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Abstract 
 

This paper considers the determination of the order of hidden Markov models. Recently, a proposed predictive 

measure, the so-called widely applicable information criterion (WAIC), was derived. This criterion is a convenient alternative to 

the cross-validation approach due to its less computation processes and quick evaluation. We studied the properties of this 

criterion applied to hidden Markov models (HMMs) under the Bayesian principle. Such models include serial dependence and 

overdispersion of observed data. We investigated this criterion via simulation studies and a real data application. It is shown that 

the introduced criterion performs better with less complicated models, while it tends to over fit some more complicated models. 
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1. Introduction 
 

There are many techniques proposed in literature to 

select the best model for hidden Markov models (HMMs). 

One of the common methods is the Bayes factors (BF) 

approach proposed by Kass and Raftery (1995). However, 

Han and Carlin (2011) mentioned that the approach may be 

inappropriate for models with high-dimensions. In addition, it 

can be more sensitive to the prior's specifications (Ando, 

2010; Gelman, Hwang & Vehtari, 2014). Different methods 

have been used for HMMs under the frequentist principle such 

as the Akaike information criterion (AIC) (Akaike, 1973) and 

the Bayesian information criterion (BIC) (Schwarz, 1978). 

However, these criteria can yield problems such as under-

fitting or over-fitting due to the irrational behavior of the 

likelihood function included in these criteria (Johnson, 2007). 

Furthermore, models evaluation based only on a point 

estimate for the model parameter using these approaches does 

not taking into account the full uncertainty in the parameters.

 
Kadhem, Paul and Kaimi (2018) used Bayesian versions for 

the AIC and BIC that addresses the model selection problem 

for these models.  

The deviance information criterion (DIC), 

developed by Spiegelhalter, Best, Carlin and van der Linde 

(2002), has been used for different models including the high-

dimensional models. This criterion has the advantage of being 

easy to calculate in common used software such as 

WinBUGS. However, this criterion has an unsatisfactory 

behavior in latent variables models because of the 

unavailability of closed forms for the likelihood function of 

these models. (Celeux, Forbes, Robert & Titterington, 2006). 

In addition, it is based on a concept of so-called focus which 

may be chosen incorrectly in practice (Spiegelhalter, Best, 

Carlin, & van der Linde, 2002). Richardson and Green (1997) 

introduced a method of so-called the reversible jump MCMC 

to select the best independent mixture.  However, it requires 

some care with respect to mixing performance within each 

model spaces and amongst competing model spaces. In 

addition, Fan and Sisson (2011) suggested that this method 

may have some convergence problems, and also challenges 

with respect to prior specification on the number of hidden 

states K. 
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This article aims at providing a new prediction-

based criterion for HMMs that are based on predictive 

performance, which is the widely applicable information 

criterion (WAIC). This criterion was introduced by Watanabe 

(2009) as an asymptotic version of the leave-one-out cross-

validation (LOO-CV). This measure has also received 

attention from many researchers such as Vehtari and Ojanen, 

2012; Gelman, Hwang and Vehtari, 2014. The main benefit of 

this approach is that it needs to less computational processes 

than the LOO-CV (Gelman, Hwang & Vehtari, 2014). With 

the few applications for this criterion, its properties however 

have not been investigated for the process of determining the 

numbers of states in HMMs. In this paper we investigated this 

criterion, in which the existence of the serial dependence and 

over dispersion in data, believing their influence on the 

performance of criterion. More specifically, we investigated 

the sensitivity of the proposed criterion under two scenarios, 

across the assumption of a fixed number of different 

complexities. The first scenario included generating data sets 

with different degrees of serial dependence, while the second 

scenarios considered the existence of different degrees of over 

dispersion in the data. 

This article is structured in six sections. Section 2 

briefly presents the Bayesian definition of the hidden Markov 

model and also the proposed criterion. Section 3 includes the 

simulation studies to investigate the new model selection 

methodology. Section 4 illustrates the results of simulation 

study. Section 5 addresses the assessing the criterion via a real 

data application. Conclusions on the paper are presented in 

Section 6. 

 

2. Materials and Methods 
 

2.1 Bayesian definition of HMMs 
 

The HMMs have pair of random processes, each one with special situation. The first is called the observed process and 

is denoted by , while the second is called the unobserved process or hidden which is satisfied the 

Markov properties, and denoted by . The observable process  can be determined only when 

the hidden process  is known (Zucchini & MacDonald, 2009). This paper focuses on finite state-space HMMs with a 

discrete-time, where given a hidden state  at time  the observed process follows a parametric distribution. The HMMs are 

represented by a set of the parameters symbolized by , where , and the number of unobservable states 

symbolized by , which are explained by the following (Rabiner, 1989; Bishop, 2006):  

1. The number of unobservable states  which is defined on the discrete state space . 

2. The initial distribution of state represented by the vector , where the element  refers to the probability 

that the system is in the state k at the time , i.e., z1  ,  , where z1 refers to system's state 

at the time 1. 

3. The transition probabilities of states represented by matrix A = {  }, where the element  refers to the 

probability that the system in the state k at time i, given that the system in the state  at time , i.e., 

 such that  satisfy the normal stochastic constraints, i.e.   and ∑ = 1, where 1 

≤ j, k ≤ K. k=1 

4. The parameter θ, where θ is a state-based distribution that can take one of parametric distributions. For example, 

the parameter θ can be expressed to parameter(s) of the normal distribution or Poisson.  

 

By using the Bayes theorem, the Bayesian model is defined as (Frühwirth-Schnatter, 2006): 

 

        (1) 

 

Where  refers to the posterior distribution, refers to the observed data likelihood and  denotes the 

prior distribution. The use of Bayesian inference for HMMs has challenge due to the complexity of the evaluation of its 

likelihood . Hence, Monte Carlo Markov Chain (MCMC) techniques have been employed to solve such problem. An 

approach so-called the Data Augmentation (Tanner & Wong, 1987) is often used to ease the estimation process of the model 

parameters. In context of HMMs, this method is being employed, in which the unobservable states are introduced as “missing 

data” that are augmented to the parameter space in the sampler (Chib, 1996). The posterior distribution can take the following 

formula 

 

     (2) 

 

Where  refers to the complete data likelihood and  refers to the prior 

distribution on . Briefly, given a transition matrix A and an initial distribution , the set of unobservable states z = (z1,z2, ..., 

zn) is modeled as . According to the Markovian property, it is expressed as 
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    (3) 

The observation , given  is sampled independently from a certain parametric distribution, 

 

       (4) 

Where   refers to the density function parameterized by  at th state. From equations (3) and (4), the complete-

data likelihood of HMMs, is then defined as 

 

    (5) 

By summing over all possible hidden states in the complete data-based likelihood, in equation (5), we obtain the observed data 

likelihood 

 

    (6) 

 

The calculation of  for HMMs in equation (6) requires  of computational processes (Rabiner, 1989; 

Bishop, 2006). To ease its computation, we use the forward-backward recursion method proposed by (Rabiner, 1989). In order 

to complete the definition of Bayesian HMMs, we have to specify prior distributions on the model parameters. We assume 

independent Dirichlet priors (Fr hwirth-Schnatter, 2006) on the initial distribution  and each row  in the transition 

matrix A, thus, 

 

     (7) 

 

   (8) 

 

The symbol  is a hyper-parameter of Dirichlet distribution and "Dir" is shortcut to Dirichlet distribution. With respect to the 

parameter , we specify priors on , expressed by  where  refers to a conjugate hyper-parameter. The posterior 

distribution of HMMs in equation (2) is then given as 

 

  

 (8) 

The form of posterior distribution in equation (8) is not feasible as it is a sum over  elements for single chain, and this 

complexity in model increases as the number of unobservable states  and the data length n are increasing. For this purpose, we 

use the MCMC approach, called the Gibbs sampler (Geman & Geman, 1984), to sample the model parameters, . With respect 

to the hidden states, , they are sampled using so-called the forward-backward Gibbs (FBG) algorithm (Chib, 1996; Scott, 

2002). This method is based on simulating the entire sequence of hidden states from the posterior distribution, conditional on the 

model parameters, through a backward recursion.  
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2.2 Basic definition of the WAIC 
 

Let assume  is a sequence of out-of-sample predictions. The out-of-sample logarithm 

predictive density for a single predicted observation, can be defined as (Gelman, Hwang & Vehtari, 2014): 

 

   (9) 

 

The term  refers to the posterior distribution and  refers to the logarithm predictive density of the 

predicted observation outputted by the posterior distribution . Hence, we can find expected 

values of all future points . The expectation of logarithm predictive density (elpd) can be given as: 

 

     (10) 

 

where  refers to some data-based distribution. Gelman, Hwang and Vehtari (2014) suggested that the posterior distribution, 

, is known, but the distribution based on real data  is unknown. Therefore, they proposed to use the within-

sample data with a bias correction term. Hence, the log-pointwise predictive density (lppdy), based on available within-sample 

data y, can be defined as follows:  

 

 

                 (11) 

 

An approximate to the integral in equation (11) is then obtained by integrating out the posterior samples,   

in an MCMC run. Given , Gelman, Hwang and Vehtari (2014) introduced two definitions for the effective number of 

parameters : 

 

     (12) 

and the second form can be given by 

 

        (13) 

 

The term  refers to the variance of individual terms in the logarithm of predictive density summed over the  observed points. 

The second version  is more stable as suggested by Gelman, Hwang and Vehtari (2014). The WAIC can be then given 

by 

 

 

             

                       (14) 
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2.3 The WAIC for HMMs 
 

Let assume a set of observations  induced from a HMM and a set of latent variables  such that each  is specified 

for each corresponding observation . Then, it can model  and  for some distribution parameterized by . 

By following Gelman, Hwang and Vehtari (2014), we can define so-called the integrated pointwise predictive density (ilppd) as 

follows 

 
                                          

                   (15) 

 

which can be approximated over integrating out the model parameter, , and latent variables, . The term  in 

above equation refers to the pointwise predictive density of point data, weighted by the joint posterior distribution, 

, of the model parameters. Thus, by integrating individually over each latent variable  and the parameter θ, we 

can obtain the integrated pointwise predictive density of each data point, . The integrated logarithm pointwise predictive 

density in equation (15) is approximated by the posterior draws of the model parameters over MCMC sweeps. To define the 

effective number of parameter , we use the second version as it is more stable (Gelman, Hwang & Vehtari, 2014):

  

        (16) 

where  is the variance of individual terms in the ilppd summed over the n observations. Hence, the WAIC for the HMMs 

can represented by 

 

                   

                   (17) 

In the appendix of this paper, approximated WAIC, ilppd and  are given. 

 

3. Results and Discussion 
 

3.1 Simulation study 
 

This section contains two scenarios designed as a simulation study to include assessing the performance of the 

proposed criterion. We take into account a HMM in which the parameter space follows the Poisson distribution (Zucchini, & 

MacDonald, 2009). The two scenarios designed under this study are given in Table (1) which their details are more explained in 

Table 2. We assume three true models with different complexities, K0=2, K0=3 and K0=4, where K0 refers to the order of 

assumed true model. From this experiment, we assume there is over-dispersion problem in data (i.e. variance > mean) as in 

Table 2 and also assume degrees of serial dependence in data as shown in Figure 3. The aim is to know to how our proposed 

criterion is sensitive to these assumptions. In the first scenario, we do the follows. For the first true model with 2-state, K0 = 2, 

we assume a weak serial dependence through the structure S1, while we expect strong correlation between the data through the 

structure S2. The same way, we repeat the same above scenario for the models K0 = 3: S3 for a simple serial dependence and S4 

for strong serial dependence, and with respect to the model K0 = 4: S5 for a simple serial Dependence and S6 for strong serial 

dependence. Overall, given n=500 observations, we report the percentage of times out of 100 replications that the model out of 

K = 2, …, 7 competition models, fitted to data, will select the correct order K0 as shown in Table (3). Table (4) presents the 

frequencies of the values of the ilppd, WAIC and pWAIC for all true models, each one with two structures with respect to the 

degree of the serial dependence in data. 
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Table 1. Different structures regarding the levels of the dependency and over-dispersion for 2 state PHMM 
 

K0 Structure 
Parameters 

π A λ 
     

2 S1 [0.50   0.50]  [3   9] 

 S2 [0.50   0.50]  [3   9] 

3 S3 [0.33   0.33   0.34] 
 

[3   9   20] 

 S4 [0.33   0.33   0.34] 
 

[3   9   20] 

4 S5 [0.25   0.25   0.25   0.25] 



















80.000.010.010.0

20.070.000.010.0

00.020.080.000.0

20.010.000.070.0

 

[3   9   20   30] 

 S6 [0.25   0.25   0.25   0.25] 



















30.020.010.040.0

20.010.060.010.0

10.050.010.030.0

40.040.010.010.0
 

[3   9   20   30] 

     

 

Table 2. Four scenarios on the generating model with 2-state represented by four structures obtained from Table 1. 
 

Structure Assumptions 

  

S1 low dependence as shown in figure (1), and high over-dispersion as the variance so large   than the mean (s2=15.193 and 

5.776) 

S2 strong dependence as shown in figure (1), and high over-dispersion as the variance so large than the mean (s2=15.193 and  

= 5.776) 

S3 strong dependence as shown in figure (1), and high over-dispersion as the variance so large than the  mean (s2=65.869 and  

=11.288) 

S4 strong dependence as shown in figure (1), and high over-dispersion as the variance so large than the mean (s2=65.869 and 

  =11.288) 

S5 strong dependence as shown in figure (1), and high over-dispersion as the variance so large than the mean (s2=65.869 and  

=11.288) 

S6 strong dependence as shown in figure (1), and high over-dispersion  as the variance so large than the mean (s2=65.869 and 

=11.288) 
  

 
Table 3. The number of times (percentage) that the competition models from K=2 to K=7 components are chosen by the criterion for PHMMs 

with complexities K0=2, 3 and 4, each one two structures. 
 

K 
K0 =2 K0 =3 K0 =4 

S1 S2 S3 S4 S5 S6 
       

2 

3 

4 
5 

6 

7 

97.00% 

3.00% 

0.00% 

0.00% 

0.00% 

0.00% 

93.50% 

7.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

88.00% 

12.00% 
0.00% 

0.00% 

0.00% 

3.00% 

77.00% 

11.00% 
0.00% 

0.00% 

0.00% 

0.00% 

12.00% 

63.00% 
25.00% 
0.00% 

0.00% 

0.00% 

22.00% 

44.00% 
34.00% 
0.00% 

0.00% 
       

 

Table 4. Results of model selection for the competing models fitted to earthquake data. 
 

k 2 3 4 5 6 7 
       

ilppd 

pWAICvar 

WAICvar 

-294.945 

24.091 

638.072 

-294.736 

24.187 

637.846 

-294.356 

25.771 

640.254 

-293.736 

27.973 

643.418 

-293.242 

32.145 

650.774 

-293.051 

34.112 

654.326 
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Figure 1. Theoretical ACF of S1 (left) and S2 (right) for data generated from a 2-state PHMM 

 

 
Figure 2. Theoretical ACF of S3 (left) and S4 (right) for data generated from a 3-state PHMM 

 

 
Figure 3. Theoretical ACF of S5 (left) and S6 (right) for data generated from a 4-state PHMM 

 

3.2. Results 
 

Under the assumptions assumed in the study, we 

report the proposed criterion’s performance as shown in 

Table 3. For PHMM with K0=2, with the structure S1, it can 

see that our criterion selects the higher ratio to select the right 

model (97%), with a slight ratio for over-fitting (3%). For the 

same model, but with the structure S2 in which exist a strong 

serial dependence, the correct model is also selected with 

high ratio (93.5%) which it suggests that either existence or 

not of the serial dependence in data has no effect. For the 

model with complexity K0=3, the criterion also performs well 

with respect to the structure S3 but with ratio 88% and over-

fitting is 12%. On other hand, with same model, the criterion 

selects the true order with ratio 76% and appears an over-

fitting is 11% and slight under-fitting which is 3%. When the 

complexity of model K0=4 increases, the criterion tends to 

choose the correct model with less ratio is 63% in structure 

S5, comprising with other models, with over-fitting and 

under-fitting are 25% and 12%, respectively, while the ratio 

of selecting the true model decreases to 44% under structure 

S6 with high quantity of over-fitting with is 34 and under-

fitting is 22%. Overall, the criterion has high efficiency with 

models that have a lower order, either exists or not the serial 

dependency in data, but it appears sensitive with respect to 

exist the correlation in data when the complexity of the 

model increases.  

 

3.3. Real data application 
 

We consider here a real data application involving 

count data of earthquake data to evaluate the proposed 

criterion. These data consist of a series of length 107 of 

major earthquakes (magnitude 7 or greater) which occurred 

in the world between 1900 and 2006. The average and 

variance of the data are:  = 19:364 and s2 = 51:091, 

respectively, which suggests that these data have the over-

dispersion problem. In addition, the ACF appears a high 

serial correlation in the data as shown in Figure (5). Thus, the 

PHMM can be applied here to accommodate the over-

dispersion and serial correlation to this kind of data. Zucchini 

and MacDonald (2009) fitted several Poisson hidden Markov 

models to these data with a different number of states using 

classical estimates-based AIC and BIC. They concluded that 

the model with K=3 is the best to adequately represent these 

data. We assume a number of competing models in order to 

fit to these data, with an upper bound Kmax = 7. By the same 

way followed in simulation study, we adopted 15,000 
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Figure 4. Histograms of the frequencies of values of the ilppd, WAIC and pW AIC for the models K0 = 2, K0 = 3 and K0 = 4 with scenarios 
S1-S6 

 

Table 5. Parameter estimates of a PHMM with 3 state fitted to the earthquakes data. 
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Figure 5. Sample ACF for the earthquake count data 

 

samples for inference after burning the first 5,000 samples. 

We put artificially identifiable constraints on the mean 

parameter, λ, to avert the issue of identifiability, i.e.: 

. From table (4), it can see that the 

WAIC chooses the model with K=3. The results of selection 

the best model fitted to those data are also supported by the 

fitting results in Figure (6). It can be noted from the Figure 6 

that the competition model with K=3 shows an appropriate 

goodness of fit and there are not more states will be needed 

to the model. Table 5 shows the result of model estimation 

for the selected model which are very close to those 

estimated by Zucchini and MacDonald (2009). 

 

4. Conclusions 
 

We introduced more recent model selection 

criterion, named the widely applicable information criterion 

(WAIC), for hidden Markov models. We examined our 

criterion via simulated databases, given scenarios that 

included the existence the serial dependency and over-

dispersion in data, as well as data real application. It was 

found that the new methodology performs well in simulation 

for HMMs with less complicated models. Overall, the 

criterion has high efficiency with models that have a lower 

order, either the serial dependency in data exists or not. The 

criterion had sensitivity for existing correlation in the data 

when the complexity of the model increases. We expect that 

the model work well with mixture models where the 

dependency assumption is not included in those models and 

this, thus, could be a future study of interesting. In addition, 

we propose to use new Bayesian methods to estimate the 

model such as Hamiltonian Monte Carlo method. The latter 

method may give more reliable estimations for the model 

parameters. It can be investigated in future studies. 
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Appendix 

 

A. Computation of the WAIC, ilppd and pWAIC for Normal HMM 
 

Consider a normal HMM with  of components, the ilppd, pWAIC and WAIC are approximated as: 

 

 
 

               (22) 

                                            

Where is the component-specific density of normal HMM. The penalty term of WAIC is given by: 

 

 
 

                     (23) 

 

Where   denotes the samples variance through full MCMC run. Finally, the WAIC then is approximated as follows: 

 

                  
 

    (24) 

                     

 

 


