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Abstract 
 

The air pollutants related to PM-10 are increasingly adversely affecting people in upper Northern Thailand, especially 

during the annual dry season. Due to the highly nonlinear dynamics of PM-10 contributed by various factors, in this study a deep 

neural network (DNN) has been implemented as a tool forecasting PM-10 for air quality alerts. In its design, the time lags of PM-

10 and significant meteorology conditions, as well as the well-correlated fire-hotspots as major PM-10 sources in this area, are 

included in the predictor set. The training hyperparameters were optimized automatically by a genetic algorithm, whereas the 

DNN’s parameters were fine-tuned using back-propagation algorithm. Besides, regularization based on a dropout technique was 

employed to prevent over-fitting. In testing the proposed DNN-based PM-10 forecasting model outperformed the others. For one-

day ahead forecasting it provides a good up to 85% accuracy. 
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1. Introduction 
 

For a decade, during the high haze episode in the 

annual dry season (January-April), people in upper Northern 

Thailand (UNT) have been experiencing severe air pollution 

related to particulate matter (PM). The PM with diameter 

below 10 m, called PM-10, is used as a health indicator in 

this area while there are only limited monitoring stations for 

PM-2.5. The various biomass open-space burns and forest 

fires – both local and in nearby outside areas – are considered 

the major primary PM sources (Pasukphun, 2018). Until now, 

the PM-10 is traditionally measured and announced daily in 

the morning, which cannot serve as an advance alert of health 

risks. Therefore, an implementation that would accurately 

forecast PM-10 could play an important role among the air 

quality monitoring tools. 

In the literature, various weather research and 

forecasting (WRF) models have been used to simulate 

 
advection and dispersion of PM-10. Although they can 

provide a high resolution, the long processing time and 

required heavy computing resources remain disadvantages 

(Amnuaylojaroen & Kreasuwun, 2011; Macatangay, Gagtasa, 

& Sonkaew, 2017). Aside from such deterministic models, 

various data-driven statistical models have been proposed to 

predict PM-10, including very simple (linear) models based 

on regression techniques and moving average methods 

(Pimpunchat, Sirimangkhala, & Junyapoon 2014), but also 

very complex (nonlinear) models like neural networks (NNs) 

(Wongsathan, 2018a) and adaptive neuro-fuzzy inference 

systems (ANFIS) (Wongsathan, 2018b). When compared, NN 

and ANFIS have similar performances and outperform the 

rest. A shallow NN (SNN) (i.e., NN having a single hidden 

layer) can forecast moderate PM-10 levels well, the 

performance deteriorates around the peak. To improve the 

PM-10 forecasting models, a new efficient approach to neural 

networks is our focus. 

Recently, deep neural networks (DNN) have been 

applied successfully in various machine learning applications. 

In regression problems, these provide advantages in 

forecasting over the SNN despite similar numbers of hidden 
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nodes (Merkel, Povinelli, & Brown 2018), and over support 

vector machines for a small training dataset (Feng, Zhou, & 

Dong, 2019; Phyo & Jeenanunta 2019). Nonetheless, their 

performance in practical problems deteriorates, not 

performing as expected. The poor performance is due to 

improper training, caused by the vanishing gradient problem 

(VGP) (Hochreiter & Schmidhuber, 1997) likely to occur with 

a DNN, as well as over-fitting, and the approach suffers also 

from high computational load. However, DNN has seldom 

been tested for PM forecasts. 

In this paper, the DNN is formulated as an 

alternative PM-10 forecasting model type (Section 2.3) 

(Section 2.2) to predict daily PM-10 one-day to one-week 

ahead. Before training the DNN (i.e. fitting its parameters), 

the DNN’s hyperparameters (ones affecting the training 

algorithm) are optimized by using a genetic algorithm (GA) 

(Goldberg, 1989) (Section 3.1) (Section 2.4). GA is a 

metaheuristic method based on evolutionary search, and is 

used to substitute for laborious and slow manual tuning. 

Among the hyperparameters, the combination of squash and 

un-squash activation functions is our choice to reduce the 

VGP, while preserving this type of nonlinear transformations 

in the network. Furthermore, the dropout regularization 

technique (Srivastava et al., 2014) (Section 2.3) is applied to 

overcome over-fitting and to remove co-dependencies 

amongst many neurons. However, the conventional dropout 

DNN produces a mean value instead of a certain value that 

would be proper in a classification tasks. For forecasting it is 

therefore modified. To accelerate the convergence of training 

while maintaining a full DNN, dropout is employed during 

some first epochs and is disabled for the rest. Therefore, three 

types of DNNs: (1) full DNN, (2) dropout DNN, and (3) 

dropout accelerated DNN, are implemented as candidate PM-

10 forecasting models. They are associated with the set of the 

significant input variables composed of historical PM-10 data, 

the number of hotspot counts, related meteorological 

parameters, and seasonal trends in terms of periodic functions. 

The collected data for 2012-2019 (Section 2.1) are used to 

train, validate, and test them all. After achieving proper DNN-

based PM-10 forecasting models from these experiments, their 

performances are evaluated through error metrics and 

statistical tests. The forecast results are further discussed and 

compared (Section 3). Section 4 presents the conclusion and 

directions for future work. 

 

2. Methods 
 

2.1 Pre-processing data 
 

Three provinces that are severely affected by PM-10 

in the UNT region, namely, Chiang Mai (CM), Chiang Rai 

(CR), and Mae Hong Son (MHS), are used in this case study. 

Some meteorological factors and correlated hotspot counts, 

among others, which relate to the PM-10 behavior, are 

included in the forecasting models. In order to select the 

significant predictors for the model, forward selection was 

used to identify an optimal set, i.e., the variable that is most 

significant based on correlation coefficient with PM-10 is 

initially used as input to a pilot SNN/DNN model, and then 

more predictor variables are added to the model as long as its 

P-value is below some pre-set level. Therefore, the input 

variables to the DNN included lags of historical PM-10, 

previous day meteorological parameters: average pressure (P), 

average temperature (T), average relative humidity (RH), and 

average wind speed (WS); previous day hotspot counts (HSP), 

and seasonal trend functions sin(2d/120) and cos(2d/120), 

where d={1,…,120} is the index for a day during 4 months 

(Jan-Apr). The data were collected for 2012-2019 from 

various agencies. The entire data were pre-processed and 

cleared of missing and outlier values to transform into daily 

average values. These variables have a wide range of the 

relative changes (ratio of variance to the range) so that the 

SNN cannot characterize sufficiently these dynamic changes, 

whereas the DNN, having a higher dimensional set of hidden 

parameters, may overcome this problem.  
 

2.2 DNN-based PM-10 forecasting model 
 

In a feed-forward DNN (Figure 1), an increase in the 

dept (number of hidden layers) of the NN improves the 

performance of DNN from that of SNN. However, due to the 

back-propagation algorithm (BPA) used in machine learning, 

small derivatives from squashing activation functions (e.g., 

hyperbolic tangent tanh() and sigmoid ()) are multiplied 

backward iteratively, and this leads to VGP. Then the output 

errors fail to reach back further nodes effectively stopping the 

learning. Therefore, multiple hidden layers cannot be trained 

efficiently. This problem can be solved using non-squashing 

activation functions, such as the rectified linear unit (ReLU) 

function, (x) = max[0, x], the leaky ReLU (LReLU) function, 

(x) = max[ax, x], or the exponential LU (ELU), (x) = max[-

a(ex-1), x], where a is a small negative value and x is the given 

input, which produce comparatively large derivatives 

compared to the arbitrarily small values (for large x) from 

tanh() and ().  

For DNN-based PM-10 forecasting ( Figure 1) , the 

output of L-hidden layer DNN ( L > 2)  each having a 

dimension of N(l) is expressed as 
 

  ( ) ( ) ( ) ( ) ( ) ( )PM ( ) , {1,..., 1}, {1,..,7}o l l l-1 l o

DNN t j tanh b l L - j        W W X b    

  ( ) ( ) ( ) ( ) ( ) ( )PM ( ) , {1,..., 1}, {1,..,7}o l l l-1 l o

DNN t j tanh b l L - j        W W X b                                                      (1) 

 

where X( 0)  is the N( 0)  sized input vector of the input layer,     

X(l-1) is the N( l-1) sized input vector of the (l-1)th layer, W(l) is 

the (N(l)N(l-1)) weight coefficient matrix of the lth layer, b(l) is 

the N(l-1) sized bias vector of the lth layer, W(o) is the (N(l)N(l-

1)) weight coefficient matrix of the output layer, b(o) is the bias 

value of  the output layer, and ( l)  are the N( l)  element-wise 

activation functions. In Equation. (1) , the hyperbolic tangent 

was chosen for activation function at the output layer, 

accounting for the nonlinear PM-10 levels, so the training 

output is within the range [ -1, 1] .  To avoid large activated 

outputs from the ELU functions and to maintain stable 

training, all the input variables are also scaled to this range. 

 

2.3 Dropout DNN-based PM-10 forecasting model  
 

A dense (fully connected) DNN means that almost 

all activations will be processed to calculate the output of the 

network. This is costly. Moreover, the time required to 

complete the training increases with the number of weights, 

which in turn increases exponentially with the number of 

hidden layers. Furthermore, using more layers requires more
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Figure 1. The structure of DNN-based PM-10 forecast model 
 

training data as well. These are serious issues. Many 

regularization strategies have been developed to reduce over-

fitting. However, the dropout technique among them is less 

computationally costly, averaging over several models to 

improve generalization. Regarding this technique, randomly 

selected nodes called dropouts, are trained rather than the 

entire network. During the forward and backward phases, the 

dropout ratio p (black circles in Figure 2) is set to zero or 

temporarily eliminated. This means that the incoming/ 

outgoing connections are removed while the rest are trained 

through BPA as usual, resulting in a thinned DNN. In the next 

training iteration, other nodes will be selected for training. 

However, given a total of m nodes in a DNN, 2m thinned 

DNNs can be generated, so it is impossible to train them all. 

For example, there exist 291 sub-network DNNs from a DNN 

(11, 20, 20, 20, 20, 7) model, where 11 represents the number 

of input parameters, the 20s are as N(1), N(2), N(3) and N(4); and 

7 represents one-week ahead PM-10 forecast. In general, the 

fraction of hidden neurons dropped out is the dropout rate 

p=0.5, whereas a smaller dropout rate p=0.8 for the visible or 

input layer is suggested in (Goodfellow, Bengio, & Courville, 

2016). Here, the dropout rate refers to the probability of 

retaining the neuron, which is different from the definition in 

Keras, a deep learning library written in Python language. 

Dropout is not used in the output layer.  

There exist two common strategies using the 

dropout technique. One is inverted dropout at the training 

phase by multiplying the factor 1/(1–p) to the activated 

neurons for compensating the deactivated neurons, and 

another is scaling the activation at the test phase by 

multiplying the factor (1–p) instead to reduce the activation 

function outputs accounting for the missing neurons during 

training. The first one has an advantage in doing nothing at the 

test phase, and this makes inference faster. 

With dropout, the output of DNN-based forecasting 

PM-10 model is expressed as 

   

  
( )

( ) ( ) ( ) ( ) ( ) ( )

( )
PM ( ) ,

1

l
o l l l-1 l o

Drop-DNN l
t j tanh b

p


 
      

 

DROP
W W X b

  
( )

( ) ( ) ( ) ( ) ( ) ( )

( )
PM ( ) ,

1

l
o l l l-1 l o

Drop-DNN l
t j tanh b

p


 
      

 

DROP
W W X b                             (2) 

Here ( )lDROP is a vector of Bernoulli random variables for 

each dropout mask layer where ( ) ( )Bernoulli( )l l

iDROP p , 

each of which has probability p(l) of being 1.  

 
 

Figure 2. The inverted dropout DNN-based PM-10 forecasting 
model 

 

Given the training set of {(X, PM(t+j))i}, i 

=1,2,…,n; the training of Equations. (1) – (2) seeks to 

optimize the following objective function, 

                   

, 1

1
argmin ( , )

n
n i DNN

i i
W b i

J W b PM PM
n





                   (3) 

 

where PMi and DNN

iPM  are the measured and forecast PM-10, 

respectively, and   (0, 1] is a forgetting factor that helps 

prevent the BPA from being stuck at a local solution. 

To prevent over-fitting, one can add an extra term 

called weight decay or L2 penalty (Helmbold & Long, 2018) 

into Equation (3). Besides, training can be stopped when the 

performance starts to deteriorate. Another effective solution 

for preventing over-fitting is regularization by simplifying the 

architecture of the DNN network as much as possible. Also, 

high-performance hardware supercomputing such as using the 

graphics processing unit (GPU) instead of the central PU 

(CPU) can complete the training faster. 

In training, batch gradient descent, mini-batch 

gradient descent, or stochastic gradient descent (SGD) can be 

used to optimize the DNN Equation (1) and dropout DNN 

Equation (2) as follows, 

 

( ) ( ) ( ) ( )

( ) ( )
( , ) ( , )

( , )

l l l l

l l

J
 


W b W b

W b
 ,                (4) 

                         

( ) ( ) ( ) ( ) ( 1)

( ) ( )
( , ) ( , )

( , )

l l l l l

l l

J  
   

 
W b W b DROP

W b
  ,             (5) 

 

respectively, where  is the pre-defined learning rate. It is 

noted that for Equation (5), a dropout rate that is too high 

might lead to inaccurate predictions due to the low number of 

available connections/neurons. 

Normally, the dropout is disabled in the testing 

phase. However, when making forecasts this produces only 

the mean value. So, in this work, the dropout DNN is enabled 

in the testing phase also. Besides, the dropout is used for 

accelerating the training by placing it in some of the first 

training epochs, starting with a big dropout ratio (equivalent to 

the crossover in the genetic process of GA) and attenuating to 

a small dropout ratio (equivalent to the mutation rate at the 



690 C. Chairungrueang & R. Wongsathan / Songklanakarin J. Sci. Technol. 43 (3), 687-695, 2021 

 
 
 

end of the evolution of GA for running out the local trap). At 

p = 1, the whole DNN is back again for remaining training.  

For further improving the training efficiency, 

consider dropout at the visible layer with randomly initializing 

the weights to prevent feature co-dependence. The 

information about the order of significant predictors may be 

lost due to dropout even though later layers have been 

extensively trained, so that forecasting is extremely difficult 

especially when reaching the peak. In this work, the most 

significant predictor variable of PM(t) (i.e., that with highest 

correlation coefficient) and the parameter of HSP that reflects 

the open burning are omitted from drop out. In addition, a 

large number of connection weights is provided to them 

instead of a fully random dropout.  

  After setting the number of input and output neurons 

according to the dimensions of the input vector and the 

forecasting period, respectively, the number of hidden neurons 

in each hidden layer, including other relevant parameters used 

in training the DNN, is decided by a genetic algorithm. 

 

2.4 DNN optimization using GA 
 

In this work, 4 cases of NN-model, namely SNN, 

full DNN, dropout DNN and dropout accelerated DNN, have 

been implemented in forecasting PM-10. The conventional 

dropout DNN may not be appropriate to the forecast problem, 

while classification problems can require only approximate or 

mean values for the threshold function. Here, the dropout is 

enabled both in the training and testing phases. In the dropout 

accelerated DNN, the dropout is used only at some of the first 

epochs. All models are trained using Matlab deep learning 

libraries running on CPU. Since NN is a bio-inspired model, 

there is no rigorous way to identify the hyperparameters that 

crucially impact the training, which optimizes the NN 

parameters (i.e., weights and biases). Typically, the 

hyperparameters fall into 2 categories: (1) model-specific 

hyperparameters that determine the network structure (e.g. the 

numbers of hidden layers and neurons, activation function 

type, and dropout ratio), and (2) optimizer hyperparameters 

that determine how the network is trained (e.g., learning rate, 

mini-batch size, and the number of epochs). Choosing 

appropriate hyperparameters plays a key role to success in 

maximizing model performance. There are many techniques 

to find good choices of hyperparameters, such as manual 

search (Lecun et al., 1998), grid search (GS) (Lecun et al., 

1998), random search (RS) (Bergstra & Bengio, 2012), and 

Bayesian optimization (BO) (Snoek, Larochelle, & Adams, 

2012). To avoid the exploding time complexity when

searching for a large number of parameters, such as in the first 

three methods, the BO based on the Gaussian process has 

probably an advantage over them.  

In this work, genetic algorithm (GA), based on an 

evolutionary approach to develop the best fit solution, is 

applied to find the best set of hyperparameters. Regarding the 

internal parameters of an SNN, i.e., its weights and biases, 

these are optimized using BPA as usual; however, the number 

of hidden nodes has no rigorous basis for selecting it, and is 

chosen by starting with a single node and increasing the node 

count until the performance no longer improves. The 

hyperparameters of the DNN considered in this study are 

detailed in Table 1. There are 6 model-specific types of 

hyperparameters (L, N(l), Epoch, p(1), p(l), and ) and 2 

optimizer hyperparameters ( and BZ) with their specific 

ranges. The parameters p(1) and p(l) are set to 0 for the fully 

connected  DNN.  

In the process of GA, the number of individual 

chromosomes (representing solutions) of Nchr per generation is 

a vector possessing certain genes (representing hyper 

parameters) (Figure 3) and is randomly initialized and 

encoded in Nbit-length binary string of the jth-gene. To 

optimize the hyperparameters for DNN, the parameters L, N(l), 

, p(1), and p(l) are normalized within the pre-defined ranges 

[ , ]min max

j jGene Gene
 as follows, 

                      

 
( , ) ( , )

2 bit

max min

j j min

jN

Gene Gene
Gene i j y i j Gene


  

,            (6) 

where y(i, j) is the real value converted from the binary string 

of the jth-gene. The other hyperparameters of BZ, Epoch, and 

 having 8 levels each are represented by {000, 001, 011, …, 

111}. For instance, if Nbit = 3, the number of combinations of 

the hyperparameters set is up to 16,777,216. 

The individual chromosomes are assessed using the 

average MSE of each DNN in forecasting the PM-10 through 

the BPA under the following specific fitness function,

                            
 

 

(1)

( )
,

( )

1

, ,
( )

1

/
log

/
L

i n

N k

k n
i n i n f N k

k n

J
f MSE C

J









 
  

 




,                     (7) 

where fi,n is the fitness of the ith-chromosome at the nth-

generation considering both improving accuracy in term of 

MSE and reducing VGP in terms of the gradient of J with 

respect to the parameter (k) = {W(k), b(k)} of the first hidden 

layer with respect the output layer, and Cf is the weighted 

constant in the range [0.08, 0.02]. Thus, the hyperparameters 

 
Table 1. The undecided hyperparameters of DNNs 

 

Parameter Abbreviation Range 

   

1) Learning rate  [0.001, 0.05]R 

2) Mini-batch size BZ {12, 24, 36, 48, 60, 72, 84, 120} 

3) The number of hidden layers L [3, 34]  I 
4) The number of hidden neurons of each lth-hidden layer N(l) [3, 34]  I 

5) The number of epochs Epoch {10, 50, 100, 200, 500, 1000, 2000, 5000} 

6) Dropout ratio (input layer) p(1) [0.5, 0.9]  R 
7) Dropout ratio (hidden layer) p(l) [0.2, 0.7]  R 

8) Activation function  {‘ReLU’, ‘LReLU’, ‘ELU’, ‘ReLU+LReLU’, ‘ReLU+ELU’, 

‘tanh+ReLU’, ‘tanh+LReLU’, ‘tanh+ELU’} 
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Figure 3. The flowchart of hyperparameter optimization for DNN using GA 

 

are optimized while minimizing the error and preserving the 

training. From Equation (7), the higher the fitness value, the 

higher score the chromosome gets. 

To maintain some higher chromosomes and 

unconditionally passing them to the next generation, for each 

generation the elitism strategy is used to keep the dominant 

chromosomes in top Melit%. On the other hand, the rest are 

selected to the next generation using the roulette wheel 

method, by assigning a higher probability of selection to 

those with higher fitness values. Between two individuals the 

preserved and the selected chromosomes are crossed at 

random positions to exchange information in the crossover 

stage at probability Pc. In order to escape from local minima, 

the newly generated chromosomes are mutated at random 

positions with probability Pm. After genetic operations, the 

NN are trained by BPA with initial values for 100 times and 

the average of MSE and gradient are taken for the fitness 

function. The process of GA is then repeated until there is no 

further improvement in the convergence rate or in meeting 

the maximum generation.    

After obtaining the forecast models and completing 

the forecasts, the performances of the NNs are evaluated 

using the three error metrics MAE, RMSE, and MAPE shown 

in Equations (8) – (10).   

            

1

1 N
Measured Forecast

i i

i

MAE PM PM
N 

  ,                            (8) 

           

 
2

1

1 N
Measured Forecast

i i

i

RMSE PM PM
N 

  ,                   (9) 

and 

         

1

1
100%

Measured ForecastN
i i

Measured
i i

PM PM
MAPE

N PM


  ,             (10) 

 
where the first two metrics asses the model performance, 

whereas the last metric indicates the accuracy. In addition, the 

non-parametric Wilcoxon Signed-Rank test is employed to 

evaluate the hypothesis of the difference between forecast 

and measured PM-10 concentration levels through the P-

value, in order to assess the quality of forecasting models. 

 

3. Results and Discussion 
  

For hyperparameter optimization using GA, the 

parameters were set as follows:  Nchr= 10, Nbit= 5, Melit= 10%, 

double point crossover with Pc= 0.9, and multiple point 

mutation with Pm= 0.15. After meeting the stopping criterion 

of maximum generation set as 500, the best chromosome 

(solution) of the DNNs corresponding to the connecting 

weights and biases found with BPA is shown in Figure 4 

using three datasets for CM, CR, and MHS provinces. 

Due to each area having a different dataset, the best 

sets of hyperparameters also differ and were achieved by 

different generations. At the maximum epoch, the dropout 

accelerated DNN outperformed the rest. The convergence 

speed and the optimal fitness obtained for an SNN are very 

slow and low, respectively, compared to the DNNs. This also 

verifies the ability of the DNNs to capture dynamic changes 

better than an SNN. The convergence of the best solution is 

shifted to the left, indicating shorter time to reach accuracy 

(less generations in GA process).  

It is seen from Table 2 that most of the best 

solutions tend to employ the combination of hyperbolic 

tangent and various ReLUs as activation functions, meaning 

that the VGP was reduced. As regards selected hidden 

neurons, their number in the DNNs varied in the range 360 – 

5,860. During setting the hyperparameters of the DNNs, they 

are optimized by SGD through BPA in computing the 

gradient at each iteration. The error performances of the 

SNN, DNN, dropout DNN, and dropout accelerated DNN (or 

Dropout acc. DNN for short) using the training data of 2012-

2016 for one-day ahead forecast, as an example, are 

compared in Figure 5. The errors continuously decrease with 

epochs.  

While the smallest errors are obtained from the 

dropout DNN in the training phase, a lower accuracy is found 

in the validation phase and possibly in the test phase. The 

dropout accelerated DNN outperformed the alternatives both 

in the training phase and in unseen data during the validation 

phase. 

 The validation results for the dropout accelerated 

DNN for one-day to one-week ahead forecasts are given in 

Figure 6. It performs very well and moderately well for one-

day and three-day ahead forecasts, respectively. In contrast, 

the performance deteriorates for the longer one-week ahead 

forecasts. Therefore, the dropout accelerated DNN was 

selected as the PM-10 forecasting model for the study areas. 

To verify the performance, the forecast PM-10 were assessed 

with test data. 

The performances of the SNN and DNN based PM-

10 forecasting models in terms of the MAE and RMSE in the 

test phase are detailed in Table 3. By averaging the results, 

the dropout accelerated DNN outperforms the DNN, SNN, 

and dropout DNN, respectively. All the models provide high 
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Figure 4. Convergence of the best fit chromosome against the number of generations 
 

Table 2. DNN hyperparameter tuning by GA 

 

Hyper-parameter 

CM CR MHS 

Fully 

DNN 

Dropout 

DNN 

Dropout 

Acc. DNN 

Fully 

DNN 

Dropout 

DNN 

Dropout 

Acc. DNN 

Fully 

DNN 

Dropout 

DNN 

Dropout 

Acc. DNN 

          

 0.0040 0.0190 0.0115 0.0055 0.0055 0.0025 0.0145 0.0130 0.0040 

BZ 60 120 120 60 48 120 48 60 60 

L 5 13 7 6 16 10 6 15 8 

N(l) 8 15 10 5 18 12 10 20 9 
Epoch 2000 5000 2000 1000 2000 2000 5000 2000 1000 

p(1) - 0.85 0.725 - 0.812 0.775 - 0.887 0.712 

p(l) - 0.527 0.293 - 0.59 0.403 - 0.574 0.340 

 
tanh+ 

ReLU 
ELU 

tanh+ 

LReLU 

tanh+ 

ReLU 

tanh+ 

LReLU 

tanh+ 

ReLU 

tanh+ 

LReLU 

tanh+ 

ELU 

tanh+ 

ELU 
          

 

 
 
Figure 5. Comparison of error performances between SNN, DNN, 

dropout DNN and dropout accelerated DNN in one-day 

ahead forecasts  
 

accuracy for a one-day ahead forecast, whereas their 

performances are deteriorated for 3-day and one-week ahead 

forecasts. This may indicate that the instant PM-10 is 

naturally affected by the current uncertain meteorology

 

variations, unexpected source volumes, and other unknown 

disturbances. To address the problem, one may use the 

previous days forecast as a basis to forecast the next day. 

However, error propagation is a major drawback. Moreover, 

this aspect requires two or more forecasting models, with 

redundancy. 

In addition, a statistical test at 95% confidence level 

( = 0.05) through the non-parametric Wilcoxon Signed-

Rank test shows that the proposed model yielded P-values 

greater than 0.05 among the rest for 1-day ahead forecast for 

all the three study areas, with a statistically insignificant 

difference between the forecast and the measured PM-10 

concentration levels. However, for 3- and 7-day ahead 

forecasts, the forecasting models give P-values less than 0.05, 

showing that these predictions did not fit the data well, which 

supports the results stated above. 

To investigate the forecasting performance of the 

dropout accelerated DNN the forecast results are shown in 

Figure 7. It is seen that the low to moderate peaks are 

captured very well with the proposed DNN but capturing the 

highest peak is unsatisfactory. To overcome the problem, 

seeking other significant predictors that cause perturbations, 

and placing them around the highest peak occurrence would 

improve the performance. Besides, the errors in forecasts 

from a good fitted model are usually normally distributed 

(i.e., zero mean or not biased) and uncorrelated (i.e., no 

information left in the errors). The degree of distribution is 

generally expressed by mean absolute deviation (MAD), 

whereas the correlation of errors is assessed from the sample 

autocorrelation function (ACF) plot. As a result, for one-day 

ahead forecast, the proposed DNNs have mean near zero and 
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Figure 6. Validation results for PM-10 forecasts by the dropout accelerated DNN 

 
Table 3. Performance in one-day to one-week ahead forecasts for SNN, DNN, dropout DNN, and dropout accelerated DNN, for all study 

areas 
 

Forecast 
Period 

Model Structure 

Area 

CM CR MHS 

RMSE MAE MAPE P-value RMSE MAE MAPE P-value RMSE MAE MAPE P-value 

              

1-day SNN 20.79 13.88 16.13 0.492 27.43 16.15 16.99 0.479 24.77 15.62 16.44 0.434 

 DNN 18.56 13.21 15.89 0.300 26.38 15.56 16.57 0.564 21.23 14.82 16.33 0.443 
 Dropout DNN 25.78 16.78 16.59 0.533 29.39 20.32 17.32 0.406 29.33 18.39 17.32 0.402 

 Dropout acc.DNN 17.38 11.06 14.59 0.761 24.26 13.87 15.41 0.502 20.09 14.04 15.17 0.623 

3-day SNN 38.33 22.55 24.83 0.024 47.83 29.38 28.89 0.002 36.77 26.36 25.95 0.052 
 DNN 40.08 23.00 26.30 0 45.23 27.20 28.13 0.111 34.22 24.93 25.38 0.079 

 Dropout DNN 43.22 28.39 27.77 0 50.38 31.23 30.33 0 39.02 29.73 27.02 0 

 Dropout acc.DNN 36.64 22.38 25.78 0.035 42.11 26.73 27.01 0.135 35.17 23.95 25.11 0.073 
7-day SNN 34.97 27.32 26.11 0.213 56.98 37.32 38.19 0 49.36 32.78 37.08 0.0019 

 DNN 36.73 30.45 32.72 0 62.38 42.35 38.97 0 52.30 40.32 39.33 0.074 

 Dropout DNN 35.84 28.32 27.23 0 57.29 40.02 38.77 0 50.08 36.33 37.35 0.075 
 Dropout acc.DNN 33.77 25.40 25.93 0.234 55.78 36.92 37.24 0 49.16 34.67 36.12 0.002 
              

 

low MAD, and no spike at any lag in an ACF plot, indicating 

normal distribution and no correlation, respectively. In 

contrast, for 3-day and one-week ahead forecasts, the results 

are the opposite. 

 

4. Conclusions 
 

The forecast of PM-10 with many correlated 

predictors is ineffective when using an SNN. This paper 

proposed state-of-art DNNs to forecast the daily PM-10. The 

proposed DNN training was optimized with a GA, as well as 

accelerated and using dropout regularization technique, and 

this alternative provided better forecasting accuracy among 

the alternatives tested when applied to three study areas. 

However, achieving high accuracy only in a very short 

horizon forecast (i.e., only one-day ahead) is a disadvantage 

since this is not sufficient to inform the public in advance 

about health risks. Furthermore, peak forecasting needs to be 

improved. To overcome the problems, a long short-term 

memory recurrent NN (LSTM-RNN), which can learn the 

nonlinear patterns well and store information over a long 

period using a memory unit within a structure, might be 

appropriate for PM-10 forecasting model, and could be tested 

in a future study. 
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