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Abstract 
 

The exact traveling wave solutions of the space-time fractional Estevez-Mansfield-Clarkson (EMC) equation and the 

space-time fractional Ablowitz-Kaup-Newell-Segur (AKNS) water equation are investigated. Transforming the space-time 

fractional EMC and the space-time fractional AKNS water equations by the Jumarie's Riemann-Liouville derivative, nonlinear 

ordinary differential equations (ODEs) are achived. It is observed that the /G G -expansion method is valid and reliable for 

solving some nonlinear fractional PDEs. Applying the /G G -expansion method, the solutions of EMC and AKNS water 

equations are obtained in terms of hyperbolic functions, trigonometric functions and rational functions. 
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1. Introduction 
 

One of the fascinating problems in mathematical physics is solving nonlinear fractional PDEs.  Recently, researchers 

have found many powerful methods to solve the nonlinear fractional PDEs such as first integral method ( Eslami, Vajargah, 

Mirzazadeh, & Biswas, 2014; Ilie, Biazar, & Ayati, 2018; Lu, 2012) , modified Kudryashov method ( Ege, & Misirli, 2014; 

Kumar, Seadawy, & Joardar, 2018) , extended Kudryashov method ( Ege,  & Misirli, 2018) , generalized Kudryashov method 

(Demiray, Pandir, & Bulut, 2014; Gaber, Aljohani, Ebaid, & Machado, 2019) , fractional sub-equation method (Alzaidy, 2013; 

Mohyud-Din, Nawaz, Azhar, & Akbar, 2017; Zhang,  2011) and /G G -expansion method (Bekir, & Güner, 2013, 2017; Bin, 

2012). 

In this work, we applied the transformation using the Jumarie's Riemann-Liouville derivative and the /G G -

expansion method to illustrate the analytic solutions of the space-time fractional Estevez-Mansfield-Clarkson (EMC) equation 

and the space-time fractional Ablowitz-Kaup-Newell-Segur (AKNS) water equation. Some properties of Jumarie's Riemann-

Liouville derivatives are stated as the following. 

The Jumarie's Riemann-Liouville derivative of order   with respect to t  is defined as follows (Jumarie, 2006),  
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Some important properties of fractional Riemann-Liouville derivatives are the following (Jumarie, 2009), 
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The procedure of solving space-time fraction EMC equation with /G G -expansion method will be explained in the 

next section. 

 

2. Space-Time Fractional EMC Equation 
 

Consider the nonlinear space-time fractional EMC equation (Mansfield, & Clarkson, 1997), 

 
3 2 2 0, 0,0 1,y t y y t y t tD D u D uD D u D uD u D u t                      (5) 

where ( , , ),u u x y t    is constant and   is a parameter explaining the order of the fractional space-time derivative. Using 

the transformation 
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where ,k l  and c  are nonzero constants. Therefore, equation (5) can be transformed into an ODE, 
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Integrating equation (8) and setting the constant to zero, we get 
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Applying the /G G -expansion method, the solution may be exhibited in the form 
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where ia  are real constants with Na  is nonzero constant. The function G satisfied the ODE, 
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where   and   are nonzero constants. Solving equation (11), the solutions can be identified into three cases with arbitrary 

constants 1c  and 2c :  

 

Case I: 2 4 0   , the hyperbolic function solutions, 
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Case II:  2 4 0   , the trigonometric function solutions, 
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Case III:  2 4 0   , the rational function solutions, 

 

2

1 2

( )
.

( ) 2

cG

G c c

 

 

 
    

 

         (14) 

 

Balancing the highest order derivative and nonlinear terms of equation (9), we get 1N  . Thus, equation (10) become 
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Using equation (15), we replace all ( )U   in equation (9) and collect all terms which have the same power of ( )

( )

G
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 . Setting 

each coefficient of them to zero, this gives 
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Solving the system of equations (16)-(20) yields 
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Substituting equation (21) into equations (12)-(15), the exact solutions of the space-time fractional EMC equation may be 

described in the following three cases with arbitrary constants 1c  and 2c  and  : 

 



798 S. Phoosree & S. Chinviriyasit / Songklanakarin J. Sci. Technol. 43 (3), 795-801, 2021 

 
 
 

Case I: 2 4 0   , the hyperbolic function solutions, 
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Case II:  2 4 0   , the trigonometric function solutions, 
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Case III:  2 4 0c    , the rational function solutions, 
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The hyperbolic function solutions, equation (22), of the space-time fractional EMC equation forms a kink wave with 

0 0, 1, 1, 9, 1, 1, 1, 0.5,a c k l t           
1 21, 1,50 70c c x     and 50 70y   as shown in Figure 1. 

Setting 
0 0, 1, 1,a     1 29, 1, 1, 1, 0.5, 1, 1,50 70c k l t c c x           and 50 70y   in equation (23), 

the periodic wave is displayed in Figure 2. Next, Figure 3 shows the kink wave of equation (24) with parameters 

0 1 20, 1, 1, 1, 1, 1, 0.5, 1, 1,a k l t c c            50 70x   and50 70y  . 

Next, another application of /G G -expansion method is the search for a solution of space-time fractional AKNS 

water equation. This procedure is described in Section 3. 

 

3. Space-Time Fractional AKNS Water Equation 
 

Consider the following nonlinear space-time fractional AKNS water equation (Helal, Seadawy, & Zekry, 2013). 

 
3 2 24 8 4 0, 0,0 1,x t x t x x y x y xD D u D D u D uD D u D uD u D u t                      (25) 

where ( , , ),u u x y t
 
  is constant and   is a parameter explaining the order of the fractional space-time derivative. Apply 

the equation (6) into equation (25). We get the ODE,   
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Integrating equation (26) and setting constant to zero, we obtain 
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Similar to the previous section, balancing the equation (26), we have 1.N   Therefore, equation (10) modifies  
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Figure 1.   The hyperbolic function solution of the space-time  

                  fractional EMC equation forms the kink wave. 

Figure 2.   The trigonometric function solution of the space-time  

                  fractional EMC equation shows the periodic wave. 

 

 
Figure 3.   The rational function solution of the space-time  
                  fractional EMC equation presents the kink wave. 

 

Replace ( )U   in equation (27) using equation (28). Collect all terms which have the same power of ( )
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Solving the system of equations (29)-(33), we get 
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By equations (12)-(15) and equation (34), the following exact solutions of the space-time fractional AKNS water equation are 

represented with arbitrary constants 1c  and 2c  and  : 

 

Case I: 2 4 0   , the hyperbolic function solutions, 

 

1 22 2

0 2

1 22 2

4 4
sinh cosh

2 24
( , , )

2 4 4 4
cosh sinh

2 2

.

c k c k
c c

ck ckck c k
u x y t a

l ck c k c k
c c

ck ck

   

 

   

 


 
  

 


      
     
     

     
     

     

  (35) 

 

Case II:  2 4 0   , the trigonometric function solutions, 
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Case III:  2
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   , the rational function solutions, 
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Equation (35) gives a kink wave when setting 
0 0, 1, 1, 9, 1,a c k      1 21, 1, 0.5, 1, 1,50 60l t c c x       

1 21, 1, 0.5, 1, 1,50 60l t c c x      
 

and 50 60, y  as shown in Figure 4. Using 
0 1 20, 1, 1, 1, 5, 1, 1, 0.5, 1, 1,50 70a c k l t c c x               

0 1 20, 1, 1, 1, 5, 1, 1, 0.5, 1, 1,50 70a c k l t c c x               and 50 70y  in equation (36), the resulting periodic wave is presented in Figure 5. 

Next, we set 
0 1 20, 1, 1,c 9, 1, 1, 1, 0.5, 1, 1,20 40a k l t c c x               and 20 40y   in equation 

(37), the rational function solution is a kink wave as demonstrated in Figure 6. 

 

  
Figure 4.   The hyperbolic function solution of the space-time  
                  fractional AKNS water equation demonstrates the  

                  kink wave. 

Figure 5.   The trigonometric function solution of the space-time  
                  fractional AKNS water equation indicates the periodic  

                  wave. 
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Figure 6.   The rational function solution of the space-time fractional AKNS water equation represents the kink wave. 

 

4. Conclusions 
 

A combination of the /G G -expansion method and 

the transformation of the Jumarie's Riemann-Liouville 

derivatives is a powerful method which gives the exact 

traveling wave solutions of the space-time fractional Estevez-

Mansfield-Clarkson (EMC) equation and the space-time 

fractional Ablowitz-Kaup-Newell-Segur (AKNS) water 

equation. The solutions of EMC and AKNS equations can be 

expressed in the form of hyperbolic functions, trigonometric 

functions and rational functions. 
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