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Abstract 
 

In this paper, a new two-parameter distribution namely the length-biased power Garima (LBPG) distribution is 

proposed. It contains the length-biased Garima (LBG) distribution as a special case. Properties, such as moments, survival 

function, hazard rate function, and order statistics are included. The parameter estimation of the proposed distribution is 

illustrated by using the maximum likelihood estimation. Finally, the application study to show the flexibility of the proposed 

distribution in modeling six real data sets is illustrated in terms of data fitting when compared among the LBG, power Garima, 

and Garima distributions. The results presented to show the LBPG distribution fits better than other distributions. Applications to 

these practical data sets are given to demonstrate the usefulness of the proposed distribution. 
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1. Introduction 
 

There numerous continuous distributions, such as exponential, gamma, Weibull, for modelling lifetime data, and their 

generalizations. One important lifetime distribution for modelling data from behavioral science was proposed by Shanker (2016): 

the Garima distribution. It can be obtained by mixing the exponential ( )  and gamma (2, )  distributions with the mixing 

proportion ( 1) ( 2).    Let Y be a Garima random variable then the probability density function (pdf) and cumulative 

distribution function (cdf) of Y are given by 

 g(y) 1 y exp( y),
2


  


   


                    (1) 

y
G(y) 1 1 exp( y); y 0, 0.

2


 



 
      

 

                                                               (2) 

Next, Abebe, Tesfay, Eyob, and Shanker (2019) proposed the power transformation 1/X Y   for 0,   where Y has 

the pdf with equation (1). The distribution of a random variable of X is called the power Garima (PG) distribution. The pdf and 

cdf of X respectively 

1g(x) (1 x )x exp( x ),
2

  
  


   



                                                                                                           (3) 

  (2 x )exp( x )
G(x) 1 ,x 0.

2

   



  
  



                                                                                             (4) 

When 1   the PG distribution reduces to the Garima distribution with the parameter .  
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 Weighted distributions are required when the recorded observation from an event cannot randomly sample from the 

actual distribution. This happens when the original observation damaged as well as an event that occurs in a non-observability 

manner. Due to these inappropriate situations, resulting in values are reduced, and units or events do not have the same chances 

of occurrences as if they follow the exact distribution. The weighted distributions are applied in various research areas related to 

biomedicine, reliability, ecology, etc.  (Rather & Subramanian, 2018) 

 The weighted distribution reduces to length-biased distribution when the weight function considers only the length of 

the units.  When the probability of selecting an individual in a population is proportional to its magnitude, it is called length 

biased sampling.  However, when observations are selected with probability proportional to their length, the resulting distribution 

is called length-biased.   The length-biased distribution was first introduced by Fisher (1934)  to model ascertainment bias and 

formalized in a unifying theory by Rao (1965). Length-biased distributions have been found to be useful in probability sampling 

designs for forestry and other related studies ( Al-Khadim & Hussein, 2014; Oluwafemi & Olalekan, 2017) .  Therefore, the 

development of distributions that could better describe certain phenomena and make them more flexible than the existing 

distribution is of great importance (Maxwell, Friday, Chukwudike, Runyi, & Bright, 2019). Thus, the choice of the length-biased 

model is also an important issue for reliable model parameter estimation (Maxwell, Oyamakin, & Th, 2018). 

 The concept of length-biased distribution is found in various applications in biomedical areas, such as family history 

and disease, survival analysis, intermediate events, and latency period of AIDS due to blood transfusion (Gupta & Akman, 1995). 

Much work has been done to characterize the relationships between the existing distributions and their length-biased versions. 

Patil and Rao (1978) expressed some basic distributions and their length-biased forms, such as the log-normal, gamma, Pareto, 

and beta distributions. 

This article derives a new lifetime distribution to model lifetime data that is the length-biased version of the PG 

distribution. The theorem of the proposed distribution functions are presented. Some properties are established, such as moments, 

survival function, hazard rate function, and order statistics. The maximum likelihood estimation is determined to estimate the 

parameters of the proposed distribution. Moreover, application studies to illustrate the distribution used with different real-life 

data are shown. Finally, conclusions are presented. 

 

2. The Length-Biased Power Garima Distribution 
  

We first provide a definition of the proposed distribution which will subsequently reveal its pdf ( Oluwafemi & 

Olalekan, 2017; Patil & Rao, 1978; Seenoi, Supapakorn, & Bodhisuwan, 2014). 
 

Definition 1. If X  has a lifetime distribution with pdf g(x)  and expected value, 
gE (X) ,  the pdf of length-biased 

distribution of X  can be defined as follows: 

 

g

x g(x)
f (x) .

E (X)




                                         (5) 

 

Theorem 1. Let X  be a random variable that has distributed the length-biased power Garima ( LBPG)  distribution with the 

positive parameters   and ,  it will be denoted by X ~LBPG ( , ).   Then the pdf and cdf of X  are given by 

 

  

   

1 1/ (1 x )x exp( x )
f (x) ,x 0,

2 1 1 1

      

  

   
 

   

                    (6) 

 

       
   

(1 ) 1 1 , x 2 1 , x
F(x) ,

2 1 1 1

     

  

    


   

                   (7) 

where t 1

0
(t) s exp( s) sd


    and t 1

x
(t, x) s exp( s) sd


    are the gamma function  and upper incomplete gamma function, 

respectively, for t 0.   

 

Proof. By replacing the pdf and expected value of the PG distribution (Abebe et al., 2019), i.e.,    
g 1/

2 1 1 1
E (X)

(2 )

  

 

   



 

as in equation (5), we have the pdf  

 

     

   

1 1/

1 1/

(1 x )x exp( x ) (2 )x
f (x)

(2 ) 2 1 1 1

(1 x )x exp( x )
.

2 1 1 1
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This pdf satisfies the following properties: (i) f (x) 0  for all x,  and (ii) f (x) x 1,d



  i.e., 

 

   

1/ 2

0 0
(1 ) ( x )exp( x ) x+ ( x ) exp( x ) x

f (x) x .
2 1 1 1

d d
d

         

  

 





   
  

   

 


 

 

Let u x  then 1/ 1

1/

1
x u u,d d


  and we have  

 

      

   
   

1/ 1/ 1

0 0
(1 ) u exp( u) u u exp( u) u

f (x) x
2 1 1 1

(1 ) 1 1 2 1
1.

2 1 1 1

d d
d

 

  

  

  

 




   


   

    
 

   

 
  

 

The corresponding cdf of X  is  

 

   

x x
1/ 2

x 0 0
(1 ) ( s )exp( s ) s ( s ) exp( s ) s

F(x) f (s) s .
2 1 1 1

d d
d

         

  

    
   

   

 


 

 

Let u s  then 1/ 1

1/

1
s u u,d d


  and we have 

 

   

   
   

1/ 1/ 1

x x
(1 ) u exp( u) u u exp( u) u

F(x)
2 1 1 1

(1 ) 1 1 , x 2 1 , x
.

2 1 1 1

d d
 

 

 

 



  

    

  

 
   


   

    


   

 
 

 

For t 0  we have the gamma function,      t t,x t,x    where  t, x  is the upper incomplete gamma function and 

 
x

t 1

0
t, x s exp( s) sd    is the lower incomplete gamma function. Then the LBPG cdf can written in the form  

   

     
   

(1 ) 1 1 , 2 1 ,
F(x) 1 .

2 1 1 1

x x       

  

   
 

   

                                                               (8) 

       

 The pdf behavior of the LBPG distribution is shown in Figure 1, which has a unimodal distribution. The LBPG pdf has 

various shape, i.e. , the left-skewed shape, right-skewed shape, and close to symmetric shape.  Figure 2 shows the LBPG cdf 

curves as a non-decreasing function. 
 

 
 

Figure 1. The pdf plots of X ~LBPG ( , )   with specified parameters   and   
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Figure 2. The cdf plots of X ~LBPG ( , )   with specified parameters    and   

 

Corollary 2.1 If X ~LBPG ( , )   for 1,   the LBPG distribution reduces to the length-biased Garima (LBG) distribution, 

which will be denoted by X ~LBG ( ) . Then the pdf and cdf of X  are  

   

  

 

2

LBG

x(1 x)exp( x)
f (x) ;x 0, 0,

3

   




  
  


                                                (9) 

 

       
 LBG

(1 ) 2, x 3, x
F (x) .

3

  



  



                                    (10) 

 

Proof. By replacing equations (6) and (7) with 1,   we have the pdf and cdf of X  as in equations (9) and (10) respectively. 

 

3. Statistical Properties 
  

In this section, we introduce some properties of the proposed distribution including moments, survival and hazard rate 

functions, and order statistics. 

 

3.1 Moments and related measures 
  

First, we provide explicit formulas for the r th moments of the LBPG distribution. Next, its related measures, such as 

mean and variance are introduced. 

 

Proposition 1. Let X ~LBPG ( , )   then the r th moment expression of X  is 

 

    

   /

1 1
(1 ) 1 2

E(X ) , 1,2,3,...
2 1 1 1

r

r r

r r

r



 


   

    
       

      
   

                                             (11) 

where parameters   and 0.    

 

Proof. The r th raw moments (or moment about origin) of the LBPG is derived as follows: 
 

   

1 1/ 2

0 0

x f (x) x

(1 ) x exp( x ) x x exp( x ) x
.

2 1 1 1

r

r

r r

d

d d    



    

  





 
  

 

    
  

   



 
 

 

Let u x ,  then 1/ 1

1/

1
x u u,d d


  and we have 
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/

/

(1 ) 1 1 2 1

2 1 1 1

(1 ) 1 ( 1) 2 ( 1)
.

2 1 1 1

r r

r

r r

r r





    


   

  

   

      
 

   

      


   

 

 

From the moments of X,  we have the mean and variance of the LBPG distribution given by: 

 

   
   1/

(1 ) 1 2 2 2
E(X) ,

2 1 1 1

  

   

    


   
  

 

      
   

   

   

2

22/ 2

(1 ) 1 2 2 2(1 ) 1 3 2 31
V(X) .

2 1 1 1 2 1 1 1


    

      

              
        

 

 

3.2 Survival and hazard rate functions 
 

Proposition 3.2 Let X ~LBPG ( , )   then the survival function of X can be written: 

 

     
   

(1 ) 1 1 , x 2 1 , x
S(x) ,x 0, 0, 0.

2 1 1 1

       
 

  

   
   

   
                                             (12) 

 

Proof. From the pdf in equation (6), the survival function of X is given by: 

   

  

   

x

1/ 2

x x

S(x) f (s) s

(1 ) ( s )exp( s ) s ( s ) exp( s ) s
.

2 1 1 1

d

d d         

  



 



    
  

   



 
 

 

Let u s ,  then 1/ 1

1/

1
s u u,d d


  and we have 

       

   
   

x x
1/ 1/ 1

0 0
(1 ) u exp( u) u u exp( u) u

S(x)
2 1 1 1

(1 ) 1 1 , x 2 1 , x
.

2 1 1 1

d d
  

 

 



  

      

  

   


   

   


   

 
 

Alternatively, the survival function of X  can be obtained by replacing the cdf in equation (7) as in form, i.e., S(x) 1 F(x).   

 

Proposition 3. Let X  be a LBPG random variable with positive parameters   and . Then the hazard rate function of X  is  

 

   

1 1/ (1 x )x exp( x )
h(x) , x 0.

(1 ) 1 1 , x 2 1 , x

   

 

   

      

   
 

   
                    (13) 

 

Proof. The LBPG hazard rate function is h(x) f (x) S(x),  where f (x)  and S(x)  are as in equations ( 6)  and ( 12) 

respectively. Finally, we obtain the hazard rate function of X  as in equation (13). 

      Figure 3, shows the LBPG survival function is a monotonically decreasing. In addition, plots of the LBPG hazard rate 

function are presented in Figure 4, it can be shown that; (i) for 0 1  , hazard rate function is a monotonically increasing and 

(ii) for 1  , hazard rate function is unimodal or reversed bathtub shapes. 
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Figure 3. Plots of survival function of X ~LBPG ( , )   
 

  
 

Figure 4. Plots of hazard rate function of X ~LBPG ( , )   

 

3.3 Order statistics 
  

Let 
(1) (2)X ,X ,…,

( )X n
 denote the order statistics of a random variable X ,i

 1,2,...,i n  from the LBPG distribution 

with the pdf in equation (6) and cdf in equation (7); then the pdf of 
( )X , 1,2,j j  …, n  is  

 

  

   

   
   

   

   
   

( )

1

X

1
1 1/

( 1)
f (x) f (x) F(x) 1 F(x)

( ) ( 1)

(1 ) 1 1 , x 2 1 , x(1 x ) ( 1)
1

( ) ( 1) 2 1 1 1

(1 ) 1 1 , x 2 1 , xx exp( x )
.

2 1 1 1 2 1 1 1

j

j n j

n j

j

n

j n j

n

j n j

 

   

     

  

     

     

 






 
 
   

        
  

         

     
 

         

 

 

4. The Parameter Estimation 
 

 Estimation of the parameters of the LBPG model by the method of maximum likelihood is investigated. Let 

(1) (2)X ,X , …,
( )X n

 be a random variable that has distributed the LBPG distribution with the pdf in equation (6). The likelihood 

function of X i
~LBPG ( , )   is 

   

  

   

(1 1/ )

1

(1 x )x exp( x )

L( , )
2 1 1 1

n
n n

i i i

i

nn

       

 
  





  


     


  

 

The corresponding log-likelihood function is given by 
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1

1 1

log L log( ) (1 1 ) log( ) x log 2 1

log 1 1 log(1 x ) log(x ).

n

i

i

n n

i i

i i

n n n

n





     

   



 

      

        



 

               (15) 

 

The maximum likelihood estimates (MLEs) such as ̂  and ̂  of parameters   and   respectively are calculated as follows: 

   

  

   
 

1 1

log 1 1L
log( )log( )

2 1 1 1

x
log(x ) 0,

(1 x )log(x )

n n
i

i

i ii i

n nn
n





 
 

    



  

 
   

    

  
 

 

                                             (16) 

 

  

1 1

1 xL 1
(1 ) x 0.

2 1 1 x

n n
i

i

i ii

n n 


       


     

    
                                              (17) 

  

The MLEs of ̂  and ̂  can be obtained numerically from the non-linear equations ( 16)  and ( 17) .  Because these 

equations are non-linear equations, we solve these equations simultaneously using a numerical procedure with the Newton-

Raphson method.  The nlm function in the stats package, contribution package in R ( R Core Team, 2018)  is used to find the 

MLEs. 

 

5. Application 
  

In this section, we demonstrate the flexibility and the potentiality of the LBPG model through six applications on 

practical data sets having different natures. Six real datasets are as follow; Data 1 contains 64 observations of time, in seconds, 

between consecutive eruptions of the geyser Kiama (Smyth, 2012), and data 2 is times (in minutes) between failures for 

repairable items (Murthy, Xie, & Jiang, 2003), see Souza, Junior, de Brito, Ferreira, and Soares (2019). The data set of data 3 

consists of the waiting time (in minutes), which were given in Abebe et al. (2019). Data sets 4-5 are the breaking stress of carbon 

fibres (in Gba) given by Nichols and Padgett (2006) and the time to failure (103h) of turbocharger of one type of engine given in 

Xu, Xie, Tang, and Ho (2003), both data sets which appeared in Handique and Chakraborty (2016). Finally, data set 6 consists of 

63 observations of the strength of 1.5cm glass fibers taken from Smith and Naylor (1987), see Abebe et al. (2019). Some 

descriptive statistics of all data sets are presented in Table 1. 

      All the model parameters are estimated by the maximum likelihood method, as presented in Section 4 for the proposed 

model. These applications will be used to determine the estimated parameters of each distribution. The value of MLEs of each 

distributions are obtained by using the nlm function in the stats package, contribution package in R (R Core Team, 2018). In 

each application, we first compare the LBPG model with other useful competitive models, such as the LBG, PG, and Garima 

distributions via the Akaike information criterion (AIC) and the Bayesian information criterion (BIC), i.e., ˆAIC 2 2logk L   

and ˆBIC log( ) 2log ,k n L  ˆBIC log( ) 2log ,k n L   where k  is the number of parameters estimated by the model, n  is the sample size, and ˆlogL  

is the maximum value of the log-likelihood function of the model. Moreover, a goodness of fit test of distance between the 

empirical distribution function F (x)n
 of the sample and the cdf of the reference distribution 

0F (x)  are considered by using test 

statistics such as the Kolmogorov-Smirnov (K-S), Anderson Darling (AD), and Cramer-von Mises (W). The model gives the 

smallest values of AIC, BIC, K-S, AD, and W statistics; therefore it is the best model for fitting data. 

The results of the MLEs, AIC, BIC, K-S, AD, and W for fitted distributions of each data sets are illustrated in Table 2. 

The LBPG distribution gives smaller statistics than the LBG, PG, and Garima distributions. These results show that the LBPG 

distribution is the best model to fit these data sets when compared to other distributions. Moreover, the estimated pdf plots in 

Figure 5 and the probability plot of the proposed distribution in Figure 6 indicate that the LBPG distribution provides a closer fit 

to these data. 
 

       Table 1.     Descriptive statistics of real datasets. 
 

Data n Min Max Median Mean Variance 
       

1: Kiama Blowhole 64 7.00 169.00 28.00 39.83 1139.10 

2: Times between failures 30 0.11 0.72 1.24 1.54 1.27 

3: Waiting time 65 2.00 90.00 23.00 26.48 300.91 
4: Breaking stress of carbon fibers 100 0.39 5.56 2.70 2.62 1.03 

5: Time to failure of the turbocharger 40 1.60 9.00 6.50 6.25 3.82 

6: Strength of glass fibers 63 0.55 2.24 1.59 1.51 0.11 
       

https://en.wikipedia.org/wiki/Parameter
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Table 2. Values of MLEs, AIC, BIC, K-S, AD, and W of each distribution for fitting various real data sets 
 

Data Distribution 
Estimators 

ˆlog L
 

AIC BIC KS AD W 

̂
 

̂  
          

1 LBPG 0.2354 0.7141 295.46 594.92 599.24 0.1078 0.7897 0.1068 

LBG 0.0658 - 299.75 601.49 603.65 0.3459 25.1908 3.9710 

PG 0.0088 1.2581 340.99 685.98 690.30 0.2545 7.5483 1.4257 
Garima 0.0254 - 343.38 688.76 690.92 0.1995 5.1916 0.9833 

2 LBPG 1.7147 0.9238 39.64 83.27 86.08 0.0659 0.1394 0.0180 

LBG 1.5783 - 39.73 81.47 82.87 0.3069 7.6507 1.3665 
PG 0.9121 1.0867 46.09 96.17 98.97 0.1630 1.0446 0.1862 

Garima 0.9737 - 46.27 94.54 95.94 0.1949 1.5513 0.2920 

3 LBPG 0.1522 0.8916 271.77 547.54 551.89 0.0876 0.6712 0.0704 

LBG 0.0994 - 272.15 546.30 548.47 0.3568 17.8156 3.1117 

PG 0.0062 1.5095 315.35 634.70 639.05 0.1894 5.6942 0.9981 

Garima 0.0385 - 321.80 645.60 647.78 0.2096 4.2700 0.7611 
4 LBPG 0.2534 2.0174 141.31 286.62 291.83 0.0628 0.3964 0.0662 

LBG 0.9625 - 162.19 326.38 328.99 0.3975 21.0319 4.5456 

PG 0.0620 2.6269 207.20 418.40 423.61 0.2065 7.5127 1.5174 
Garima 0.5123 - 239.02 480.05 482.65 0.2794 14.0128 2.6290 

5 LBPG 0.0071 2.9294 82.86 169.72 173.10 0.1066 0.6904 0.0793 

LBG 0.4185 - 97.98 197.96 199.65 0.4866 9.5493 2.1082 
PG 0.0006 3.8657 110.19 224.38 227.76 0.1601 3.2886 0.4885 

Garima 0.1714 - 138.01 278.03 279.71 0.3658 6.6627 1.2490 

6 LBPG 0.1804 4.7498 14.98 33.96 38.25 0.1461 1.1723 0.1951 
LBG 1.6254 - 63.61 129.22 131.37 0.4878 18.0592 3.9892 

PG 0.0761 5.4126 54.57 113.13 117.42 0.2228 4.4721 0.8189 

Garima 0.9965 - 94.93 191.86 194.00 0.4467 16.2278 3.3191 
          

 

 
Figure 5. Plots of the observed histogram and estimated pdf of the fitted distributions for real data sets 

 

6. Conclusions 
  

We proposed the new lifetime distribution called the 

length-biased power Garima (LBPG) distribution. It has the 

length-biased Garima (LBG) distribution as a special case. 

 

The LBPG pdf behavior has a unimodal distribution of 

various shapes, i.e., the left-skewed shape, right-skewed 

shape, and close to symmetric shape. Statistical properties 

including moments, survival function, hazard rate function, 

and order statistics are derived. The parameters of the LBPG 
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Figure 6. Probability plots of the fitted LBPG distribution for real data sets 

 

distribution are estimated by using the maximum likelihood 

estimation. The result of data applications shows that the 

LBPG distribution provides better fits than the LBG, power 

Garima, and Garima distributions. 
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