -50  | 0.483                           | 0.0054                       | 1.11                 |                  |                                 |                              |            |
| $St_{S2}$                   | 0.270                        | 0.00023                      | 0.09       | LR <sub>C1</sub> -35  | 0.483                           | 0.0046                       | 0.94                 |                  |                                 |                              |            |
| St <sub>S3</sub>            | 0.169                        | 0.00024                      | 0.14       | LR <sub>S1</sub> -100 | 0.298                           | 0.0001                       | 0.04                 |                  |                                 |                              |            |
|                             |                              |                              |            | LR <sub>S1</sub> -35  | 0.298                           | 0.00004                      | 0.01                 |                  |                                 |                              |            |
|                             |                              |                              |            | LR <sub>C2</sub> -100 | 0.483                           | 0.0047                       | 0.97                 |                  |                                 |                              |            |
|                             |                              |                              |            | LR <sub>C2</sub> -35  | 0.483                           | 0.0022                       | 0.46                 |                  |                                 |                              |            |
|                             |                              |                              |            | LR <sub>P2</sub> -100 | 0.399                           | 0.0050                       | 1.26                 |                  |                                 |                              |            |

Appendix Table C33 Carbon balance

|                       | Leachate recircul          | ation(LR)               | Internal storage(IS) |                  |                            |                         |         |  |
|-----------------------|----------------------------|-------------------------|----------------------|------------------|----------------------------|-------------------------|---------|--|
| Lysimeter             | sp. TKN(kg) in solid waste | sp. TKN(kg) in leachate | %<br>leach           | Lysimeter        | sp. TKN(kg) in solid waste | sp. TKN(kg) in leachate | % leach |  |
| LR <sub>C1</sub> -100 | 0.0252                     | 0.00078                 | 3.08                 | IS <sub>C1</sub> | 0.0252                     | 0.0052                  | 20.47   |  |
| LR <sub>C1</sub> -75  | 0.0252                     | 0.00051                 | 2.01                 | IS <sub>C2</sub> | 0.0252                     | 0.0023                  | 9.25    |  |
| LR <sub>C1</sub> -50  | 0.0252                     | 0.00046                 | 1.83                 |                  |                            |                         |         |  |
| LR <sub>C1</sub> -35  | 0.0252                     | 0.00029                 | 1.14                 |                  |                            |                         |         |  |
| LR <sub>S1</sub> -100 | 0.0343                     | 0.00001                 | 0.02                 |                  |                            |                         |         |  |
| LR <sub>S1</sub> -35  | 0.0343                     | 0.00003                 | 0.08                 |                  |                            |                         |         |  |
| LR <sub>C2</sub> -100 | 0.0252                     | 0.00045                 | 1.80                 |                  |                            |                         |         |  |
| LR <sub>C2</sub> -35  | 0.0252                     | 0.00019                 | 0.76                 |                  |                            |                         |         |  |
| LR <sub>P2</sub> -100 | 0.0172                     | 0.00044                 | 2.54                 |                  |                            |                         |         |  |

Appendix Table C34 Nitrogen balance

## **CURRICULUM VITAE**

| NAME         | : Mrs. Ruwini Weerasekara                                                                                               |                     |       |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|-------|--|--|--|--|--|
| BIRTH DATE   | : January 04, 1978                                                                                                      |                     |       |  |  |  |  |  |
| BIRTH PLACE  | : Galle, Sri Lanka                                                                                                      |                     |       |  |  |  |  |  |
| EDUCATION    | TION : YEAR INSTITUTE DE                                                                                                |                     |       |  |  |  |  |  |
|              | 2004                                                                                                                    | Univ. of Peradeniya | B.Sc. |  |  |  |  |  |
|              | Sri Lanka (Agric                                                                                                        |                     |       |  |  |  |  |  |
| POSITION     | : Research Assistant                                                                                                    |                     |       |  |  |  |  |  |
| WORK PLACE   | : Faculty of Engineering, Kasetsart University                                                                          |                     |       |  |  |  |  |  |
| SCHOLARSHIPS | : Department of Environmental Engineering Scholarship-<br>2006 to 2008<br>Mahapola Scholarship (Sri Lanka)-2001 to 2004 |                     |       |  |  |  |  |  |
| AWARDS       | : Excellence Award for highest scores for course work in<br>International Master's degree program                       |                     |       |  |  |  |  |  |