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Abstract

The exact traveling wave solutions of the space-time fractional Estevez-Mansfield-Clarkson (EMC) equation and the
space-time fractional Ablowitz-Kaup-Newell-Segur (AKNS) water equation are investigated. Transforming the space-time
fractional EMC and the space-time fractional AKNS water equations by the Jumarie's Riemann-Liouville derivative, nonlinear
ordinary differential equations (ODESs) are achived. It is observed that the G’/ G -expansion method is valid and reliable for
solving some nonlinear fractional PDEs. Applying the G'/G -expansion method, the solutions of EMC and AKNS water
equations are obtained in terms of hyperbolic functions, trigonometric functions and rational functions.

Keywords: G’/ G -expansion method, fractional partial differential equations, fractional Estevez-Mansfield-Clarkson
equation, fractional Ablowitz-Kaup-Newell-Segur water equation, analytic solution

1. Introduction

One of the fascinating problems in mathematical physics is solving nonlinear fractional PDEs. Recently, researchers
have found many powerful methods to solve the nonlinear fractional PDEs such as first integral method ( Eslami, Vajargah,
Mirzazadeh, & Biswas, 2014; llie, Biazar, & Ayati, 2018; Lu, 2012), modified Kudryashov method ( Ege, & Misirli, 2014;
Kumar, Seadawy, & Joardar, 2018), extended Kudryashov method (Ege, & Misirli, 2018), generalized Kudryashov method
(Demiray, Pandir, & Bulut, 2014; Gaber, Aljohani, Ebaid, & Machado, 2019), fractional sub-equation method (Alzaidy, 2013;
Mohyud-Din, Nawaz, Azhar, & Akbar, 2017; Zhang, 2011) and G’/ G -expansion method (Bekir, & Giiner, 2013, 2017; Bin,
2012).

In this work, we applied the transformation using the Jumarie's Riemann-Liouville derivative and the G'/G -
expansion method to illustrate the analytic solutions of the space-time fractional Estevez-Mansfield-Clarkson (EMC) equation
and the space-time fractional Ablowitz-Kaup-Newell-Segur (AKNS) water equation. Some properties of Jumarie's Riemann-
Liouville derivatives are stated as the following.

The Jumarie's Riemann-Liouville derivative of order ¢ with respect to t is defined as follows (Jumarie, 2006),

f(t) ,a =0,
L 9oy« (to)- @)
Dt =) Tam gkt~ (FO-fO)M  0<a<t
dnn D " f (t) N<a<n+l,n>1.
dt
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Some important properties of fractional Riemann-Liouville derivatives are the following (Jumarie, 2009),

r'(k+1)

Dt =————t“* k>0, @
I'k—a+1)

D7 (f(®g(t)) = f (D g(t)+g®)D f (1), &)

D flg(t)] =Dy flg(®1(g'®)” = f;[a (11D g(t). @

The procedure of solving space-time fraction EMC equation with G’/ G -expansion method will be explained in the
next section.

2. Space-Time Fractional EMC Equation
Consider the nonlinear space-time fractional EMC equation (Mansfield, & Clarkson, 1997),

D;“Dy'u+ AD;uDy Dfu+ AD;“ub{'u+D*u=0,t >0,0 < <1, ®)

where U = u(x, Y, t), ﬂ is constant and ¢ is a parameter explaining the order of the fractional space-time derivative. Using
the transformation

kx“ Iya ct” (6)
F(a +1) F(a +1) F(a +1)’
where K, | and C are nonzero constants. Therefore, equation (5) can be transformed into an ODE,

u(x,y,t)=U(g). ¢

4 2] 2] 2)
_|3dU lgd_UdU C|ﬂdUd_U CZdUZ:o_ ©)
d¢* d¢ d¢? d¢* d¢  d¢
4 2 2
40U ppzpdU dU U @
d¢* d¢ d¢* o dg
Integrating equation (8) and setting the constant to zero, we get
d°U du)  du
2= L= ©
dg dg dg
Applying the G’/ G -expansion method, the solution may be exhibited in the form
N ’ i
U()= Za [G (g)j (10)
G(<)
where @; are real constants with @, is nonzero constant. The function G satisfied the ODE,
2
¢ 198, 60, ap
d¢® dg

where A and M are nonzero constants. Solving equation (11), the solutions can be identified into three cases with arbitrary

constants C; and C,:

Case I: 12 =44 >0, the hyperbolic function solutions,
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¢, sinh {“/122_4!15}+cz cosh {“/122_4!14}

G'(¢) _ -4, JA2—apu 12)
G 2 2 [7_ [z _ '
©) clcosh{ﬁ 5 du g“}+czsinh{/1 7 A {}
Case I: A2 —44 <0, the trigonometric function solutions,
, 2 , 2
_Clsin ﬂé’ +C2COS Mé’
G')_~4, bpi— A2 2 2 (13)
G 2 2 a4, _ 22 VR
©) c, cos{4ﬂ A g“}+c2 sin {4/”[ 4 ;}
2 2
Case IlI: p? —44 =0, the rational function solutions,
cW__2,(_ ¢ (14)
G(¢) 2 (g+ed)

Balancing the highest order derivative and nonlinear terms of equation (9), we get N =1. Thus, equation (10) become

G'(¢)
V() =2+ (—] 1o
o)
Using equation (15), we replace all U (¢") in equation (9) and collect all terms which have the same power of % Setting
G(<)
each coefficient of them to zero, this gives
(G’(C)]": 2a1° 4 + A% — a1 it — cau =0, (16)
G(S)
(G'(C)T: a 2% +8a*u — 28217 fAu —cad = 0, (17)
G(<)
[G’(;)jz; 8al’u+7al°A* —a’1? A% — 281> fu—ca, =0, (18)
G(S)
(G’(;)T: 12a,°2 - 2321284 =0, (19)
G(©)
[e'(;)]“; 6al® —a?123 =0. (20)
G(S)

Solving the system of equations (16)-(20) yields
2 ¢ 21
a1 =—, /1 — 4/_1 = —, ( )

Substituting equation (21) into equations (12)-(15), the exact solutions of the space-time fractional EMC equation may be
described in the following three cases with arbitrary constants C; and C, and ¢ :
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Case I: 42 -4u>0, the hyperbolic function solutions,

c/lP c/l®
¢, sinh ¢ ¢+c,cosh 4
6l —4, e/P { } 2 { 2 } @2)
u(x, y,t) = a0+ﬂ 2 ) \/73 - .
clcosh{ c2/I §}+czsinh{ 02” g}

Case Il: 42 —41 <0, the trigonometric function solutions,

{ =/’ §}+czcos{ _;“3 {;}

—c,sin
6l -4 \/—C/I3

(23)
ux,y,t)=ag+—| —-
2 2 /ENTE 'INTE
d clcos{ ;/I §}+czsin{ ;/I g’}
Case Ill: 42 ~4u=c=0, the rational function solutions,
u(x, y,t):a0+6—I _—1+ | (24)
Bl 2 c+cd

The hyperbolic function solutions, equation (22), of the space-time fractional EMC equation forms a kink wave with
8,=0,=L1=1c=9k=11=1t=1La=05 ¢ =1c,=150<x<70 and 50<y<70 as shown in Figure 1.
Setting 8, =0,f=L1=1c=-9k=L1=1Lt=1a=05, =1c,=150<x<70 and 50 <y <70 in equation (23),
the periodic wave is displayed in Figure 2. Next, Figure 3 shows the kink wave of equation (24) with parameters
8,=0,=L1=1k=11=1t=1,a=05c =1c, =] 50<x<70 and50<y<70.

Next, another application of G’/ G -expansion method is the search for a solution of space-time fractional AKNS
water equation. This procedure is described in Section 3.

3. Space-Time Fractional AKNS Water Equation

Consider the following nonlinear space-time fractional AKNS water equation (Helal, Seadawy, & Zekry, 2013).

4Dy Df'u+ D} Dy’u +8D;uD; Dyu+4D;“uDju - yD;*u=0,t >0,0 < <1, (25)
where U = u(x, Y, t), ¥ is constant and & is a parameter explaining the order of the fractional space-time derivative. Apply
the equation (6) into equation (25). We get the ODE,
du d U
4“ d§ dg dg*

Integrating equation (26) and setting constant to zero, we obtain

=0. (26)

3
e+ )Y e dY GKI(de —o. @)
dg dg® dg

Similar to the previous section, balancing the equation (26), we have N =1. Therefore, equation (10) modifies

o-xen(55)
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Figure 1. The hyperbolic function solution of the space-time Figure 2. The trigonometric function solution of the space-time
fractional EMC equation forms the kink wave. fractional EMC equation shows the periodic wave.
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Figure 3. The rational function solution of the space-time
fractional EMC equation presents the kink wave.

Replace U (<) in equation (27) using equation (28). Collect all terms which have the same power of G'(©). Setting each

G(¢$)
coefficient of them to zero, we gain
(G/(f)JO: Aca, u+ yka,u + 2ck*a p® + ck’a, uA’ +6klaZ i’ =0, (29)
G(<)
(e'(;) J dcal + yka A+ ck?aA® +8ck?a,ud +12KlaZ ud =0, (30)
G(<)
(G’(g“)jz; 4ca, + yka, +8cka, + 7ck?a A% +6kla2 A2 +12kla =0, (31)
G()
[G’(c:) j : 12ck?a, 24 +12kla 4 = 0, (32)
G()
: 6ck’a, +6kla,” = 0. (33)

&8)
G(©)

Solving the system of equations (29)-(33), we get
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ck
& :—T,12—4,u

_4c+yk
ck?

(34)

By equations (12)-(15) and equation (34), the following exact solutions of the space-time fractional AKNS water equation are
represented with arbitrary constants C, and C, and ¢ :

Case I: 2?2 —4> 0, the hyperbolic function solutions,

4c+yk
c, sinh S +27 +c¢, cosh
ck| -4 4c+ 7k 2 ck

4c+yk
ck’

N Y | Ny

u(x, y,t):ao—T ?4— e (35)
4c 4c + vk 4c+yk
¢, cosh g\/+27/ +¢, sinh \/ +2}/
2 ck ck
Case Il: A2 —44 <0, the trigonometric function solutions,
4c + vk 4c + yk
—c, sin < |- +2}/ +C, cos < |- +27/
ck| -4 4c+ 7k 2 ck 2 ck
u(x,y,t):ao—l— 7+ T (36)
4c 4¢c+ vk 4c+ yk
C, Cos 5\/_ +27/ +c¢,sin ;\/_ +3/
2 ck 2 ck
c .42 4c+yk : : .
aselll: 4% -4y = 2 =0, the rational function solutions,
c
u(x, y,t):ao—ﬁ A, G | 37
{2 c¢+c,d

Equation (35) gives a kink wave when setting a,=0,y=L4=1c=9, k=1 1=Lt=1,a=05,c =1,
c,=150<x<60 and 50<y<60, as shown in Figure 4. Using a,=0,y=L1=1c=Lk=-5I=1Lt=],
a=05,c,=1c,=1,50<x<70and 50 <y <70in equation (36), the resulting periodic wave is presented in Figure 5.

Next, we set a, =0,=L1=Lc=9k=11=1t =1,0!=0-5,01 =1c, =1,20<x<40 and 20<y<40 in equation
(37), the rational function solution is a kink wave as demonstrated in Figure 6.
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Figure 4. The hyperbolic function solution of the space-time Figure 5. The trigonometric function solution of the space-time
fractional AKNS water equation demonstrates the fractional AKNS water equation indicates the periodic

kink wave. wave.
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Figure 6. The rational function solution of the space-time fractional AKNS water equation represents the kink wave.

4, Conclusions

A combination of the G’/ G -expansion method and
the transformation of the Jumarie's Riemann-Liouville
derivatives is a powerful method which gives the exact
traveling wave solutions of the space-time fractional Estevez-
Mansfield-Clarkson (EMC) equation and the space-time
fractional ~ Ablowitz-Kaup-Newell-Segur  (AKNS)  water
equation. The solutions of EMC and AKNS equations can be
expressed in the form of hyperbolic functions, trigonometric
functions and rational functions.
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